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Abstract. We obtain low temperature properties of the classical vector model in a
hierarchical formulation in three or more dimensions. We consider the lattice
model in a zero or non-zero magnetic field, where the single site spin variable
¢ € R” has a density proportional to e~ *¢*~ 1 for large A < o0. Using renormaliza-
tion group methods we obtain a convergent expansion for the free energy with
zero magnetic field. For non-zero fields a shift formula is used to obtain the
effective action generated by the renormalization group transformation (RGT). To
obtain the pure state zero field free energy and spontaneous magnetization we take
the thermodynamic limit together with the zero field limit at a specified rate. The
spontaneous magnetization, m, is calculated, is non-zero and the pure state free
energy coincides, as expected, with the zero field free energy. Also the sequence of
zero field actions does not have a limit but we show that the sequence of actions
generated from the original action shifted by m does; the limiting action
corresponds to a non-canonical Gaussian fixed point of the RGT.

I. Introduction and Results

Consider the d-dimensional lattice classical vector model with partition function
given by

Z= (U040 005 ()~ 1)dg (), (1)

where ¢(x)=(¢(x),...,d,(x))eR’ and 4 is the lattice Laplacian. We want to
obtain low temperature (large f) properties of a hierarchical formulation of this
model. Formal high and low expansions have been obtained for physical
quantities such as the free energy, magnetization and correlation functions for this
model [1, 2]. Rigorous low temperature results have been obtained in [3, 4] for
d=2and in [S]for d=3,v=2. For d=3, v=2 there is spontaneous magnetization
(see [6]) and the truncated correlation functions for h=0 are expected, according
to the Goldstone picture, to exhibit canonical |x — y|~“~ 2 falloff perpendicular to
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the field; |x — y| 2@~ ? falloff parallel to the field. This model can be analyzed using
renormalization group (RG) methods as in [7], where the large field problem
solved in [8] is present. Here we analyze the model in a hierarchical formulation
using RG methods in the spirit of [9 10]. See also [11-13] for results on other
hierarchical models. Specifically in the full model the change of variables
¢— B1%¢ is made, the fixed spin condition is relaxed and the Laplacian is replaced

N
by a hierarchical one, i.e. the partition function on the lattice Ay =| — %, —2—:| is
given by

Zy(h, B)= jexp <ﬁ”2 h Y ¢1(x)— B Dy (@(x)* - ﬂ)2> dun(¢).  (1.2)

duy(¢) is a Gaussian probability measure with covariance given by the inverse of
the hierarchical Laplacian (see below). We use the RG of [10] which allows us to
write

ZN_J' H e“V("’("”du ($)= . H e~RN“‘V(¢(x))dul(¢)

xedn xeAy
= [e " Ddu(4), (1.3)
Lm J5 d
where 4,,=| — R , L odd; dp,, is a Gaussian probability measure with

covariance G,,. The final integral is over a single sittand Go=(1—L"“"2)"1. G, is
given by

G, (x,y)=(1—L[?"4 1 [@-dNEN-1
forall x,ye A, and N(x,y)=min{n={1,2,3,...}; [L™"x]=[L™"y]}, where for any

u€e R’ [u] is the element of Z? such that (—1)<u;—[u];<31. The G, satisfy the
recursion relation

G(Lx+u,Ly+v)=L>"9G,_1(x, )+ 3,-4(x, ), (14)

forall x,ye 4,_, and u, v such that — ; <u,v,< ;‘ 0, 1(x, ) is the Kronecker 6.
The relation (1.3) is derived using the decompositions

d(Lx+u)y=L" V24" D¢ (x)+n(x), xeA,,, (1.5

pt 1 1(§) = dpin(§')don(n) (1.6)

where dg,(n)= ]—[ du(n(x) and du(n(x)) is a Gaussian probability measure with

covariance 1. In Eq (1.3) the renormalization group transformation (RGT) R is
defined by

e RV @ = [ HVAT2CROED (), 1.7)

We give some important properties of the RGT R easily obtained by induction:
1. Commutation with translations. Define the translation by ¢, R" by T, w(¢)
=w(¢— o). We find that

R'T, — 52'- (d—2),,=T,,R". (1.8)
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2. Linear shift formula. Let I(¢)=¢, then

MY RUZ KT — n 1—L72 1/23,R"V
RV —-p hI)—-T_LdLZ(d+2) 71 B'*h
1 L2"—1
_Tm2@+2)p1/2p7 L @+ 1) 2
L B2hl 2L <L2~1>Bh . (1.9)

The RGT R has Gaussian fixed points given by V(¢)= Y c;¢?, where ¢;=0 or
i=1

1 L2—1 . . . .

T At the fixed point the two-point correlation functions behave as

x—yl7“72,  ¢=0
<¢i(x)¢i(y)>m {Ix_yl_(“z) ., ¢+0.
We call the fixed point associated with ¢;=0 (c; +0) a canonical (non-canonical)
fixed point.
In this paper we will be concerned with the zero magnetic field free energy
F= lim L VInZ, and with the spontaneous magnetization in a pure state at

N—- oo
zero magnetic field.

There are several approaches for constructing the h=0 pure state, i.e. by
imposing boundary conditions or by first taking the h=0 thermodynamic limit
followed by the h—0 limit. In the hierarchical model it is technically simpler to take
the thermodynamic limit together with the h—0 limit. To be more precise define
the finite volume free energy by

Fy(h)=—p~'L™™1InZ,(h)
and the finite volume magnetization per site by
OF y(h)
oh

We choose the sequence {hy} of magnetic fields so that h ~ L™ 2N (see Theorem 3 for
the precise behavior). We will state in Theorem 3 below, after additional notation
is introduced, the existence of the limits

F.= lim Fy(hy),
N-

my(h)= —

and
m= lim my(hy).
N— o

Furthermore F,=F and m=0. F,(m) is the pure state h=0 free energy
(spontaneous magnetization). In a subsequent paper we will apply this procedure
to generate correlation functions and verify that the construction indeed yields a
pure state.

Using the linear shift formula (1.9) properties of Fy(h) are obtained from the
zero field Z and the study of Z  is reduced to a control of the sequence R"V which

depend on ¢ only through |@|. The starting V is %((;52 — B)*. The sequence R"V is

analyzed using perturbation theory in the small field region (|¢| — f5/*| < f% 0<a
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small), and a stability bound in the large field region. In the small field region we
write V as a power series in |¢| — B'/% with leading term 44 (|| — /%)% A flow of B
and 1 is obtained. Letting f=f,, A=4, we find

_ L*2,
ﬁn+lzL(d Z)Brn }“n+1z1—_{__8m;a ngl
and
L1 =A%,

—_—

" now BL4
The limiting 1= 0o can be allowed after the first step and 4, is already close to
2* = f(A*), the fixed point of the map A+ f(1)=L24/(1+8LA).

We now state the main theorem on the properties of R*V for h=0. It is more
convenient to state the results in terms of a normalized version of R"V, which we
denote by V™, defined such that it vanishes at its minimum in the region of small
fields. The constant d, = R"V — V™ will be specified as part of the basic result given
by

Theorem 1. Let f8, A, and L be sufficiently large and let o be a small positive number,
0<a<1/[6(d—2)]. There are sequences {B,}, {1,} with Bo=p and X,=2A such that

2 —

a) limi,=1= LST and lim L "¢~ B =2,

b) The function R"V(¢) has a minimum at ¢=Bi*¢/|p|=Pr/*.

c) Letting p=(o+ BL*)$, R"V as a function of o is analytic in {c € C:|o|<p3} and

0=0 is the only minimum of R"V in that region.

d) Let V™ =R"V(¢)—d,, where d,=R"V(BL2@), then for |o|< B2 V"™ P)=44,0?
I4

+w,(0), éi—p wi(c=0)=0 or 0<p<2, and |w,(0)|SkB2*~ 2 for a suitable (L-

dependent ) constant k.

€) 0. p)=e V"9 is an entire function and

low(@)| < exp[ —A*(Re | —B,/%)* + 3 L™~ ?[Im|*].

) d,=L™ nil (L™U*V4(log(1+8LA)" >+ O(B; >*~1/?)), the O(-) term is inde-
pendent of }'=c$nd A
To obtain an expansion for the h=0 free energy we use the relation
Zy=[e ®Vdus=e eV Vdy,
which gives
1 dy 1
TRIM T IM

Using Theorem 1 to control dy and the above integral we have

Fy logfe " ™dy,.

Theorem 2.
F=% Z L_(j“)“(log(l+81jL’1)1/2+0(ﬁ§‘“'”2)).
Jj=0

Remark. This result displays the multi-scale nature of the expansion.
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The global upper bound in Theorem le) can be improved to establish the
existence of the free energy for h+0; stability bounds can be obtained by
elementary methods, i.e. maximizing the integrand for the upper bound and using
Jensen’s inequality for the lower bound. Since we are interested only in the h=0
pure state, we will not pursue the =40 model further.

Now we include the magnetic field A so that

Zy(h)= I e—R”(V—ﬂh‘/zl)(d’)duo i

Using the shift formula (1.9) and letting h depend on the volume we obtain results
for the pure state h=0 free energy and spontaneous magnetization given by

Theorem 3. Let
I‘—1 I°—12 -1
hN=B—1/2 [(Lz—l) _ <L2_1 >L—2N] (1 —Lz—d)'L_ 1/2N(d+2)ﬂ;’/2.

Then

F,= lim Fy(hy)=F
N—

m= lim O (=2 lim L7242 G240,

N-w Oh n—wo

In Theorem 3 we have chosen the sequence {hy} so as to make the proof
effortless; a range of h,’s can be permitted using more complicated estimates in the
proof.

Although R"V does not have a limit we find that if the initial V is translated by
B'/?>m then the sequence obtained by iterating with the RGT suitably renormalized
converges to a non-canonical Gaussian fixed point.

We have, denoting the unit vector in the 1-direction by e.

Theorem 4. Let V_ g1/ () =V(p + B*me) and let V). 2ppe=R"V_ g1/2e — d,, With
d, given by Theorem 1f. Then

lim V_(_"I} 1/2me(¢) = 4/1*4)%

uniformly on compact sets of R".

The above result indicates that the truncated correlation functions parallel to
the spontaneous magnetization have long-range behavior controlled by the non-
canonical Gaussian fixed point and the ones perpendicular decay canonically.
Since the non-canonical fixed point is a property specific to the hierarchical model
we do not expect the same falloff of the parallel correlation functions in the
complete model.

We now describe the content and organization of the remainder of this paper.
We prove Theorem 1 by induction. In Sect. II we give the first step proof; in
Sect. III the proof for a general induction step is given and the proof of Theorem 1
is completed. Theorem 2 is proved in Sect. IV; Theorems 3 and 4 are proved in
Sect. V. In Sect. VI we make some concluding remarks.

I1. Proof of Theorem 1 — First Step

In this section we give the proof of Theorem 1 for n=1 which requires special
treatment since 4 can be arbitrarily large. To analyze V*X(¢) we define ¢’ € R by
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¢=(o'+ L@~ D12 § and set E=ud+t,ue R, with ¢ - t=0.In e *"*” we pass to
the minimum of the quadratic form in u to obtain the representation

1 1
e VP =cyexp(—41a’?) fexp {— E(u2 +t?)

lLd 1/2y2 2 2 L_ 122
——ﬁ—[(u+ﬂ ) +t ﬁ] — mﬂ' ut dudt
=cyexp(—44a’?)I(0), 2.1)
where
122
— pd1 e
=€ A=irai
and, letting & = L™ 12@-2)/(1 4 8AL4),
4L w o ou? ,
IR 3u? +t2+T/2'+—1/—2 ZLo
B ﬁ B
4/1L" ,
,31/2 <3u+ T + ﬂ1/2> (ZLo')?

yl d
731]/2 <1+ﬂ1/2>($ )+ ﬁ (ff .

We adopt the following notational convention: the integral in ¢ is restricted to
@ -t=0 and the integral includes the factor (27) /2. We analyze I(¢’) by splitting
the integration into large and small field contributions. Letting X*=1—X, where

1, if Jul,|t|<pB”
x(u,t)={ b <P,

0, otherwise
I(6")= [ (x+x)exp{...}dudt=1y(c")+1(0").
We have
Lemma IL1. If |o'| <(2L*"2P)?, then

' ﬁl/Z(v—l) ﬂZa
<c— T
I(o)=C ﬂ exp i)

where C is a constant.

Remark. Here and in the sequel different constants will usually be denoted by the
same letter.

Proof of Lemma II.1. For |o'|<(2L*~2B)* and a=1/6 then

).Ld 41" 1/2d—-2)

lo lo'] lul(u? + %)+ (3u* +£2)O(*~12)

= B 1+8AL¢
+<3lul+2ﬁl,2 (Bu? +t2)>0(ﬁ2“ Y2)+ (1 +|ul/B 1)+ O(B** 1)
lL

g B2 =B ) F ) O ).
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Thus

()| Sexp[O(B* )] [ exp { A0 1)

AL
2

and for g sufficiently large
(o) Sexp[O(B>*~1%)—4p*1J,

[+ B3 +t>— ,8]2} dudt,

where

Jsjexp[~——ﬁ—(62 ﬁ)z]dé and JéCB”’“N*U/l/:I for lﬁ2Ld>1. O

Concerning I(o’) we have

Lemma IL2. For |o’|<(2L*?B)* and B large
logIo(0")=10gIo(0)—g4(d"),
where
14(0)=(1+8ALY)~ V(1 + O(B%~ /%)= (1 +8ALH)~ 112,
g,(0’) is analytic and |g,(c')| < Cp3*~ /2,
Proof of Lemma 11.2. From Eq. (2.1) if |u], |¢| </3“ then |o| £ O(B>*~ /?). Write I,(c”)
= [ye v"edudt, where v= 1(u +t%)+ lﬁ u+ B2 +t2—B1* and I(0)

=1y0)fe"%du, where du=ye "dudt/{ye "dudt. Thus logl,(c')=logly(0)
—g4(0"), where g (0)=logfe%du. As |[(e"*=1)dul<c O(B>*'?), |gi(o")
<0(B**~/?) and is analytic on |¢'|<(2L*"2f)* To analyze I,(0) we make the

1
change of variables (u, 1) (s,q) where g=t and s= TR [(u+ BY?)?+t*—B] for

u, t<p,

3a—1/2
1,(0)= ! — [ Fexp [ - %(1 +8AL%s* — 1qZ:I dsdq+ ® )

(1+8AL% 2 2 (1 +8AL%H2°

where j°=1—% 7 is the characteristic function of the region in (s,q) space
corresponding to the reglon |ul,t <pB* in (u,t) space. Estimating the integral by
ce”P*I15(1 +- 8ALY)'/?, we arrive at

Io(0)=(1+8ALY " 12(1+0(1+0(B>* ?) = c(1 +8ALYH) ™1/,
for large B with c strictly positive. []
Combining Lemmas I1.1 and II.2 we have
Lemma IL.3. For |o’|<(2L*"2B)"
I(c")=1,(0)e 921",
where g,(d’) is analytic and |g,(c’)| <O(B3*~1/2).
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Towards obtaining the final small field representation V¥)(¢) we have

Lemma IL4. For |o'| <L ~2B)*, V@) =c+41'a’* + g,(c"), where g,(d’) is ana-
Iytic and |g,(a")| < CB3*~ /2. Furthermore V") has a unique minimum, o,, for |o’|
<@GL'72p)* and |ao|=O(B**~1/?).

Proof of Lemma 11.4. From Eq. (2.1) and Lemmas 2.2 and 2.3 we have for |¢|
<(QL*72B)*, V(@)= C +44'6"* + g,(d’). Using Cauchy estimates for g5(c’) and
Rouche’s Theorem for dV™M/dg’ gives the result. []

Finally Taylor expanding V!(¢) around o, letting 6 =0’—0, and defining
V1)) to be zero at its minimum ¢ =0 we have

Lemma ILS5.
Vi ($)=42,0"+wy(0),lo| <GLY"PB)*, where ¢=(c+p1*)d,
%A*éll =)»'+O(ﬂa_1/2)§3/1*,ﬂi/2=L1/2(d—2)ﬁ1/2+0'0 .

. . d'wy
w,(0) is analytic in |o| < f, o

(0)=0 for n=0,1,2 and |w,(0)| <kB3*~'* kan L
dependent constant.
Proof of Lemma I1.5. For large B and |0’ — a,| < |3 L%~ 2p|* we have the Taylor series
V(¢)= C +42,(0' —0,)* +wy(0'—00),
where using Cauchy estimates
A=A +0(B*" 1), lwi(0' —ag)| < p>7 2.

Writing 6 = 6’ — g, and defining V*)(¢) to be zero at its minimum ¢ =0, we have for
lol <@L 2B, VIAP)=41,6>+wy(0) and ¢=(o'+ L2~ DpV%)p=(a+0,
+LY2a-2813) g = (51 B12)p,  where PL2=LU2U-2gU2 4 g ] 126=2)g112
+0(B** 12 <L PP)V? for large f. [

For the constant d; we have
Lemma IL6. d,=3In(1+8iLY)+0(B3* /%)

Proof of LemmaIl.6. Frome™ V'@ = ¢~ RV@® oRV(E;20) — o~ RV(#)gd1 and Eq. (2.1) we
have e~ =e~ 49" [(¢"), where ¢’ = p1/2 — L}/2€@-2 g2 = O(p2+~ 1/2), Using Lem-
mas IL.2 and IL3 the result follows. []

We now consider the global upper bound for real fields. In the large field region
note that, using Lemma I1.6,

1 _
—VUX$) _ ,d1,~RV(&) _ O(B3=~1/2) ,—~ RV($)
e ele (1+8,1L“)1/2e e .
The global large field upper bound follows from an upper bound on e " ®¥, where in
the integrand of e "®” we use the inequality
A
V(g)= B (@>— B > Allpl—B'2)>. 22

We have

Lemma IL7. If ||¢|— BY2|> 4 B2, then e~ RV®) < o= 241=81,
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Proof of Lemma I11.7. Using the inequality in Eq. (2.2) and making a translation we
have

e RO <exp[— 4L U~ 2D|p|2 — LIAB] fexp[ — 3(1 + 2L ) &2
+ & (L™ 12@=D|p| 4 214261 ?)] dE

S Cllgl+ i+ (g2
cerp| 12 61— B+ O |

For large f and 1= A*/2.
As ||¢|—Bi/*| =4 B we have

e VP <exp[ —A*(pl— BI/H*1C(lpl— BTAHC Y
xexp{ [1 —f2/lL" (1+0(p*~17?)— /1*] (o] — ﬁ{ﬂ)z}-

. A* ‘ 121 -
Now if 42 - then recalling that 4* = =g75—we have i /1* Hence for
lar 2 7T TE ]

£c,
eV < o™ R B || g] — 1R
x exp{ — HLA*(|g| — BI/2)2} Se~HHI-BI?

To obtain the global upper bound in the small field region we use the
representation and bounds of Lemma I1.5 obtaining

Lemma IL8. If ||| — B3| <12, then

e V@) L o MBI - BYD?

Proof of Lemma I18. For ||¢|— B <385
e VO == BB exp[ — (44, — A*) a2 —w,(0)].

For large B, 4, 2 554*. The function w,(0)/o? is analytic on |¢| < f% and thus, by the
maximum 2pr1nc1ple lwi(0)/a?|Skpe~12<4)* This implies e V@
<o MUOI-BY2

To obtain the global upper bound for complex ¢ let o*)(¢) be the extension of
— 1
e V@ to complex ¢, i.e.
1 ~RV(¢) ,d
0W(¢) =RV @ i
= p1/2L7 )2 s [ o =LV~ 1/2(6 = L™ /2" DRegy?
% ei(é_L— 1/2(d- Z)Req&)L“ 1/2(d-2) (Imd,)dé
Thus
oD() S ¥ P Re®) + /2L (4= D(Ime)2 < o= 2 (Rel =B}/ +1/20L" 2 (img)?

and we have completed the proof of Theorem 1 for the first step. []
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IIL. Proof of Theorem 1. General Induction Step

In this section we prove a general induction step and complete the proof of
Theorem I. Assume we are given a real analytic function V(¢) and two positive
numbers f, A such that

a) V(¢) has a minimum at ¢ =12,
b) Letting ¢ =(c+ "), V as a function of ¢ is analytic on {s € C:|o| < f*} and
=0 is the only minimum of V in thlS reg1on

¢) V(p)=4ic*+w(c) on |o|<p*: ——(a 0)=0 for 0<p=<2 and |w(o)

< k ﬂ3a —-1/2
d) o(¢)=e " extends to an entire function of ¢ and

lo(¢)| <exp[—A*(Reg|— /%> + F L™~ 2 (Im¢)*].

*
We will show that if § is sufficiently large (depending only on L), if % SAZ3A*
and if V'(¢) is defined by

e V'@ — ;o RV()

with a proper choice of normalization ¢, then V'(¢) satisfies properties a)-d) with

L2
new constants f/, A’ such that f'/2=LY2@-281L 0(f?* V?) and 1'= 17812 jsAL"

+0(B*~12). If B is large clearly B'/?>L1[}2@-2)g125 gli2 and <i’<31*

therefore the process can be repeated starting with V'(¢). Since V‘“((i)) satisfies the
hypotheses a)-d) we see that by choosing the initial § large enough and 1 = 1*/2 we
can construct the whole sequence V®™(¢), together with B,, 4, such that

|ﬁ1/2 L1/2(d—2)ﬂ'll/2|§ Cﬂﬁu—l/Z,
L2

/{ — x— 1/2
1T Ty = P

with C depending only on L.

We now_ begin the analysis of V'(¢). Write ¢=(o'+L"*“~2B2)¢ and
E=ud+t, ¢-t=0 so that L~ V2€@=DgyE=(L"126-Dg' pU2 4 4G4t Also
write V((L™12@=2g’ +u+BY) P+ ) =AML V2@ Dg' y)? 4 V(L™ 12E g’ 4y

+B12)$ +1).

Substituting V in the integral for e™""

and, as in the first step, passing to the
2

minimum in the quadratic form in u we get, letting A, = 14814

, 2 1 t*
e V= Cem 4 [exp {_ 5(1 +8ALYu? — )

(L Y2E-2 g _
—LdV<<—1TMT +u+[3“2> ¢+t>} dudt= Ce—“"‘“'ZI(O").
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We decompose the integral as, letting y*=1—y,

I(0)= [(x+x)exp{...}dudt=1y(0")+1(d"),

1, if |u,|t| <L~ 2@ 13pge
2 0)= | g
0, otherwise.

We have

Lemma IIL1. If 0<a< ——— and |o'| <(2L*~ 2B, then I (¢’) is analytic and

6(d 2)
[I(o")| £ Cexp(—gL™“~1Ip2),

Proof of Lemma II1.1. Using the global upper bound for complex ¢, |¢’|
<(2L*~2B)* we have

(") < fexp{—3(u*+t*)+e, +e,} x dudt, (3.1)
where

= = 2
7 s ™o

~31/2>2.

* 2
We estimate e, and e,. We have, for % <AL3A*, e, S5+ u_, where 6 depends
only on L. 9
Thus if |u or [t| =(128)1/2p° e, the exponent in Eq. (3.1) is bounded above by
-3+ 1)+ e, £ — 5P + 1) — H W + 7))+ 67 L — (WP +17).
Now suppose |u| and |t| <(125)'/%8% then
—e, [-126@-2)
Lo* = ( 1+8AL°

e, =—4.L"u*+ 4L Re <

L~ 1/2(d—2)
((1 +8AL%

L—l/2(d-2) 2 L2 L—(d—Z)
1+ 8L ‘””)

e,=—L4)* <

Rea’+u+ﬂ1/2>4)+t

2
RCO'I+u) +B3a-l/2'

Thus
2

erte sS4 (4/1 4*)(Rea’)+ ~4—84) (Ima’)> +0(B>*~'1%).

R o
sa+sie L
%g‘ |6')2 +0(B3*~ 12) < 20L7 4214~ 2B)** + O(B3*~ 112)

gL—-(d—1/3)ﬂ2¢[20(2)2aL—1/3+2a(d—2)+0(ﬂa—1/2)] (32)
for |u| and |t] <(126)/2B%. On the other hand, if |u| or |t|> L™ */?“~1/3B* then

Lw?+t?) 2 1L"@~1/3p2 Now choose a < 6(71—2—)’ «>0, and with o fixed choose
Lso large so that 20(2)“L‘ 1/3+24=2) L Now take B large so the term O(f*~*/?)
in Eq (32) is <% It then follows that e,+e,<3L™“" 13822 and ete,

< 1(u? 4+ t?). But then the exponential of Eq. (3.1) is bounded above by —+(u?+1?)
also for |u], |t| <(126)*/2p* In conclusion we have, for |o’| < (2L~ 2By,

(o)< [xcexp{—4(u®+1*)} dudt < Cexp(— gL~ 1B,
and the bound implies analyticity of I (¢"). [
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Concerning I,(¢") we have
Lemma IIL2. For |o'|<(2L*"2B)"
logly(o")=logl,—gi(0"),
where
Io=(1+8ALY) ™1+ 0(f** 1*)2c>0,
g1(c") is analytic and |g'(¢")| < C p3*~ 12,
Proof of Lemma II1.2. We write
) 1/2(d—-2)

1 1
Io(e)= [ zexp {' S U+8AL = 5 2+ 4L (m

2
5 o+ u) — L"V(r)} dudt

s
L~ 1/2(d-2)

— ’ 12\ &
wherewedeﬁncr_<——1+8lLd o' +u+f >¢+t-

By hypothesis V extends analytically from real n=|r|— B> to complex 7 in
Inl < B 7 is analytic in ¢’ for |o’| <(2L*2B)* and |ul, |t| S L~ 1/2@~1/3p* and
L— 1/2(d—2) ) 12
"= <T@.—LT" +“) T

so that || < p* if B is large. Thus V is analytic in ¢’ in |0’| <(2L*~2B)*. Now V(r)
=4/n%+w(n) and letting

~ —1/2(d-2) 2
P)=V () -4 (—d—— o'+ u) :
we have
V()] S 43312417320 19312 4 () 4 OB~ 1),

with |w(n)| £ 1100kL™ 4~ V2214 ~2p)3=~ 12,
Now write Io(6")=1I,[e V" dy, where

dv=yexp(—3(1 +8ALYu? — $t*)dudt/([ y exp(...)dudt=1).
The bound for ¥ implies that I,(¢") is analytic on |¢’| <(2L*~2B)*. Write
logIo(o’)=logI,+log[1+ [(e™ "™ —1)dv]=logl,—g,(c").

We see that gi(¢') is analytic on |o|<(RL*"2B)* and |g}(d)
<4400L 2k(2L4~ 2B)3*~ V2, For I, we have I, = (1 + 8AL%)!/> 4 O(e~ /4@~ 1/9)g2)
= A3 2417 +0(e™ V/4@- U3 > - where c is a strictly positive L dependent
constant. []

Combining Lemmas II1.1 and IIL2 gives

Lemma IIL3. For |o'| <(2L*2p)*
I(O") = IO e—g’z(a') R
g5(0") is analytic and |gy(c")| S O(B3*~112).
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Returning to the expression for V'(¢) we have V'(¢)=c+44.0"%+g5(c).
Arguing exactly as in the first step proves that V'(¢) has exactly one minimum, call
it o, in the region |o'|<(3L?"2B)* and ¢,=O0(B**'/?). Taylor expanding V'(¢)
around g, we find, for

o' — ool <GL' 2B, V'(¢)=c+4Xd*+ ¥ c,(0'—0y),

where
, 1d? 1d"*
A=A+ 8'“282(00), Cn=mgz(ao)-

From Cauchy estimates

1

< —-1/2 d—2m3a—1/2
|cn| = SOOOL k(2L ﬂ) (_:Z%_Ld- 2B)na

so that
M=l +0(p* 12

and, if L is large,
w(o'—ay)= io: (0’ —oo)"| SkQLA~2B)3*~1/2
n=3

Writing o = ¢’ — 6, and defining V'(¢b) to be zero at its minimum ¢ =0 we have, for
lol <@L 2B,

V' =4)'6> +'(0).

Now §=(0' +L/24-DB12) ¢ = (g 4 g0 + L4 2BY2) § <(g 1 f%), where B
=LY2E-DRYZ L (B2~ 12) < (V2 LH2E@-DBY2 for large B. Thus the region
|o] < B’* is contained in |o| < (3L*~2B)* so that the representation given above for
V'(¢) is valid in this region and also |w'(c)| S kB3* /2.

We now turn to the proof of the global upper bound for e =¥, With the correct
normalization we have

VO =R RV($).

Proceeding as in the first step we have e~ RV¢#''/*9) = ¢ =43ro2 [(4') where o’ = f'1/2
— L2642 — 0(B2%~1/%) and as before, e KY#¢"*d > C. Regarding e *V® we

have, using the global upper bound for e~",

e~ fexp[ — (¢ — f12) — 4(E— LU Dg)Nde,

and from this point on the proof follows that of the first step. Also the extension to
complex ¢ is carried out as in the first step.

We have thus completed the proof that if V satisfies properties a)-d), if L= L, if
B>Bo(L) and 1A* <A<3A* then V' also satisfies a)-d) with p'1/2=L1/2€@-2)p1/2

12 A*
2a—1/2 ’ a—1/2 <) < *
+O0(p ), A= 13812 +O(p ). It is easy to verify that 5= A Z32*if B,y is

large and that g'*/2>1LY/2@-2 > g1/2 Hence the procedure can be repeated.
To complete the proof of Theorem 1 we have to show the existence of the limits
lim 4,, lim L™"“~2)8 and obtain the representation and bounds for d,. We have

n— o n—r oo
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Lemma IIL4. The following limits exist:
a) lim A,=A2%,

n—* oo

b) lim L~ "@-2p, .

n—*o

Proof of Lemma 111.4.a). We have
P A L?
"1 148,10

with the O(-) term uniform in n.
Thus

+0(B;1?)

- I G - -
}‘n-l-ll_l* 1=F('1n 1_'1* 1)+0(ﬂn 1/2)’
which upon iteration gives
n+1—'1* 1_L—2(n+1)(/1 1 1*—1)_'_ 'io L—2(n—j)0(ﬁ;z—1/2).
I=

We have ;=L 2f,_, so that g5~ 1/2 < g5~ V4G LI~ 2)*~ /2 and

a—1/2

1 n n
_2_ ; ZJB(a 1/2)< OL Z [Lz(lL" Z)a 1/2],

Ill

1 .
Now o< ——— implies (3L~ *"V2<2L" ' so that §,——0.

Proof of Lemma I11.4.b). We have BL/2 = L'2@-DgL/2 4 O(B2*~ 1/2) with the O(-)
term uniform in n. Iterating gives

IL_ 1/2(n+k)(d—2)ﬂ;4_2k__L~ 1/2n(d—'2)ﬂ;/2|

=IL—1/2(n+k)(d—2)0(ﬂ31k1/2)+“'+L—-1/2(n+1)(d—2)0(ﬁ3a—1/2)|
k -

< f%) Z [-12m+)a-2 "% g 0

= o .

To obtain the representation and bounds for d, let e™""" " =c,e ®"™. By
induction we easily find that

e~ Vin(g) _ exp I:nil L(n— 1-j)d logcj:l e~ RnV(o)(¢)
j=0

so that d,= Z L=t=Mloge,.

Now ¢} e'RV“’(ﬁ}fl ¢) and the integral has been estimated in the Proof of
Lemmas I1.2 and III.2 leading to the value

¢;=(1+8A,LY2(1 + O (B3 112)).

Thus the proof of Theorem 1 is complete.
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IV. Free energy for #=0. Proof of Theorem 2.

We will show below that
lim L™V InIy=0, 4.1)

N—- o
where
I,= fe—V‘”"“”du(d)) sothat F= lim B~ 1L Md,.

N- o

Using Theorem 1f gives the representation for F.
We now turn to the bounds on I which imply Eq. (4.1). We have

Lemma 4.1.
ce 4Nt —Lz‘”)]ﬂN§[N§1 .
Proof of Lemma 4.1. The upper bound follows from the global upper bound for

e"™@ For the lower bound letting y, be the characteristic function of the set
{peR":||¢|—B¥*I<B%} and using Theorem I gives

[y c | g0 e 9l =RV = wxlldl =AY~ 1/20 - L2962 g
2 CPRPOTI fexpl —4iy0® —1/2(1 = L* 7% (o + BN*)*1dV o),
where dv(c)=y(0)do/| xo(0)da. Thus by Jensen’s inequality
Iyz Cexp[—44y{0*) =31 = L* ") ({o>* +By)],

where (-> is with respect to dv. Using (0?)<p3*<pfy the lowerbound
follows. O

V. Proof of Spontaneous Magnetization and Effective Action Limit

We prove Theorem 3; first the result for m, then the equality F, =F. Finally we
give the proof of Theorem 4.
Using the shift formula for RY(V — B'/2hy1,) we obtain the representation
1 —L'”) L™ _ o0z,
hy

e ,_l——
1 )T A G

my= _L2N+d<

where

1— 2N
Zjy= [exp [— ™ ( +LALNANE*D) ( LZI_“l > ﬂmh,ve1>
+L1/2N(d+2)ﬁ1/2h1v¢1 _ %(1 _L2-d)¢2:l dd) .

Making a translation in the above integral gives
1___L—-2N Ld'—l Ld_LZ
= 'L2N+d( ’—1 ) [Lz—i B <L2-1 LZN}’”

d-1 d_y2
+ [Z;ﬁi _ <L L )L_ZN:,ﬁ—l/ZL—I/ZN(d~2)<¢l>UN, (5.1)

L*—1



502 R. Schor and M. O’Carroll

where
Couy=[-e"Ndg/fe”"Ndg
with
Ld 1 Ld_LZ
UN" V(N)(d’) [ — ( 7 i > L ZN] LI/ZN(d+2)ﬂ1/2hN¢1
+ 5(1 — L2792, (5.2)

We now show that the result for m follows from

Lemma 5.1.

(v, =BV (1 +O0(B12). (5.3)
Using Eq. (5.3) in Eq. (5.1) gives

2N L-1 (LI
R =

()

m= lim my=p"1? lim L~ !/2N6@-2)p12
N-w N- o

) L 2"] (1 +O0(BR 1)

so that

L'—1 _ R i
L*-1  L*—1

=ﬁ—l/2 lim L—N/Z(d—Z)ﬁIIV/Z .

N-wo
Proof of Lemma 5.1. Using the formula for hy we have
(pduy=[d1e”I¥Pdp/je "D dp=N/D,
where
Oy =V 43— L2762 +3(1 - L2~ (91— BY).
To estimate N write N=N, +N,, where N, = [ y¢, e Uvdg and
(d)= {1, if |y —BN*<1/2B% and |§p |<3B% dL=01— 18y,

0, otherwise.
In N, we can use the small field representation V™) from Theorem 1. Let
Fy=4x(¢|—BN?? +3(1 L2 ¢1 +3(1—L>7%) (¢, —By?)* then Fy has an
absolute minimum at ¢, = /2, ¢, =0. Taylor expanding Fy and estimating the
remainder gives

Ny=[¢ixexp{—3[8iy+(1—L*"9]($1—BV*)* —2(1—L* 7)1 + G} dd(>5, 5

where Gy = O0(83*~ /) uniformly in y(¢)=1. In Eq. (5.3) write e~ =%~ + (e~ —1)
with the corresponding decomposition N, =N’ +N7. Thus N7=0(83*"*)N}
and N, =(1+0(B3* ?))N'. In N, write y=1—y, and ¢, =¢,—By*+ Br/* which
gives
N, =By?fexp[— 38y +(1 —L* ") (o, — B¥?)?
—3(1—-L*>")$11de - (1 + 0B 12).
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We now estimate N,. Using the global upper bound of Theorem 1 we have

INa|Sexp[—16(1—L* ") B[ 11| exp[ — 4(1 — L*7%) (¢ — Byey)*1ddp

éC(1+ﬁI{J/2)e—1/16(1 —-L2- d)/}2°"
Thus
N=N;+N,=8y?fexp[—38Ay+(1 —L*>" ) (¢, — B¥?)
—3(1=L*>")¢1]dd - (1+0(By~172).

A similar analysis of D leads to

D= jexp[— 5@y +(1 - L") ($: = BY*)’
—3(1-L*"%)¢11d - (1 +O(BY*~112)

and the proof of the lemma is complete. []

We now prove the equality F, =F - Fy(hy) is given by

1—L~2N d C
FN(hN)=—%Ld+2N< 12— )hN ﬁLI;’Vd—ﬁLNd

1 (N) dy 1/2N(d+2) 1—L72V 1/21, 3
~ I logfexp| — V™[ ¢+ L°L I 1 BH2hyé,
+L1/2N(d+2)ﬁ1/2hN¢l _ %(1 _L2—d)¢2:| dd”
which after translation in the integral becomes
1 1—L2M\[L*—1 [[*—12
F — _[d+2N —2N | 2
W)= <L2—1 )[L2—1<L2—1)L ]h”

d C 1 _
ﬁLI;IVd - BLM - BLN logfe™"~d¢,

+

where Uy is given by Eq. (5.2).
As in the proof of Lemma 5.1,

fe Vv dp=exp[5(1—L*"9)By] fe "vdg
and {e~Y"d$p=D=0(1). Noting that hy~L 2" for N large we see that

. 1 d
131—120 FN(hN)=;3- lim F"Nj

and the proof of F, =F and Theorem 3 is complete. []
We now turn to the proof of Theorem 4. By Eq. (1.8)
Ve (B)= VO + LD 2.

We first establish a lemma which permits us to use the small field representation
Theorem 1 for Vi /,,,,. We have
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Lemma 5.2. Let |¢|<p%2. Then for large n

a) l¢+Ln/2(d_2)ﬁ1/2méll_ :/2=¢1+(Ln/2(d—2)ﬁl/2m_ﬂ:/2)
+O(L2e~ UDn@=2))

b) g+ LM24= 25 2me, | — BL/%| < .

Proof of Lemma 5.2.

a) Writing ¢ =¢,é, +t with ¢t- &, =0 we have

2 1/2
n2@d=2)R1/2. 5 | _ - ¢
|¢+L/ ( )ﬁll mell_Ln/Z(d 2)ﬁ1/2m[1+ L"/Z("'z’ﬂ”zm ¢, + L"“"Z)ﬁmz] .

Since lim L™"2@-2)B1/2 exists then |¢p| < L"@~? and for large n

2¢ ¢’

ILn/Z(d—Z)ﬁl/Zm + Ln(d—Z)ﬂm2| <1.

Thus
l¢+Ln/2(d—2)ﬂ1/2meA1| =Ln/2(d—2)[5'1/2',’1_,_(]S1 +0(L(2a—1/2)n(d—2)).

b) From the proof of Theorem 1,
|L— 1/2(n+k)(d'-2)'B:{+2k__L—n/l(d—l)ﬂ'll./Zl

o() —W2d-2) w -j2d-2
=W‘T)L /2( ).Z‘ L9124 )’
n j=1
so that o)
ILn/z(d—Z)ﬁl/zm_ﬁ:n!_ 1/2 . z Lirae- 2)

showing that lim (L"2¢~2BY2m— BL2)=0. From this and a) we see that for

|¢| < B%/2 and for large n that |+ L@~ 2B 2me | — BL%| < B

Now suppose ¢ belongs to a compact set B contained in a ball of radius R. Let n
be so large that f3>2R, then by Lemma 5.2b) we can use the small field
representation of Theorem 1, i.e.

VEhir2me,(9) =441 + L2~ DB 2me, | — B,12)?
+ Wyl + L2 DB e, | — L1%).
From Lemma 5.2a) for large n,
16+ L7264~ 21 2ms, | — B <R +1
and
1§+ L7242 ey — B1/2~ $FI <Rr,
with r, 0 as n— oo for all ¢ € B. Thus
V%t 2, () — 42* G S 41— A*| (19 + L2~ 21 2me, | — B, /%)
+42*|[(1p + L2 2B 2me, — B/%)2 — pT]| +|w,|

SAR+1)|A, — 2%+ 4L Rr, + k31250
uniformly for ¢ € B and the proof of Theorem 4 is complete.



Low Temperature Properties of the Hierarchical Classical Vector Model 505

VI. Concluding Remarks

It would be interesting to know the lower bound on the sequence {hy} which will
still result in a non-zero spontaneous magnetization.

We considered in this paper a specific sequence of magnetic fields {hy} which
produce a pure state in the thermodynamic limit (N — o). It would be interesting
to characterize sequences {hy} which produce mixed states, with the spontaneous
magnetization ranging between zero and its maximum (pure state) value. We have
obtained in [14] the behavior of the pure state correlation functions which gives
the complete Goldstone picture.
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