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Abstract. For an elliptic differential operator A over S1, A = Y Ak(x)Dk, with
k = 0

Ak(x) in END((Cr) and θ as a principal angle, the C-regularized determinant
DetθA is computed in terms of the monodromy mapP^, associated to A and some
invariant expressed in terms of An and An_1. A similar formula holds for finite
difference operators. A number of applications and implications are given. In
particular we present a formula for the signature of A when A is self adjoint and
show that the determinant of A is the limit of a sequence of computable expressions
involving determinants of difference approximation of A.

1. Introduction and Summary of the Results

In this paper we study the determinant of elliptic differential operators on a complex
p

vector bundle E —• M of rank N over a compact oriented connected manifold M
of dimension 1, as well as the determinants of its finite difference approximations.
For this purpose we introduce a new invariant Sθ which, in the case of odd order
self adjoint operators, calculates the ^-invariant (Corollary 5.4).

In order to state the first main theorem we have to introduce the following
notions for elliptic differential operators.

p

(1) The monodromy mapP^: Denote by Γ(E) the smooth sections of £ —>M. For
an elliptic differential operator A:Γ(E)^T\E) of order n ^ l consider the lift

Ar.Γ(E) -• Γ(E\ where E —• M is the pullback of £ —• MJty ^ e universal covering
M^M. Due to the ellipticity of A, the nullspace Null (Ά) has dimension nN. The
fundamental group π 1(M,*) = Z (with 1 corresponding to the orientation of M)
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acts on Null (A) and the isomorphism corresponding to 1 eZ is called the mono-
dromy map and is denoted by PA.

(2) Invariant R(A): Observe that M is diffeomorphic to S1 and E is always trivial.
A parametrization of p is a pair of maps {φ,η\ where φ S1 ->M is an orientation
preserving diffeomorphism and η-.S1 x <EN ^>E is a diffeomorphism, linear in each
fiber such that p-η = ψ'pSh where Pςi' S1 xC^—•S1 denotes the projection of
S1 x C N on S1. With respect to a given parametrization (φ,η) the operator A can

n ί \ d\
be written as A = Y i4k(x)D* x e S 1 D = T 7 - , where Λk(x) is in E n d ( C ^ )

fc=o V i axJ
(O^k^n) and, due to the ellipticity of A, An{x) is in GLN((£). Define the local

expression R(A) = exp ί — f tr A~1(x)An^1(x)dx I. It is straightforward to verify that

R(A) does not depend on the chosen parametrization (φ, jf), thus it is an invariant
of A.

(3) (-regularized determinant Detθ(A): For an angle θ (in R) denote by ## the
ray Rθ = {peiθ\0 ^ p < oo}. The elliptic operator A is said to have θ as a principal
angle if spec(σL(yl)(x,£))nΛβ Φ 0 (xeM, ξeT*M\{0}), where σL(A)(x,ξ) denotes
the leading symbol of A and spec(σL(X)(x, ξ)) the spectrum of the endomorphism
σL(A)(x,ξ) ( = An(x)ξn) with respect to parametrization of E.

By extending slightly results of Seeley ([Se]) one can define the ζ-regularized
determinant Detθ(,4) for an injective elliptic differential operator A, having θ as a
principal angle (cf. Sect. 2). In case A is not injective one defines Detθ (A) = 0.

(4) Invariant SΘ(A): Let 4̂ be 1-1 and have the property that both θ and — θ are
principal angles. (Observe that if A is of odd order and θ is a principal angle for
A, then — θ is also a principal angle.) Then the argument β of an eigenvalue of
σL{A)(x,ξ), ξ >0, satisfies either θ<β<θ + π or θ + π<β<θ + 2π. Denote by
ΠQ and ΠQ the projections of Ex into the subspaces generated by the generalized
eigenvectors corresponding to the eigenvalues with arguments in the interval
(0,0 + π) and (0 + π,0 + 2π) respectively. Define Γθ(x) to be the involution
ΠQ — Πβ. Actually, E^M decomposes as a direct sum of two bundles E+ —• M
and E~ —• M of dimension N+ and N~ = N — N+ respectively where the fibers are
given by Πβ(x)(Ex) and Πθ~(x)(Ex) respectively. Observe that άQtΓθ(x) does not
depend on x. A parametrization (φ,η) of E-+M is called admissible if?/ splits, i.e.
η = η++η~, where f + S1 x <£N+ -+E+ and ^ S ^ C ^ ^ Γ . An admissible
parametrization will be also denoted by (<p, η+,η~). With respect to an admissible
parametrization Γθ(x) is given by the diagonal matrix diag(l,..., 1, — 1,..., — 1).
With respect to an admissible parametrization, one defines

SB(A) = det Γθ(x)exp | ^ j dx tr rj

Again one can verify that SΘ(A) is independent of the chosen admissible para-
metrization thus an invariant of A. Of course, one can express SΘ(A) with respect to
a parametrization, not necessarily admissible, but the formula is more complicated.

Theorem 1. Let A be an elliptic differential operator of order n, having θ as a principal
angle.
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(A) // n is even, then

A) = (i)NnR(A)det(ld-PA).

(B) Ifn is odd, then

Det, (A) = (ί)Nin + 1)SΘ(A)R(A) det (Id - PA).

The next result concerns the determinants of finite difference approximations of
an elliptic operator A.

Let V be a complex vector space of dimension N9 (m, ή) a pair of positive
integers and T an integer with m + n ^ T. A periodic finite difference operator of

type (m, n) and period T,A:Vπ-+ F z , is given by Ay(k) = Σ Aj(k)y(k +j), where

Aj(k)eEnd(V), Aj(k + Γ) = ^(/c) and yeK . A and T are completely determined

by the operator χ : j/ z/ τ z_> j / 2 / 7 ^ defined in a straightforward way. A (as well as

A) is called elliptic if An(k) and A_m(/c) are in GLN(<E) for all k. The ellipticity

implies that the nullspace Null A of A is a finite dimensional subspace of Vz of
dimension (n + m)iV. The translation by T induces a linear map PA: Null ,4 -> Null A.

r
One defines Rd(A) = f| det An(k). Note that ^ can be equally well viewed as a

k=ί

(m— l,w+ 1) type operator in which case det Λ changes by multiplication with
(— 1)(Γ~1)N. The second main result is the following version of Theorem 1 for finite
difference operators:

Theorem 2. Let A be a finite difference operator as above of type (m, ή) and period
T, then

det A = {-l)nN{T-VR^A) det {Id - PA).

The proofs of Theorems 1 and 2 are very similar, so let us explain the main ideas
of the proof of Theorem 1:

(A) By studying various appropriate variations of the terms R(A%Sθ(A%detθ(A)
one reduces the proof of Theorem 1 to the case of scalar elliptic differential operators
(i.e. N = 1).

(B) Using that R{A\ SΘ(A) and Detβ(,4) are holomorphic functions of A and again
using similar variations as in (A), one reduces the proof of Theorem 1 to the case
of scalar elliptic operators of the form (D + λ)n, where λ is a constant. For (D + λ)n

the identities in Theorem 1 are proved by calculation.

(C) An important ingredient for studying variations of Detθ (A) is the extension of
results of Seeley, due to Guillemin [G] and Wodzicky [W], concerning the
meromorphic continuation of Tr(QA~S) in the whole complex s-plane. Here Q and
A are pseudo-differential operators with A elliptic having an angle which satisfies
the Agmon conditions. Given two elliptic pseudo-differential operators Ax and A2

of the same positive order and with the same principal angle, the meromorphic
function ΎrQ(A^s — A2

S) has 5 = 0 as a regular point and the value is given by a
local formula.

Let us point out the following consequences of Theorems 1 and 2.

1) It is well known that for a finite difference approximation Aτ of an elliptic
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differential operator A, one has det (Id — PA) = lim det (Id — PAΛ Using Theorems

1 and 2 one then obtains ΌQtθ(A) (Corollary 4.7) up to factors as a limit

lim (-1)" 1 }detμ τ)
Γ^oo

To the best of our knowledge corresponding results for elliptic operators acting
on manifolds of higher dimension are not known.

2) Theorem 1 implies that for even order elliptic differential operators A, satisfying
the Agmon condition for an angle 0, Detθ (A) does not depend on θ and behaves
multiplicative with respect to the composition of even order elliptic operators
(cf. Corollary 5.1). For operators of add order we obtain a formula Corollary 5.4
for the ^-invariant which turns out to be a local invariant. As pointed out to us
by P. Gilkey this formula can be also recovered from [Gi]. It is well known that
the analogous results for elliptic operators on higher dimensions cannot be true.

3) Our interest in Theorem 1 comes from the differential geometry of the space
of closed curves (strings) of a Riemannian manifold where determinants of Hessians
of smooth functions and PfaffΊans of symplectic structures can be interpreted as
determinants of self-adjoint and skew-adjoint elliptic differential operators in vector
bundles over S1. Theorem 1 gives a geometric interpretation for them. More
important it removes an unpleasant indeterminancy for the regularized determinant
through the choice cf the angle, dispersing doubts about the correctness of the
regularization by the (-function method.

4) Theorem 2 provides a formula which expresses the determinant of an NT x NT
matrix in terms of a determinant of a (n + m)N x (n + m)N matrix. Despite its
elementary flavor we were unable to give it a direct elementary proof.

5) The formulas given in Theorem 1 have a similar structure as the ones for the
residues at 0 of the ζ-function of algebraic number fields. They involve a local
invariant like R(A) and a transcendental invariant like det(/ — PA).

6) If one restricts the attention to the algebra of smooth functions of a compact
manifold then the algebraic X-theory of such an algebra describes homological
complexity of the groups of elliptic operators of order zero. It is natural to consider
an algebraic X-theory for these algebras which involves the monoid of all elliptic
differential operators instead of the differential operator of order 0 only. From the
point of view of such an algebraic K-theory, the results of Theorem 1 are analogous
to the well known decomposition

1) First results of the type described in Theorem 1 are due to Forman. By different
methods, he has proved in [F] that the quotient of the (-regularized determinants
of elliptic differential operators A and B of even order and with identical principal
symbol, expressed in our notation, is given by R(A) det (Id — PA)/R(B) det (Id — PB).
His formula corresponding to the odd case, contains a small error, the correct one
can be easily read off from Theorem 1.

8) The results of this paper, in an earlier version, have been obtained by different



Determinant of Elliptic Differential and Finite Difference Operators 5

methods. The version presented here is more suited for generalization to pseudo-
differential operators. In a subsequent paper we will treat the determinant of an
elliptic pseudo-differential operator and write it as a product of local invariants
with a Fredholm determinant of a pseudo-differential operator of determinant
class, canonically associated to A; the Fredholm determinant corresponds to
det (Id — PA) in the case when A is a differential operator.

2. Auxiliary Results

In this section we collect some auxiliary results needed for the proof of Theorem 1.

Let E^-+M be a complex vector bundle over M of rankiV, where M is
diffeomorphic to S1. Denote by EDOΠ = EDO,, N the set of all elliptic differential
operators on E of order n. Denote by EDO n ; θ the subset of all elliptic differential
operators o^ order n, having Θ(GR) as a principal angle. A parametrization (φ,η)

of E - ^ M, as defined in the introduction, induces an identification of EDO,, to
the space C 0 0 ^ 1 GLN((C)) x C 0 0 ^ 1 ; End €")" by assigning to an operator A in EDO,,
its coefficients (An,..., Ao) with respect to the given parametrization. In this way
EDO,, becomes an open set in the complex Frechet space C00(S1,End(<CN))Λ + 1.

Clearly EDOπ ; θ is an open subset of EDOΠ. Further denote by EDO,, the subset
of E D O ^ S 1 ' consisting of pairs (.4,0) with A in EΌOn;θ. Clearly R(A) and
det (Id — PA) can be considered as complex valued functions on EDOΠ as well as

EDOM, where SΘ(A) is defined on EDOM. Given the parametrization (φ,η) and A
in EDO,, one defines the degree deg A to be the degree of det (σL{A){ , 1)) = det An(-%
considered as a function on S1 with values in <C\{0}. It is an invariant of the
operator independent of the parametrization.

Proposition 2.1.

(1) Ifn is even then E D O M and EDOΠ are connected.

(2) // n is odd then both EDO r t ; β and EDOn have precisely N connected
components. Moreover two elements A and A' are in a same connected component
of EDO,,, iff tr 77; (A) = tr 77/ (A1).

Proof. (1) For A = £ AkD
k in EΌOn;θ the path

n— 1

in EDOn.β with A(0) = A and A{\) = ei(θ+π)Dn defines a retraction of EΌOnθ to
{ei{θ + π)D"} and (1) follows.

(2) Let n be odd. For A in EDOπ ; θ the path

A{t) = {tei{θ+πl2)(Πo{A)-Πo(A)) + (l-t)An}Dn + (l-t) £ AkD
k

fc=l

in EDO,,.*, with A(0) = A and A{\) = ei(θ + π/2)(Π(j~(A) - ΠQ{A)) defines a retraction
of EDOΠ.0 onto the space of smooth maps from S1 to involutions of CN. The space

N

of involutions of C^ identifies to the complex Grassmannian (J GkN and (2)
follows from its simple connectivity. k=1
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Next observe that det (Id — PA _ λ) is an entire function in λ whose zeroes
correspond to spec A, the spectrum of A. This implies that {AeEDOnθ:A is not
injective} is a closed subset of EDO,,^ and we get the following

Corollary 2.2. {AeEDOnθ:A injective] is open and connected in EDO,, θ.

Proposition 2.3.

(1) R(A) and det (Id - PA) are holomorphic on EDO,,.
(2) S is locally constant in θ and is holomorphic when restricted to ΈΣ)Onθ.

Proof. The fact that det (Id — PA) is holomorphic is a consequence of the analyticity
of PA when considered as a map EDO,, -• GLN((£). The remaining assertions are
easily verified.

Proposition 2.4. Let AεEΌOn and aeEΌO0(n ^ 1).

(1) R(otA) = R(A); det (Id - PaA) = det (Id - PA).

(2) Let (A9θ)eED02k + 1 (i.e. n = 2k+\ is odd). Then (eiθ'A,θ + θ')eEΌO2k+1

θ(A) = Sθ + θ,(eiθA).

)

(4) IfBeEΌOm(m ^ 1) then R(βoA) = R(B)R(A)(-\)degA(- l)ordA, where ovάA
is the order of A.

Proof (1) and (2) are straightforward and (3) is known as Liouville's theorem
(cf. [A]).

n m m + n

(4) Let A= X AkD
k and B= £ BkD

k. Then C= £ Ck(x)Dk = B A has

coefficients Cm + n(x) = Bm(x)An(x) and Cm + n-ι(x) = nl

B^ίWAJix). Therefore t rC m + n (x)" 1 C m + n _ 1 (x)= -nitτ A;ι(x)—An(x) +

ir Άn{X) Λn_ j[X) -\- ιr r>m\X) Dm^ι\x). 3ince ί j u/±n\x) /inyx)ax —
, si axd _

— i j —det^ π (x) (det/lΛ(x)) 1ί/x = 2πdeg^, the result follows.

The next result is straightforward to verify.

Proposition 2.5. Let 0->E1-^E2^>E3^>0bea short exact sequence of vector bundles
over M. Let A{ be in EDO,, (1 ^ i ^ 3) such that the following diagram is commutative:

Then

(1) R(A2) = R(A1)R(A3);det(ld-PA2) = det(ld-PA{)d

(2) (A2,θ) is in EDO,, iff (Auθ) and (A3,θ) are in 'EΌOn.

In that case SΘ(A2) = SβiA^SeiA^.

Next, let us recall the notion of ^-regularized determinant.
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For an angle 0 and 0 < p 0 arbitrary small, define the contour Γ = Γθ in C
consisting of Γί<uΓ2vΓ3 as follows: Γx = {peιθ:co > p^p0} is the ray at angle
0 with direction to the origin, Γ2 = {poe

iθ':θ ^ 0' ^ 0 — 2π] is the circle of radius p0

with negative orientation and Γ3 = {pei(θ+2π):p0 ^ p < 00} is the ray at angle 0 + 2π,
going to infinite. If A is elliptic and injective and has 0 as a principal angle, one
can choose p o > 0 sufficiently small such that spec A n{ze(C:|z| < 2 p 0 } = 0 . 0 is
called an Agmon angle for A if 0 is a principal angle and in addition if there exists
ε > 0 such that specAnL[θ-εj+ε] = 0 , where L[ab] denotes the solid angle
{peiθ:0<p< oo a^θ^b}. In the case where A has an Agmon angle 0, we may

define complex powers of A: for any 5 in C with R e s > - the operator AQS =

— f λ ~ S(A - λ) ~x dλ is a pseudo differential operator with smooth kernel AQ S(X, y)
2π rθ

(i.e. in C 0 0 ^ 1 x ^ EndC")). One defines ^ β ( s ) = t rΛ" s = f trA0-
s(x,x)ίίx and

s1

more general ζα>il,β(s) = J tr α(x)v4β"
s(x, x)dx, where α(x) is in C 0 0 ^ 1 ; GN(<C)). ζΛtAtθ(s)

5 1 1
is holomorphic in R e s > - and, according to Seeley [Se], has a meromorphic

n
extension to the entire complex plane with only simple poles, all contained in the

set \ :j non-negative integer >. Moreover 0 is a regular point. The ^-regularized

determinant of A is defined by Det θ(^) = exp — - CAM
ds

If 0 is only a principal angle for A, there exists ε > 0 such that spec AnL[θ_είθ+ε]

is finite and specσL^4)(x,ξ)nL [ θ_ ε θ + ε ] = 0 (xeM,ξeTxM*\{0}). Thus we can
choose 0' and 0 < ε' < ε/2 such that 10 — 0'| < ε/2 and spec A nL[θ>_ε,θ,+εΊ = 0 , i.e.
0' is an Agmon angle. For two Agmon angles 0',0" with 10 — 0'| < ε/2 and

d
|0 - 0"| < ε/2 a simple calculation shows that —

as
and ζAfθ,,{s) differ

by an integer multiple of 2πi. Therefore Det0^ (A) = Detθ» (A) and we define

β

Observe that the above considerations also show that Detθ A is locally constant
in 0. In case A is not injective we define Detθ (A) = 0.

We now collect a few results concerning the C-regularized determinant.

Proposition 2.6.

(1) Detθ(.4) has a smooth extension to EDOM and is locally constant in 0.
(2) Detfl is holomorphic when considered as a function on the open connected

subset of injective operators in E D O M .

Proof (1) was already discussed above.

(2) This result is well known, but for the convenience of the reader we outline its
proof as we could not find any reference in the literature. It suffices to verify the
statement for the subset of operators in E D O M having 0 as an Agmon angle. The
statement follows of a vector version with a complex parameter of Theorem 12.1
in [Sh]. To make notation easier, assume 0 = π. Consider a holomorphic

1-parameter family A{z)= £ Ak(x,z)Dk in EDO n ; π with z in U = {\z\ < 1}. We
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may assume that there exists ε > 0 and p0 > 0 such that (Spec ,4(z))nL [π_ε,π + ε] — 0 ,
(Spec^(x,z))nL [ π _ ε ? π + ε] = 0 as well as (Spec4(z))n{|w| ^ 2p0} = 0 for all

z in (C, | z | < l . For s with R e s > - denote by A~s(z,x,y) the smooth kernel

1 n

of the operator A~s(z) = —- \ λ~s(λ — A)~1dλ. For any s fixed, this is a map
2nι fπ

in Jf (ί/, S1 xS1; End (C^), and Frechet space of continuous maps on U x S1 x S1

with values in End((C;v) which are holomorphic in the first variable. The
restriction to U x Δsί of the kernel A ~5( , , •) belongs to J f (U, S1; End^), where Δsί

denotes the diagonal in S1xS1. By the same arguments as in the proof of
Theorem 12.1 in [Sh] one proves that this restriction As( , , •) is holomorphic for1) .

• - > w i ts in <se(C;Res>- > with values in Jt(U,S1;End((Cn)) and admits a meromorphic

continuation in 5, denoted by A s(z, x, x) with s = 0 a regular point. Clearly the

composition ^ ( t / ^ E n d t C * ) ) ^ ^ ( t / , S \ ( C ) -^J^{U,(C) of T, induced by the
trace tr: End ((£N) -+ C, with J denoting integration over 51, is linear and continuous.
Here Jf (L/,(C) denotes the Frechet space of holomorphic functions on U. Thus
se<C^>ζAtπ(z,s)= J trA~s(z,x,x)dxEJ^(U,(£) is a meromorphic map with 0 as a

s1

ζA>π(z,s) is an element of J^(UX) and (2) follows.regular point. Therefore —-
ds

n

Proposition 2.7. Let A— Σ AkD
k be in EDO nθ. Assume that.

leaves an N1 -dimensional subspace F c= (£N invariant (all k; all x), then the restriction
Ar of A to F and the induced operator Ain of A on the quotient (CΛr/F are in EΌOntNι;θ

and EΌOn N_Nlθ respectively. Moreover DεtθA = Όetθ(Ar)DGtθ(Ain).

Proof. It suffices to check the result in the case where θ is an Agmon angle. The
claim then follows from ζAtθ(s) = ζArA

s) + ζAιnA
s)

Next we need to consider the value at 0 of ζatAtθ{s)9 where α(x) is in
Ca:(S1,GLN((C)). In contrast to its derivative at 0,ζaAΘ(0) can be computed by a
local formula, since

~"'β Σ

where B-n-1(x,ξ9λ) = I(x9ξ9λ) + II(x,ξ,λ) with I(x,ζ,λ)= - ξ^'B^A^^B^,
II(x,ξ,λ)= -inξ2»-ιB-nAn{x)B-ndxAn{x)B-n and B-n = B-n(x9ξ9/) = (An(x)ξn-%-\
For the case α = Id this formula is given in [Se] (corrected in [W] and [Sh]). The
general case can be proven in exactly the same way.

Proposition 2.8. Let A be in ΈΌOn θ with θ an Agmon angle for A and

(1) Ifn is even, then ζaAΘ(0) = 0.
(2) // n is odd and α(x) commutes with An(x) (all x) then Cα,Λ,θ(0) = 0. As a

consequence we obtain
(3) Ifw = reir ( r > 0 , τ e R ) , then wAeEDOn.θ + τ and Όetθ + τ(wA) = Όctθ(A).

Proof. (1) follows from the observation that 5_n_1(x, ξ,λ) is an odd function in ξ
in the case n is even.
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(2) In the case n is odd and oφc) commutes with An(x),tr oc(χ)B_„_ ^x, ξ, λ) is
00

a total differential in λ and J drtΐoc(x)B^n^1(x, ξ,reiθ) is an odd function of ξ.
o

(3) follows from the simple observation that (wA)β+τ = W~SAΘ~S. Thus ζwA,θ+τ(s) =
w~sζAΘ(s). Applying (1) and (2) for α = wlά one obtains (3).

Proposition 2.8 can be applied to the following situation. Let A(t) be a smooth
/ n-l \

1-parameter family in EDOπ ; θ of the form A(t) = αf(x)( Dn + Σ Ak(x)Dk I where
αf(x) is in GLN(<E) (all x e S \ 0 ^ t ̂  1). ^ fc = 0 '

Corollary 2.9. If — oct(x) and oct(x) commute (all x and t) then Detθ A(ί) is independent
f+ dt

oft.
Proof. It is sufficient to prove the result when θ is an Agmon angle and then to

show that — log Detβ A(t) = 0. Observe that - — — ζA(t) θ(s) = tr( — αf )α f"
x A(t)~s,

dt ,d v ,d ,dtds > \dt J

I )d d

where we used that I — >4(ί) L4(ί) x = I — αf )αf

 x. The result now follows from

Proposition 2.8. ^ Λ / ^ Λ /
Finally we will need the following extension of ζatAtθ, due to Guillemin and

Wodzicky (cf. [G,W]). Suppose θ is an Agmon angle for A. Let Q be a classical
pseudodifferential operator of order m(e(C). Then QA~S is of trace class for

R e s > . Define ζQAΘ(s) = ΎrQA~s. Again ζQ>Aj{s) is holomorphic and has a

meromorphic continuation to the entire complex s-plane with only simple poles,

all contained in the set \ -:n = 0,1,2...[. Denote by σ(β)(x, ξ) = £ gfc(x, ξ) the

full symbol of Q. The noncommutative residue, introduced by Adler and Manin,

is defined by — f dx Y q^^x.ξ). It was observed by Guillemin [G] and
2 π s 1 ξ=±i

Wodzicki [W] that the residue of ζQ;A;θ{s) at s = 0 is equal to the noncommutative
residue of Q multiplied by the order of A.

If A and A' are two elliptic pseudodifferential operators of the same order and
d

θ is an Agmon angle for both of them, then the difference -j-(ζQ,A,θ(s) ~ CQ,A'AS))\S=O

can be computed in the following way:

Proposition 2.10. ([Fr])

YS(CQ,AAS)-£Q,A'AS))\S = O= ~2n ldx _Σ tΓC-i(x»<D>

where c^^x.ζ) the homogeneous term of degree —1 in ξ of the full symbol of
QH with H a pseudodifferential operator with full symbol σ(H)(x,ξ)= ]Γ hj(x, ξ)

JίO

given by h.j(x,ξ) = \im-—$λ-sίn(B_n_j(λ,x,ξ,A)-B-^j(λ,x,ξ,A'))dλ and
s-*0 ZKIS r

B-n-j(λ,x9 ξ, A) being the homogeneous terms of degree —n—j of the symbol of

(λ-AΓ1. Thus, e.g. B-n(x9ξ9λ9A) = (λ-AH(x)ξ"Γί.
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Remark 2.11. We will apply Proposition 2.10 in the case where Q is of order — 1.
Then

c-ί(x,ξ) = q-1(x,ξ)'h0(x9ξ)

+o Znis

in

3. Proof of Theorem 1.

In this section we prove Theorem 1. One of the ingredients is the following

Proposition 3.1. Suppose A and A' are two elliptic differential operators,
n n

A = Σ Ak(x)Dk and A' = Σ A'k(x)Dk, both injective with principal angle θ and with
k=0 fc=0

An = A'n and An.1=A'n.ί. Then

Detθ (A') det (Id - PA) = Detθ {A) det (Id - PA.\

Proof. It suffices to consider the case where n ^ 2 and θ is an Agmon angle.
n-ί

Consider the 1-parameter family A(z) = A + zQ in EΌOnθ, where Q= Σ QkD
k.

fc = 0

For any z in the complex plane, A(z)A~1 = Id + zQA~ι, where zQA~ι is a
pseudodifferential operator of order rg — 2 and hence of trace class. Thus Id + zQA ~x

is of determinant class. Denote its Fredholm determinant by detΐld + zg/l" 1). It
is well known (cf. [Si]) that det (Id + zQA'1) is an entire function in z of
growth < 1/2. Further det (Id + zQA~ι) = 0 iff A(z) = A + zQ is not injective and

(cf. e.g. [Fr]).
)

and , . They are entire functions in z,
Detβ>4 det ( I d - P ^ ) y

have the same zeroes and have the same value at z = 0. The result now follows by
Hadamard's theorem (cf. [T]) if both functions have growth < 1. Thus is remains
to show that det (Id — PA{Z)) has growth < 1 . But this is a well known fact
(cf. e.g. [DD]) and can be seen as follows: One expresses PA{Z) in terms of
fundamental solutions Yfi, z)eC^QSL, End <CN) by

d

Ίx~

ΌetθA(z) A det ( Id-
Now consider and —,

D t 4 d

where y.(x) solves Σ A\x)(- if τiιYj + z "Σ 6 k W ( - l)kτΊk Yj= ° a n d s a t i s Γ i e s

fc=o dx k=o dx
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dk

k Y. 1(0) = (5^ Id. By converting the system of differential equations into one of

integral equations one proves (cf. [DD]), by considering successive approximations,
that there exist constants C1 and C 2 such that

*-Y(r
dxk A '

Proof of Theorem 1. The proof is presented for the case n odd only - for n even
it is similar and in fact even a little bit simpler. So let us assume that n is odd.
We have to show that fθ(A) = Όetθ{A)-(i)in + 1)NSθ{A)R(A)det(ld-PA) vanishes

n

identically on E D O ^ , the space of elliptic operators A = £ AkD
k on S1 x C N ,

k = 0

satisfying dim ΠQ (A) = j and having θ as a principal angle. If A is not injective,
then Detθv4 = det(Id — PA) = 0 so we might assume, in addition, that A is 1 — 1.
Observe that due to Propositions 2.4 and 2.8 it suffices to consider the angle, say,
θ = π/2. For Of^j^N, choose a subspace Ej of <CN of dimension and denote by
Πj the orthogonal projection onto Ej. Define the grading operator Γj = Πj —
(Id - Πj). In the following we mostly drop the subscript θ = π/2.

I Deformation 1. It suffices to prove that /(A) = 0 for A in EDO j with An an
involution. To see it write A in the form A = An(D" + H\ where H is of order g n - 1 .
Define the smooth 1-parameter family in EDθ£ of the form A(t) = oct(Dn + if)
(0 ^ ί g 1) with α,(x) given by oct(x) = tAn{x) + (1 - t)(Π+2(A) - Π;/2(A)). Then

specα ί(x)nlR = 0 and — at(x) commutes with oct(x) (O^t^l^eS1). Thus
at

Corollary 2.9 implies that Detπ / 2 (A(l)) = Detπ / 2 (Λ(0)). Together with Proposition 2.4,
f(A{ή) is independent of t.

II Deformation 2. Is suffices to prove that f(A) = 0 for A in EDOΐ w ^ h An(x) = Γj.

Let A be in EDO^ with An(x) an involution (all x in S1). By Proposition 2.1
there exists a smooth 1-parameter family j8f(χ) in C™(SU, GLN((£)) (0 ^ t ^ 1) such
that βo(x) = lά and βι(xy1An(x)β1(x) = Γy Thus the β1(x)~1Aβ1(x) = Γpn +
lower order terms. The claim now follows as f(A) is invariant under repara-
metrization.

/// Deformation 3. It suffices to prove f(A) = 0 for A in EDO^ with An{x) = Γj
n

and An_1 upper triangular. To see it, consider A= £ AkD
k in EDO^ with

k = 0

An(x) = Γj. Introduce the family of operators A{t) = ΓyB(t)9 where B(t) = Dn +
n - 1

Σ Bk(x, t)Dk is a smooth 1-parameter family in C 0 0 ^ 1 , EDO^) (0 ^ t ^ 1) such that
k = 0

A{0) = A and An-X{x, 1) = ΓjB^^x, 1) is upper triangular (all x). Clearly K(Λ(ί)) =
R(B(ή) and d e t ί l d - P ^ ^ d e t ί l d - P ^ ) . In order to study Detπ / 2Λ(ί) we first

compute — (log Detπ / 2 A(t) — log Detπ / 2 B(ή) and then integrate in t. Clearly A(t) is

in EDOΐ. Then



12 D. Burghelea, L. Friedlander and T. Kappeler

d. . i d

Thus, by Proposition 2.10

T~ Σ Udxtrq(x,ξ)-h(x,ξ),
2π ξ = ± ί ξ s<

where

l i m V j λHλΓjξT
s - o 2πιs Γnll

i '•"
= - -eiπ/2 f (r + ίΓ,.^")- 1 - (r

By an elementary computation

ξ= ±1 ζ \ n J 0

n J

Similarly

Σ l(--)]{r + iξTιdr=--Id,

then in all

dt π/2 dt

and thus

(log Detπ / 2 A{\) - log Detπ / 2 B(\)) - (log Detπ / 2 A(0) - log Detπ / 2 B(0))

This last expression is, by an easy verification, equal to

IV. Deformation 4. It suffices to prove f(A) = 0 for an injective operator A of the
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form A = ΓjD" + ,4, ι_1D
w~1 + α , where An.ι is upper triangular and αeC. This

follows from Proposition 3.1.

V. By IV and Proposition 2. We may assume that N = 1.

VI. So let us consider A of the form A = Dn + G(x)D""x 4- α; by the analyticity of
f{A) in A, it suffices to check that f(A) = 0 for g in C°°(S\]R+).

Let us consider the operator a(x)~1Aoc(x\ where α(x) is the complex number
r / x i _ i

given by exp<- f(g(ή — g)dt>, where g=ίg(t)dt>0. With respect to this new
[n o J o

parametrization induced by α, the operator takes the form Dn + igDn~1 + terms/ i Yinvolving lower order derivatives. This operator can be written I D + -g I + //,

where H is an operator of order ^n — 2. Applying Proposition 3.1 once more it
/ i Y

suffices to consider the operator \D +-g \ .
\ n )

VII. Verification that /((D + α)") = 0, where a= — ΪOL is a constant with α>0.
Define A = D + a, then R(An)9Snl2(An)9det(ld-PAn) and detπ / 2^M are entire
functions of a. The zeroes of D e t π / 2 ^ w and of R(An)Sκ/2(An)det(I-PAn) are the
same. Both functions are of growth < 1. Applying Hadamard's theorem (cf. [T])
it suffices to show that Detπ / 2Xn and (i)n+ΛR(An)Sπ/2(An)det(/-PAn) have the
asymptotic behavior as α-> + oo.

First observe that R(An) = R(A)n = e(ial2)n = e + (α/2)w, Γπ/2(An) = -1 and Sπ/2(An) =
Sπ/2(A)= -e-

i(a'2)= -e~a/2. Moreover det (Id -PAn) = (det (Id -PA))n = (l-eia)n =
(l-e~a)n as (D + a)e-iax = 0.

Thus

(ήn+1R(An)Sπ/2(A»)det(ld- PAn)

iπ(n—l) α(n— 1) , , n—\ n— 1

2 2 & v 2 2 \ l α L

It remains to compute the asymptotics of Detπ / 2((D — ioc)n). Following [Fr] we

1, where p~l9q0

and p 0 are given by local formulas. One verifies that p_ x = ———,p0 = in—— and

4. Proof of Theorem 2.

In this section we establish a number of results concerning the elliptic finite
difference operators described in the introduction and prove Theorem 2.

Proposition 4.1. If A is an elliptic periodic finite difference operator of type (m, ή)
and period T and α:Z-> GLN(C) with α(/c+ T) = α(fc),
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(1) det(Id-PβJ = det(Id-PJ,
?Γ-1 \

(2) det(αΛ) = Π detα(fc) det A

Proof (l)jfollows from the fact that α establishes an isomorphism between Null ,4
and Null(α>4) which intertwines the translation by T on Null ,4 and Null(α3).

(2) follows from the multiplicative property of the determinant of finite matrices.

Proposition 4.2. Let A be an elliptic finite difference operator of type (m, ή) of period
T with coefficients A_m(k),...,An(k). Consider the 1 -parameter family A(t) of
elliptic finite difference operators of type (m,n) with coefficients A_m(k),tAj(k)
(-m+l^j^n-j) and An(k). Then for all ί,

det A (ί) det (Id - PA(0)) = det A (0) det (Id - PA{t)).

Proof. It suffices to check the result for the case det ,4(0) # 0 , since, in general,
det A = 0 iff det (Id — PA) = 0. The conclusion of Proposition 4.2 holds certainly for
ί = 0 and thus for any ί, as det A(t) det (Id — PA{0)) and det/I(0) det (Id — P ^ ) are
polynomials in t with the same zeroes.

Let MNuN2(<£) denote the space of {Nί + N2) square matrices α of the form

β\
, where α' is a ΛΓ

1 square matrix and α" is a N 2 square matrix. The0 α
following result is obvious:

Proposition 4.3. // Ay(k)= ^] /lj(/c)y(/c + j) is an elliptic difference operator of
jj — — m

k (
j

( A'(k) B (k) \
period T with Λj{k) = ί jj j ^ ^ M m M ^ ίften

(1) det/l = det(/l/)det(>4//),
(2) det (Id - P^) = det (Id - PA.) det (Id - PA..\

where A' and A" are elliptic finite difference operators with coefficients Ά_m,...,A'n
and A"_m,...,A'n respectively.

Proposition 4.4. Let A and B be elliptic difference operators of type (mlinι) and
(m2,n2) respectively, both of period T acting on functions y\TL-^V. Then (B^A) is
an elliptic difference operator of type (m1 + m2,n1 +n2) such that

d e t ( I d - P B . J = d e t ( I d - P J d e t ( I d - P B ) .

Proof. Observe that dim Null (A) = {m1-\- n^N. One then verifies that the following
sequence is short exact:

0 -> Null (A) CL^ Null (IFA) - ^ Null (B) —+ 0

and that the following diagram is commutative:

0 —> Nuliμ) ci., N u l l ( ^ ) - ^ Null (B) —> 0

Null (A) cz^ N u l l ^ ) - ^ Null (5)
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This proves Proposition 4.4.
Let us now consider scalar elliptic difference operators of type (0,1), i.e. n = N=l

and m = 0. For these operators one verifies easily the following:

Lemma 4.5. detX = (-l)τ-1( {[ Ax(k) )det(Id-PJ.
\k=l )

Proof. If we view the space of periodic functions y\Έ -• V as identified to the space
of functions /:{1,..., T} ->Z, then A is given by the following matrix

1 Λ t(l) 0 0

0 1 Ax(2) I

1 1 1 o
0 I Λ i (Γ-

^T) 0 0 1

r
whose determinant is l + ί - l ) 7 " 1 Y[ A^j). Clearly

Proof of Theorem 2. Theorem 2 is proved by a degeneration argument as follows:
We have to prove that f{A) = detA-(-l)nN(T-1)Rd(A)det{Id-PA) vanishes.
Clearly f(A) is an analytic function of the coefficients of A. In view of Propositions
4.1 and 4.2 it suffices to check that f(A) = 0 for operators A of type (0,n) with
Aj(k) = 0 for lf^j-^n— 1 (all k). Conjugating A by a suitable linear isomorphism
Q(k) with Q(k+ T) = Q(k) (keZ) one can suppose that the matrices ao(k) (keZ) are
upper triangular. In view of Proposition 4.4 and 4.1 it then suffices to prove that
f(A) vanishes in the case where n = N=l and m = 0, which is treated in Lemma 4.5.

Theorem 2 is now applied to approximate the (-regularized determinant of an
n ( d \

elliptic differential operator A = £ Ak(x)dk

x[ dx = —\ by the determinant of
k = 0 \ uX)

suitably chosen finite difference operators. As usual Ak is in C^S^End V) and V
is a complex vector space of dimension N. The T t h finite difference approximation
aτ of A (T ^ n + 1) is defined as follows:

άτy{k)= t *τj(k)y(k + j),

where for each k in Z, aTJ(k):V-+V are given by αTπ(k) = v4π(exp(i2π(k —1)/T))

and for l^l^n and h = —
N

It is easy to see that h~"aτ is obtained from A by replacing Aj(x) by A}(e'i2*(k~1))IT)

and dJ

xy(x) by 4Jy(k), where A'^A-A^1 and (4y)(fc) = >'(/c + 1)~>'(fc) I t i s n o t

hard to see that aTj(k +T) = aTjj{k). Moreover if h is sufficiently small, i.e. T
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sufficiently large, then aTn(k) and aτ 0{k) are both invertible for all k, provided that
the differential operator is elliptic (i.e. Λn(x) is invertible). Hence for T sufficiently
large άτ is an elliptic finite difference operator of type (0, ή). Denote by Ytr\Έ-+
End(K) (0 ^ r ^ n — 1) a system of matrices of fundamental solutions of άτ, i.e.

(i) t aTJ(k)YTtr(k + j) = 0,
j = o

(ii) yΓ>Γ(fe) = 0 for n-r<k^n

YTr(k) = hr\άv for l^fc^n-r.

Introduce the nN x nN matrix Yτ

YTΛ(T+\) Y

ΔYTΛ(T+l) ΔYTt2(T+l)

Δn~ιYTΛ{T+\)

ΔYTtn(T+l)
:

Δ»-ιYTtn{T+\)

Let y be the canonical system of fundamental solutions for A, i.e. Y = (y l 5 . . . , Yn)
where yfceC°°(]R,End V),d{Yk{0) = δkjlά, AYk = 0.

The following result is well known:

Proposition 4.6 (Approximation).

(1) y(2π)= lim Yτ.

(2) det (Id -PA)= lim det (Id - Paτ).

As a consequence one obtains in combination with Theorems 1 and 2

n

Corollary 4.7. Let A be an elliptic differential operator, of the form A=Σ Akd\,

(1) If A is of even order (i.e. n even) then det A = (i)NnR(A) det (7 — PA) is given by

detΛJexp

(2) If A is odd order (i.e. n odd) and θ is a principal angle, then D e t θ A is given by

5. Applications

In this section we give various applications of Theorem 1.

Corollary 5.1.

(1) For n even, Detθ(A) can be extended to be defined on all of EDOM instead
of EDO,^ by the formula

Det A = (j)nNR(A) det (7 - PA).
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Moreover Det (A B) = Det A Det B in the case where both A and B are of even order
and Det A is homogeneous of degree 0.

(2) If AeEΌOn;θί,BeEΌOm and AB (or respectively BA) is in ΈΌOn + mθ,
where m is even and n is odd, then

Detθ (A B) = ^ ' Detθ l A Det B,

and respectively

where degA is the degree of A as introduced in Sect. 2.
(3) If AeEΌOnθi,BeEΌOmθ2 where n and m are odd, then

Detμ B) = (-lΓo (iΓT

Corollary 5.1 can be viewed as formulae for the so-called multiplicative anomaly,
as introduced by Wodzicki (cf. [W] and [Fr]).

Corollary 5.2. On the space of self-adjoint elliptic differential operators of even or
odd order with θ as a principal angle, the absolute value for the ^-regularized
determinant is independent of the choice of θ, is multiplicative and homogeneous of
degree 0.

Corollary 5.3. Let A be in EDOπ ; θ with n odd. Assume A is injective (thus Det A2 Φ 0).
Then

(Det AΫ
(1) SΘ(A)2= \[ (-lf(-l)degA. Thus SΘ(A)2 is, up to a sign, a spectral

JJet J
invariant.

(2) // the principal symbol of A is scalar valued and positive, i.e. of the form
an(x) Id, with an(x) > 0, then SΘ(A) is a spectral invariant.

Proof. (1) follows from Corollary 5.1 (3) with A = B,Θ = Θ1 = Θ2.

(2) follows with (1) and the fact that ΓΘ(A) = ± Id from the well known result

(cf. [N] e.g.) that the eigenvalues of - J A~ι{x)An^ι(x)dx appear in the second

term of the asymptotics of the eigenvalues of A. •

For a self-adjoint injective elliptic differential operator A:Γ(E)-+Γ(E) on a
hermitian complex vector bundle E, Atiyah, Patodi and Singer (cf. [APS]) have
considered a variant of the C-function, called the ^-function, ηA(s) = £ sgnΛ^OW~s

It has been noted by Shubin [Sh] that * e Z

It follows that η is a meromorphic function with at most simple poles. It was
proved by Atiyah, Patodi and Singer that for compact manifolds of odd dimension
ηA(s) is regular at 5 = 0. In the case where M^S1 this also follows from Sect. 2
where it was proved that ζA,-π/2(ty = Ci,-3π/2(0)= 0 τ ^ e ^-invariant is defined as
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η(A) = [rjA(0)(mod2Έ)^. A simple computation shows that η(Λ) is given mod2Z,

Corollary 5.4. Let E -^-+Sι be a vector bundle of dimension N. If A\Γ(E)-> Γ(E) is

a self-adjoint elliptic differential operator with respect to some hermitian structure

Γ 2i Ί
on E then η(A) = 0 if the order is even andη(A)= — N H logS_π/2(/l)2 (mod22£)
if the order of A is odd. L -

Proof. If the order of A,n, is even then the conclusion follows by Theorem 1.
If n is odd, then by Theorem 1,

Det_π / 2X _ S^πl2A

Det A
Observe that SΘ(A) = {-\)N(Sθ^π(A))~1 One obtains that ^ ~ π / 2 - = (-1)*-

D e t 43 π / 2

(S-π/2(A))2. Then η(A) is given, mod2Z, and with respect to an admissible
parametrization by

N
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