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Abstract. We obtain low temperature properties of the classical vector model in a
hierarchical formulation in three or more dimensions. We consider the lattice
model in a zero or non-zero magnetic field, where the single site spin variable
φ G Rv has a density proportional to e ~ λ{φ2 ~1)2 for large λ ̂  oo. Using renormaliza-
tion group methods we obtain a convergent expansion for the free energy with
zero magnetic field. For non-zero fields a shift formula is used to obtain the
effective action generated by the renormalization group transformation (RGT). To
obtain the pure state zero field free energy and spontaneous magnetization we take
the thermodynamic limit together with the zero field limit at a specified rate. The
spontaneous magnetization, m, is calculated, is non-zero and the pure state free
energy coincides, as expected, with the zero field free energy. Also the sequence of
zero field actions does not have a limit but we show that the sequence of actions
generated from the original action shifted by m does; the limiting action
corresponds to a non-canonical Gaussian fixed point of the RGT.

I. Introduction and Results

Consider the d-dimensional lattice classical vector model with partition function
given by

Z=ϊeβ[ll2iφ>Δφ)+ih>φ')]πδ(\φ(x)\2-l)dφ(x)9 (1.1)

where φ(x) = (φi(x%...,φv(x))eRv and A is the lattice Laplacian. We want to
obtain low temperature (large β) properties of a hierarchical formulation of this
model. Formal high and low expansions have been obtained for physical
quantities such as the free energy, magnetization and correlation functions for this
model [1, 2]. Rigorous low temperature results have been obtained in [3, 4] for
ά — 2 and in [5] for d = 3, v = 2. For d = 3, v = 2 there is spontaneous magnetization
(see [6]) and the truncated correlation functions for h = 0 are expected, according
to the Goldstone picture, to exhibit canonical \x — y\~{d~2) falloff perpendicular to
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the field; |x—y\~ 2{d~2) falloff parallel to the field. This model can be analyzed using
renormalization group (RG) methods as in [7], where the large field problem
solved in [8] is present. Here we analyze the model in a hierarchical formulation
using RG methods in the spirit of [9,10]. See also [11-13] for results on other
hierarchical models. Specifically in the full model the change of variables
φ-^βιl2φ is made, the fixed spin condition is relaxed and the Laplacian is replaced

— -y, ir is
given by

Σ 0i(*)-£ Σ (φ(x)2-β)2)dμN(φ) (1.2)
eΛn P xeΛn /

dμN(φ) is a Gaussian probability measure with covariance given by the inverse of
the hierarchical Laplacian (see below). We use the RG of [10] which allows us to
write

N=ί Π e-v<"*»dμάΦ) = i Π
xeΛN xeΛi

(φ), (1.3)

Γ L m Lm~Y
where Am= — — , — , L odd; dμm is a Gaussian probability measure with

co variance Gm. The final integral is over a single site and Go = (1 — L~{d ~ 2)) ~ι. Gm is
given by

for all x, y e Λm and N{x9 y) = min {n = {1,2,3,...} [L~nx] = [L~wy]}, where for any
ueRd, [M] is the element of Zd such that (- |)^Wi-[w]i<i. The Gn satisfy the
recursion relation

Gn(Lx + u,Ly + υ) = ϋ2-^Gn.ί(x,y) + δn^1(x,y), (1.4)

for all x, y e An_ 1 and u, v such that — — ̂  wα, va < — δn_ t(x9 y) is the Kronecker δ.

The relation (1.3) is derived using the decompositions

0(Lx + ιι) = L - 1 ^ - 2 y ( x ) + ιf(x), xeΛmi (1.5)

dμm+1(φ) = dμm(φ')dρm(η), (1.6)

where dρm(η)= Π dμ(η(x) and dμ(η(x)) is a Gaussian probability measure with

covariance 1. In Eq. (1.3) the renormalization group transformation (RGT) R is
defined by

e-RV(φ)= Se-Li*ViL-2«-»φ + η)dμiη) ( 1 ? )

We give some important properties of the RGT R easily obtained by induction:
1. Commutation with translations. Define the translation by φoeRv by Tφow(φ)
= w(φ - φ0). We find that

R»TL-^(d-2)φ0=Tφ0R\ (1.8)
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2. Linear shift formula. Let I(φ) = φ1 then

- ^ ( " + 1 ) < ί 7 2 - f /W2 d 9)

V

The RGT # has Gaussian fixed points given by V(φ)= £ ctφf, where cf = 0 or

1 L2 —1
- — 5 — . At the fixed point the two-point correlation functions behave as

-y\~{d~2\ c(=o

We call the fixed point associated with c{ = 0 (cf φ 0) a canonical (non-canonical)
fixed point.

In this paper we will be concerned with the zero magnetic field free energy
F= lim L~NdlnZN and with the spontaneous magnetization in a pure state at

N-K30

zero magnetic field.
There are several approaches for constructing the h = 0 pure state, i.e. by

imposing boundary conditions or by first taking the h 4= 0 thermodynamic limit
followed by the h-+0 limit. In the hierarchical model it is technically simpler to take
the thermodynamic limit together with the h-+0 limit. To be more precise define
the finite volume free energy by

FN(h)=-β-1L-Nd\nZn(h)

and the finite volume magnetization per site by

W
We choose the sequence {hN} of magnetic fields so that h~L~2N (see Theorem 3 for
the precise behavior). We will state in Theorem 3 below, after additional notation
is introduced, the existence of the limits

F + = lim FN{hN),

and

m = lim mN(hN).
N-+ao

Furthermore F+=F and mφO. F+(m) is the pure state h = 0 free energy
(spontaneous magnetization). In a subsequent paper we will apply this procedure
to generate correlation functions and verify that the construction indeed yields a
pure state.

Using the linear shift formula (1.9) properties of FN(h) are obtained from the
zero field ZN and the study of ZN is reduced to a control of the sequence RnV which

depend on φ only through \φ\. The starting Vis—(φ2 — β)2. The sequence jRwFis

analyzed using perturbation theory in the small field region (\φ\—βll2\ </?*, 0<α



490 R. Schor and M. O'Carroll

small), and a stability bound in the large field region. In the small field region we
write V as a power series in \φ\ — β1/2 with leading term 4λ (\φ\ — βί/2)2. A flow of β
and λ is obtained. Letting β = β0, λ = λ0 we find

.'V
and τ2 Λ

The limiting λ= oo can be allowed after the first step and λί is already close to
λ*=f(λ*l the fixed point of the map λ\-+f(λ) = L2λ/(l + SLdλ).

We now state the main theorem on the properties of RnV for h = 0. It is more
convenient to state the results in terms of a normalized version of RnV, which we
denote by V(n\ defined such that it vanishes at its minimum in the region of small
fields. The constant dn = RnV— V(n) will be specified as part of the basic result given
by

Theorem 1. Let β, λy and L be sufficiently large and let a be a small positive number,
0 < α < l/[6(d- 2)]. There are sequences {/?„}, {λn} with βo = β and λo = λ such that

a) l i m Λ . s ^ ^ l and VmL'^-2^βn = y2.

b) The function RnV{φ)Jιas a minimum at φ = βί

n'
2φ/\φ\ = βίj2$.

c) Letting φ = (σ + β^^φ, RnV as a function of σ is analytic in {σ e C: |σ| < /?£} and
σ = 0 is the only minimum of RnV in that region.
d) Let Vin) = RnV{φ)-dn, where dn = RnV{βll2φ\ then for \σ\<βa

nV
{n)(φ) = 4λnσ

2

dP
+ w » , —-wn(σ = 0) = 0 or 0^/7^2, and \wn(σ)\^kβ^-1/2 for a suitable (L-

dσp

dependent) constant k.
e) Qn(Φ) = e~V(n){φ) ι s an entire function and

f) dn = L n d \ (L-(j+1)d(log(l+SLdλJ)
1/2 + O(β]-3a-ί/2)l the O( ) term is inde-

pendent of j and λ .

To obtain an expansion for the h = 0 free energy we use the relation

which gives

Using Theorem 1 to control dN and the above integral we have

Theorem 2.

1 flw 1 -F(*O J

N=-βjm-jNl^g^e v dμ0.

P i=o

Remark. This result displays the multi-scale nature of the expansion.
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The global upper bound in Theorem le) can be improved to establish the
existence of the free energy for /zφO; stability bounds can be obtained by
elementary methods, i.e. maximizing the integrand for the upper bound and using
Jensen's inequality for the lower bound. Since we are interested only in the h=0
pure state, we will not pursue the /iΦO model further.

Now we include the magnetic field h so that

Using the shift formula (1.9) and letting h depend on the volume we obtain results
for the pure state h = 0 free energy and spontaneous magnetization given by

Theorem 3. Let

Then
F+= lim

m Ξ lim d-ξ^{K) = β-'12 lim L-"'2«-

In Theorem 3 we have chosen the sequence {hN} so as to make the proof
effortless; a range of h^s can be permitted using more complicated estimates in the
proof.

Although RnV does not have a limit we find that if the initial V is translated by
βί(2m then the sequence obtained by iterating with the RGT suitably renormalized
converges to a non-canonical Gaussian fixed point.

We have, denoting the unit vector in the 1-direction by e.

Theorem 4. Let V.βί/2me(Φ)=V(φ + β^2me) and let Vί%/2me = RnV.βί/2me-dn with
dn given by Theorem if Then

lim Vίnlι/2me(φ) = 4λ*φ2

ι
n->oo

uniformly on compact sets of Rx.

The above result indicates that the truncated correlation functions parallel to
the spontaneous magnetization have long-range behavior controlled by the non-
canonical Gaussian fixed point and the ones perpendicular decay canonically.
Since the non-canonical fixed point is a property specific to the hierarchical model
we do not expect the same falloff of the parallel correlation functions in the
complete model.

We now describe the content and organization of the remainder of this paper.
We prove Theorem 1 by induction. In Sect. II we give the first step proof; in
Sect. Ill the proof for a general induction step is given and the proof of Theorem 1
is completed. Theorem 2 is proved in Sect. IV; Theorems 3 and 4 are proved in
Sect. V. In Sect. VI we make some concluding remarks.

II. Proof of Theorem 1 - First Step

In this section we give the proof of Theorem 1 for n = 1 which requires special
treatment since λ can be arbitrarily large. To analyze V{i)(φ) we define σ'eRby
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the minimum of the quadratic form in u to obtain the representation

= c0exp(-4Λ'σ'2)J(σ'), (2.1)

where

L2λ
A ' = -

+ 8AL"

and, letting jS?=ZΓ1/2(<I-2y(l +UL"),

4λLd / u 3 u 2

4λLd / 3M
+

We adopt the following notational convention: the integral in t is restricted to
$ -1 = 0 and the integral includes the factor (2π)"v / 2. We analyze J(σ') by splitting
the integration into large and small field contributions. Letting Xc = 1 — X, where

ί l , if \u\,\t\<β°
n''~\θ, otherwise '

We have

Lemma ILL // \σ'\<(2Ld-2βf, then

/ Ola

4

where C is a constant.

Remark. Here and in the sequel different constants will usually be denoted by the
same letter.

Proof of Lemma II.i. For \σ'\<(2Ld-2βf and α = l/6 then

λLd 4L-1/2id-2)

l ρ l-~/Γ \ + ULd

+ (3 M + J Ϊ T T (3«2+ί2)) θ(je2α"1/2)+(i + M/01/2:

ύ^-((u + βxl2)2 + t2-β)2+(u2 + t2)(β2*~ι'2) + O(β3a-112).
2β
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Thus

and for β sufficiently large

where

and J^cβ^N^l\Γλ for ^ > 1 . •

Concerning I0(σ') we have

Lemma Π.2. For \σ'\<{2Ld-2βf and β large

logJ0(σ') = logJ0(O)-g l(σ'),

where

J0(O)=(l + 82LdΓ1/2(l + O(β3*-1l2)^ C(l

g l(σ') is αnα/yίic and | g l(σ')|< cjS3α~1/2.

Proo/ o/ Lemma //.2. From Eq. (2.1) if \u\, \t\ <β* then |ρ| ̂  O(β3a~1/2). Write /0(σ')
1 i r d

= ίχe-"-βd»dt, where p=^(u 2 + t 2 ) + ^ - [ ( w + iS1/2)2 + t 2 -jS] 2 and I0(σ')
2 β

=Io(O)je-βdμ, where dμ=χe-vdudtl\χe-vdudt. Thus log/0(σ')=log/0(O)
- g l (σ ' ) , where g l(σ')=logJe-«<ίμ. As | J ( e - e - l ) ^ | ^ c O()83ίί-1/2), |g l(σ')|
^O(β3"'112) and is analytic on \σ'\<{2Ld-2β)". To analyze /O(O) we make the

change of variables («,t) (s,q) where q = t and s= 1 / 2 [(u + )S1/2)2 + t2 —jβ] for

u,t<β\

where f = l - 2 | is the characteristic function of the region in (s,q) space
corresponding to the region |u|,ί<jSα in (u,t) space. Estimating the integral by
ce-β2°fί6(l + 82Ld)1/2, we arrive at

/0(O) = (1 + ULdy 1/2(1 + 0(1 + 0(β3a~

for large j8 with c strictly positive. Π

Combining Lemmas II. 1 and II.2 we have

Lemma II.3. For \σ'\<(2Ld-2β)a

I{σ') = I0(0)e-^σ'

where g2(σ') is analytic and |g2(OI<0(j?3a~1/2).
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Towards obtaining the final small field representation V{i\φ) we have

LemmaII.4. For \σf\<{2Ld~2β)\ F(1)(<£) = c + 4/lV2 + g2(σ'), where g2(σ') is ana-
lytic and |g2(σ')l< C/?3α~1/2. Furthermore F ( 1 ) has a unique minimum, σ0, for |σ'|

& d 2 2 V 2

Proof of Lemma 11.4. From Eq. (2.1) and Lemmas 2.2 and 2.3 we have for |σ'|
<(2Ld-2β)a, V(1\φ)= C +4λ'σ'2 + g2(σ'). Using Cauchy estimates for g'2(σ') and
Rouche's Theorem for dV(i)/dσ' gives the result. •

Finally Taylor expanding Va)(φ) around σ0, letting σ = σ' — σ0 and defining
V(ί\φ) to be zero at its minimum σ = 0 we have

Lemma II.5.

)iS)2

J where φ = (σ + β{/2)$,

w^σ) is analytic in\σ\<βa

ί,
d^±(0) = 0 for n = 0,l,2 andlw^Kkβf1'112^ an L

do
dependent constant.

Proof of Lemma II.5. For large β and \σ' — σo\ < | | L d ~ 2β\a we have the Taylor series

where using Cauchy estimates

Writing σ = σ' — σ 0 and defining V{ί\φ) to be zero at its minimum σ = 0, we have for

f / 2 (1\ 2 σ) and φ = ( ι^d2)^2

β p

For the constant dγ we have

Lemma IL6. d1 = ^ln(l + 8λLd) + O(β3a~ί/2).

Proof of Lemma IL6. From e~ v(1)(φ) = e~RV(Φ)

e

RV(β\/2φ) = e~RViφ)ed> and Eq. (2.1) we
have e-d' = e-4λ'σ'2I(σf), where σ' = β\l2-Lll2(d-2)βll2 = O(β2*-112). Using Lem-
mas II.2 and II. 3 the result follows. •

We now consider the global upper bound for real fields. In the large field region
note that, using Lemma II.6,

-V(V(φ)_ dl -RV(φ)_ *

The global large field upper bound follows from an upper bound on e~RV, where in
the integrand of e~RV we use the inequality

V(Φ) =jiΦ2- β)2 > WΦI - β112)2 • (2-2)

We have

Lemma Π.7. // | |(/>|-^}/ 2 |>ij8ί, then e
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Proof of Lemma 11.7. Using the inequality in Eq. (2.2) and making a translation we
have

+ \ξ\ (L- ιl2«-v\φ\ + 2L"λβll2)2dξ

For large/? and λ ^λ*/2.
As ||</>|-jβ}/2|^|j3" we have

λ* L2 — 1 λL2 9
Now if λ ̂  — then recalling that A* = . we have -——-j ^ - λ*. Hence for β
large, 2 8 L l+2λL 4

. D

To obtain the global upper bound in the small field region we use the
representation and bounds of Lemma II. 5 obtaining

Lemma II.8. // \\φ\-β['2\<\β\> then

- λ*(\Φ\- β\/2)2

 β

Proof of Lemma 11.8. For \\φ\-β\l2\<τβ\,

e-viί)^ = e-
λ*^-βl/2)2Qxpl-(4λ1-λησ2-w1(σ)-].

For large β, λx ̂  ̂ A*. The function Wi(σ)/σ2 is analytic on |σ| < β\ and thus, by the
maximum principle, K(σ)/σ2| ̂  kβ\~1/2 < |λ*. This implies e-

v(1)(φ)

^e-λ*(\Φ\-β\'2)\ π

To obtain the global upper bound for complex φ let Q{1\φ) be the extension of
e-v<»(Φ) t o c o m p i e x φ9 [^

Thus

and we have completed the proof of Theorem 1 for the first step. •
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III. Proof of Theorem I. General Induction Step

In this section we prove a general induction step and complete the proof of
Theorem I. Assume we are given a real analytic function V(φ) and two positive
numbers /?, λ such that

a) V(φ) has a minimum at φ = βll2$9

b) Letting φ = (σ + βi/2)$, V as a function of σ is analytic on {σ 6 (C: |σ| < jδα} and
σ = 0 is the only minimum of V in this region,

c) V(φ) = 4λσ2 + w(σ) on | σ | < β α : ^ ( σ = 0) = 0 for 0^p^2 and
aσp

d) ρ(φ) = e~κw>) extends to an entire function of φ and

λ*

We will show that if β is sufficiently large (depending only on L), if— ^ λ ̂  3/1*

and if F(φ) is defined by

with a proper choice of normalization c, then F'(φ) satisfies properties a)-d) with

new constants β', X such that βfi'2 = Lι'2{d-2)β + O(β2a-112) and 2' = ^

Jf jg i s l a r g e d e a r l y βΊI2>lLll2(d-2ψ/2>βl/2

therefore the process can be repeated starting with V'(φ). Since V{1)(φ) satisfies the
hypotheses a)-d) we see that by choosing the initial β large enough and λ ̂  λ*/2 we
can construct the whole sequence V{n)(φ), together with βn, λn such that

with C depending only on L.
We now begin the analysis of V'(φ). Write <£ = (σ'+L1/2<d~2))S1/2)<£ and

ξ = u$+t, $ t=0 so that L-1 / 2 ( < i-2V + ξ = (L-1 / 2 < ' '-2 )σ' + iS1/2 + M)̂  + ί. Also
write K((L-1 / 2 ( d-2 )σ' + M + iS1/2)^ + ί)Ξ4A(L-1 / 2 ( l ί-2V + u)2 + F((L-1 / 2 ( ' i-2 )σ' + u

+ J31/2)f+t).
Substituting V in the integral for e v and, as in the first step, passing to the

L2λ
minimum in the quadratic form in u we get, letting λL=

-\-oλL

2) ,

1+8AL"
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We decompose the integral as, letting χc = 1 — χ,

fi, if M,
[0, otherwise.

We have

Lemma III.1. If 0 < α < ———- and |σ'|<(2Ld~2j8)α, then Ic{σf) is analytic and
6(α —2)

Proof of Lemma IILί. Using the global upper bound for complex σ', |σ'|
<(2Ld- 2β)αwehave

(3.1)
where

2 L2 L-^-2> „ _

2

e2=—LdX'

/I* u
We estimate ex and e2. We have, for —- ̂  λ ̂  32*, eγ ^ (5jS2α + —, where δ depends
only on L.

Thus if |u| or \t\^(12δ)ιί2βa

9 e, the exponent in Eq. (3.1) is bounded above by

Now suppose \u\ and |ί|<(12(5)1/2βα, then

_ /r-l/2(d-2) \2

Lu A, \ 1 ~r OAJ-J I

Thus

^ - i - e 2 g 4 - ( 4 A - A * ) ( R e σ 0 + 2 ( 1 + 8 ; i L ί / ) 2 ( L 2 - d -

20
- J | σ Ί 2 + O(jβ3α"1/2)^20L~d(2Ld~2jS)2α + O(jS3α~

l2y] (3.2)

for \u\ and |ί|<(12δ)1/2j3α. On the other hand, if |tι| or |£| >i~1/2<</-1/3>jSα, then

i(u2 +12) ^ iLΓ(d~ll3)β2''. Now choose α < ^-^——, α>0, and with α fixed choose
6(d-2)

L so large so that 20(2)"L~ ^+^-2) < i N o w t a k e ^ l a r g e s o t h e t e r m o^-v2)
in Eq.(3.2) is < i It then follows that eί + e2<^LΓ(d~ll3)β2a and ej + e2

< |(w2 + ί2). But then the exponential of Eq. (3.1) is bounded above by — j(u2 +12)
also for |w|, |ί|<(12δ)1/2jSα. In conclusion we have, for |σΊ<(2Ld-2)β)α,

\Ic(σ'U ί
and the bound implies analyticity of Ic(σ'). •
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Concerning /0(σ') we have

Lemma III.2. For \σ'\<{2Ld-2β)a

where

/0 = (1 + 8λLdΓ 1/2(1 + O(j33* - 1 / 2 ) ̂  c > 0,

gΊ(σ') is analytic and |gΊ(σ')l^ Cj83 α" 1 / 2.

Proo/ of Lemma 1112. We write

ί 1 1 /Γ-1/2W-2)

/0(σ') = J χ exp I - - (1 + 8ΛL>2 - - ί2 + 4λLd (

where we define r = I —— , σ' + u + β1/2

\ 1 + oλL )
By hypothesis V extends analytically from real η = \r\ — β1/2 to complex η in

. η is analytic in σ' for \σ'\<(2Ld-2βf and |u|, | ί |^L' 1 / 2 ( ί i - 1 / 3 ) jS α and

so that |fj|<i?α if j5 is large. Thus 7 is analytic in σ' in |σ'|<(2L<i-2j?)α. Now
2 ) and letting

/T-1/2W-2) \2

F(r)ΞF(r)-4Aί σ' + uj ,

we have

with |w(ιj)|^ 1 lOOfcL""- 1 / 2(2L"-2jS)3 α-1 / 2.
Now write lo{σ') = Io\e-Ldir(r)dv, where

ί/v = χ exp( - i ( l + 81Ld)M2 - i t2)dudt/{$ χ exp(.. .)

The bound for V implies that /0(σ') is analytic on |σ'|<(2L'i~2)8)'ϊ. Write

log/0(σ')=log/0

We see that gΊ(σ') is analytic on \σ'\<(2Ld~2βf and |g'1(σ')|
^4400L~ ll2k(2Ld-2β)3χ-il2. For /„ we have /0 = (1 + 8ALd)1/2 + O(e~ 1 / 4 ( ί - 1/3)j92<χ)

— 7ί—")Aiir«M/2 "*"O(e" 1 / 4 ( d ~ 1 / 3 ) ί 2 α )^c, where c is a strictly positive Ldependent

constant. •

Combining Lemmas III.1 and III.2 gives

Lemma ΠI.3. For \σ'\<(2Ld-2βf

I(σ')=Ioe-M°\

g'2(σ') is analytic and \g'2{σ')\^O{β3a-112).
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Returning to the expression for V'(φ) we have
Arguing exactly as in the first step proves that V'(φ) has exactly one minimum, call
it σ09 in the region |σΊ<(|Ld"2j8)α and σ0 = O(β2<χ-ίl2). Taylor expanding V\φ)
around σ0 we find, for

n = 3

where

From Cauchy estimates

g'2(σ0).

cj ^ 5000ZΓ

so that

and, if L is large,

W ' ( σ ' - σ o ) = Σ ctt(σ'-σoγ -2o\3a-l/2

Writing σ = σ' — σ0 and defining F^φ) to be zero at its minimum σ = 0 we have, for
\σ\<(ΪLd-2βf,

| l / 2 l / 2 ( d 2 ) l / 2
i ( i ) ( | ) i g ^ g

\σ\<βfa is contained in |σ|<(jLd"2)β)α so that the representation given above for
V\φ) is valid in this region and also \ω\σ)\ ^kβ' 3 a~ 1 / 2 .

We now turn to the proof of the global upper bound for e ~ v'{φ\ With the correct
normalization we have

fΊ(σf% where σ' = β'1'2

^ a Regarding e~RV(φ) we
Proceeding as in the first step we have e
_Li,2(d-2)β = Oφ2a-i,2) a n d a s b e f o r e ? e-

have, using the global upper bound for e~v

and from this point on the proof follows that of the first step. Also the extension to
complex φ is carried out as in the first step.

We have thus completed the proof that if V satisfies properties a)-d), if L^ Lo, if
β>βo(L) and ^λ*^λ^3λ* then V also satisfies a)-d) with β'W = Lll2i*-2ψ12

+ O(β2a~1/2), λ' = LJ:τd + O(βa~1/2). It is easy to verify that ̂ £λr£ 3/1* if β0 is
1 + oλL 2

large and that βfil2>^Lll2{d~2)>β112. Hence the procedure can be repeated.
To complete the proof of Theorem 1 we have to show the existence of the limits

lim λn, lim LΓn(d~2)βn and obtain the representation and bounds for dn. We have
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Lemma III.4. The following limits exist:

a) lim λn = λ*,
n-*co

b) lim Lrn(d'2)βn.
n-+co

Proof of Lemma IIIA.a). We have

with the O( ) term uniform in n.
Thus

1-1 i * - l 1

λn+,-λ -J-2

which upon iteration gives

We have βJ^iLd-2βJ_1 so that fi-Wzfi-w&L'-ψ-1™ and

" T 2n %ί-^ 'J — T 2n ^£-J *-

N o w α < TTT-^ implies ( i L d - 2 ) α - 1 / 2 ^ 2 L " 1 / 3 so that Sn >O.
6(α —2) n~*°°

Proof of Lemma IIIΛ.b). We have jSjft = L 1 / 2 ( d " 2)j8π

1/2 + O(j82 α '1 / 2) with the O( )
term uniform in n. Iterating gives

ιr - l/2(n + k)(d-2)ol/2 r - l/2n(d-2)ol/2\
\L Pn + k~Ll Pn I

— \T-ll2{n + k)(d-2)sΛ/o2a-l/2\ , , r - l/2(«+l)(d-2) A)//?2α-l/2\ι
— I \rπ + k— 1 / ' * * * ' ^ ^\Pn )\

/V i i

To obtain the representation and bounds for dn let e v(n+ί) = cne
 RV(n). By

induction we easily find that

V
7 = 0

Now cj1 = e~RVU)(βj+ιΦ) and the integral has been estimated in the Proof of
Lemmas II.2 and III.2 leading to the value

c . = ( l + SλjLd)1/2(l + O(β]a - 1

Thus the proof of Theorem 1 is complete.
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IV. Free energy for Λ = 0. Proof of Theorem 2.

We will show below that

lim L'NdlnIN = 09 (4.1)

where

ln=le-v(N)(φ)dμ(φ) so that F - lim β-ιL~NddN.

Using Theorem If gives the representation for F.
We now turn to the bounds on / which imply Eq. (4.1). We have

Lemma 4.1.

Proof of Lemma 4.1. The upper bound follows from the global upper bound for
ev(N)(φ\ For the lower bound letting χ0 be the characteristic function of the set
{φ e Rv: 110| -β\J2\ <βa

N} and using Theorem I gives

/ >

where dv(σ) = χo(σ)dσ/$ χo(σ)dσ. Thus by Jensen's inequality

where <•> is with respect to dv. Using (σ2)<^β%*<βN the lowerbound
follows. •

V. Proof of Spontaneous Magnetization and Effective Action Limit

We prove Theorem 3; first the result for m, then the equality F + =F. Finally we
give the proof of Theorem 4.

Using the shift formula for R^V—β112^!^ we obtain the representation

_ T2N + l L

where

Making a translation in the above integral gives
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where

with

+ ^(ί-L2-")φ2. (5.2)

We now show that the result for m follows from

Lemma 5.1.
-V2)). (5.3)

Using Eq. (5.3) in Eq. (5.1) gives

- ( L ' - L 2 ) ( i ^

so that

m= lim mN = β~lj

ΛΓ->OO

N-^oo

Proof o/ Lemma 5Λ. Using the formula for hN we have

where

To estimate N write N = Nί+N2, where Nx = \χφγe UNdφ and

(0, otherwise.

In N1 we can use the small field representation V{N) from Theorem 1. Let
FN = 4λN(\φ\-βl/2)2 + τ{l-L2~d)φl + τ(l-L2~d) (ΦI-JSΛ/ 2 ) 2 , then FN has an
absolute minimum at Φι = β)j2, φ± = 0. Taylor expanding FN and estimating the
remainder gives

(5.4)

where GN = 0{β%* ~1/2) uniformly in χ(φ) = 1. In Eq. (5.3) write eG" = e°N+(e°N -1)
with the corresponding decomposition N^NΊ + N'ί. Thus N'[ = O(β3

N

a-ll2)N'1
a n d N 1 = ( l + O(β3

N

x~i'2))N'ί.InN\ writeχ = ί-χcandφι = φ1-β1

N'2 + β]J2 which
gives
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We now estimate ΛΓ2. Using the global upper bound of Theorem 1 we have

Thus

A similar analysis of D leads to

-(i +O(β3

N'2-1'2))

and the proof of the lemma is complete. •

We now prove the equality F+=F • FN{hN) is given by

J h +
log Jexp [ -

which after translation in the integral becomes

\ — T~2N\ Yld— 1 ίϊά T

h2_χ J |̂ Ϊ?_T̂ _7ZT
1 (\ — T\ Yl— 1 ίϊ T2\

- X τd+2N l L \ t / \T~2N

where UN is given by Eq. (5.2).
As in the proof of Lemma 5.1,

and $e~UNdφ = D = O(l). Noting that hN~L~2N for JV large we see that

1 π /I \ "I 1 ^N

lim FN(hN)=- hm - ^

and the proof of F+ = F and Theorem 3 is complete. •

We now turn to the proof of Theorem 4. By Eq. (1.8)

We first establish a lemma which permits us to use the small field representation
Theorem 1 for Fί%/2mei. We have
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Lemma 5.2. Let \φ\<βaj2. Then for large n

a) \φ + Ln^d-^βγι1mέι\-βli2 = φιHLnl2{d'1)βll2m-βli2)

+ O ( L ( 2 α ~ 1 / 2 ) n ( d ~ 2 ) ) ,

b) Wφ + VW-Vβ^meΛ-β^Kβί

Proof of Lemma 5.2.

a) Writing φ = φίeί + t with t έ1 = 0 we have

[ 2 ώ2 I112

1 +

 L»l2l4-2ψ,2m Φl + Ln«-2)βm2 J
Since lim L"w/2(ίi-2)jSM

1/2 exists then |φ |<L w α ( d - 2 ) and for large n

Thus

b) From the proof of Theorem 1,

Dβl/2 _jj-n/2(d-2)ol/2ι

^ ) r-«/2(d-2) y τ-j/2(d-2)

so that

showing that lim (L"l2id'2)βll2m-βll2)=0. From this and a) we see that for

\φ\<β'J2 and forlarge n that \φ+L"l2(i-2)βll2mέί\-βίJ2\<βι

n.
Now suppose </» belongs to a compact set B contained in a ball of radius R. Let n

be so large that β%>2R, then by Lemma 5.2b) we can use the small field
representation of Theorem 1, i.e.

From Lemma 5.2a) for large n,
\\φ + Ln/2(d-

and

WΦ+L'"2<''-2ψ'2meί\-β1J2\2-φ2\^Rrn

with rn 0 as n-^co for all φeB. Thus

uniformly for φ e B and the proof of Theorem 4 is complete.
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VI. Concluding Remarks

It would be interesting to know the lower bound on the sequence {hN} which will
still result in a non-zero spontaneous magnetization.

We considered in this paper a specific sequence of magnetic fields {hN} which
produce a pure state in the thermodynamic limit (JV->oo). It would be interesting
to characterize sequences {hN} which produce mixed states, with the spontaneous
magnetization ranging between zero and its maximum (pure state) value. We have
obtained in [14] the behavior of the pure state correlation functions which gives
the complete Goldstone picture.
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