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Abstract. In the present paper we deal with the problem of existence and
uniqueness of the conditional reduced density matrix (c.r.d.m.) corresponding to a
locally normal state of a boson system. The c.r.d.m. was introduced in [3] (Part I
of the present series of papers). In order to characterize the class of states
possessing a c.r.d.m. we will introduce the family of conditional states of a locally
normal state, and we will discuss the relation between the conditional states, the
c.r.d.m. and the conditional distribution of the position distribution of the state.

1. Introduction

In [2, 3] we introduced the position distribution Qω and the conditional reduced
density matrix kω (c.r.d.m.) of a locally normal state ω of a boson system. It was
shown that Qω and kω determine the whole state. In the present paper we will
characterize a class of states which possess a c.r.d.m. For that reason we first will
introduce the notion of conditional states ωφ

Λ of a state ω that describe the
behaviour of the system inside a bounded region A having fixed a configuration φ
outside this area. It is shown that the position distribution of the conditional state
afΛ is just the conditional distribution Qω('\Λ<3fy(φ) of the position
distribution Qω.

Further, we will see that the c.r.d.m. exists if for each A e 93 the family (ω^) of
conditional states exists and if Qω is Z^-point process. Moreover, we will prove that
the c.r.dm. is a.e.-uniquely determined.

We use the notations and notions given in Part I [3]. We refer to this part by
adding I, e.g. 1.2.1 means Sect. 2.1 in [3].

As in the previous papers we consider exclusively locally normal states of
bosons without spin. The phase space G is assumed to be Polish endowed with a
locally finite diffuse measure v, and the local algebras consist of all bounded linear
operators on the Fock space over the bounded regions of the Fock space G.
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2. The Results

The idea to describe the infinite system by its behaviour in bounded areas led in
quantum statistical mechanics to the introductions of the notion of quasilocal
algebras. If one restricts measurements to a bounded region one "forgets" all
information about the behaviour outside this set. In analogy to the concept of
conditional distributions in probability theory (especially in the classical theory of
Gibbs measures) we want to introduce now the conditional states ω\ of a locally
normal state ω that describe the behaviour of the system in A e 23 having fixed a
configuration φ e MΛC (outside of A). For basic notations used below cf 1.2—1.7.

First, we need a measurability condition for families of states. With respect to
further considerations (in Sect. 3) the definition will be slightly more general than
needed in this section.

2.1. Definition. Let 3l be a *-subalgebra of <£(J£) and 50t a σ-subalgebra of SR. A
family (ζφ)φeM of positive linear functional on J ? is called ^-measurable if for all
As3t9 A^O the mapping φ\-^ξφ(A) from M into [0,oo) is a $ft-measurable
function.

2.2. Definition. Let Q be a point process, and let {ξ\)φeM and (ξJ) φ e M be two
501-measurable families of positive linear functionals on Si. We say that
( « W = ( 8 W Q-™ if for all Aeά ξi(A) = ξ%A) for Q-a.a. φ.

Now, for arbitrary A e 93 we set

Λm
L:= u Λ ι»:= U JR. (2.1)

Λ'eίβ Λe18
ΛnΛ' = 0

Observe that

2.3. Definition. Let ω be a locally normal state on s/9 and let AeSB. A
^ajl-measurable family {Λω

φ)φeM of states on Asί is called the family of conditional
states of ω on A if for all AeΛjtf and Yej3iL

ω«{A). (2.2)

The left side of (2.2) is always well-defined, and we have the following useful
relation:

2.4. Lemma. Let A, A'e% ΛnΛ' = 0, AeΛ^, YeΛM. Then A0γeAκjΛ.s/9 and
we have

A0γ = S(YnMΛC,0MΛA0MJ. (2.3)

2.5. Remark. AOY is a combination of the local observable A (from As/) with a
position measurement outside A (YeA$Jl, A'nA = 0). So (2.2) allows an interpre-
tation of Λω

φ as the conditional state in A having fixed the configuration φ outside.

2.6. Proposition. Let ω be a locally normal state, Ae^B and assume the family
(Λω(p)φeM °f conditional states exists. Then we have the following:
(i) {Λω<p)φsM is Qω~as' uniquely determined.

(ii) For Qω~a.a. φ Λω
φ is a normal state on Asί.
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We thus have that not only the local states Λω given by

are normal ones (by definition) but also the conditional states provided they exist.
Observe that by

*(A) Λω«>(JΛA) (Aes/Λ) (2.4)

we may define an (equivalent) family of normal states on s/Λ, and (2.2) could be
written also in the form

ω(OγJΛA)=SQω(dφ)ω*A(A). (2.5)
Y

In [2] we proved that the position distribution of a locally normal state is
locally a 2^-point process. If the conditional states exist still more is true.

2.7. Proposition. Let ω be a locally normal state on $4 such that for all A e 9$ the
family (Λ<x>φ)φeM °f conditional states exists. Then Qω is a Σc

v-point process.

The proof of the above statement is based on the observation that the position
distribution of the conditional state Λω

φ is just the conditional distribution of the
position distribution of ω. Indeed, we have the following connection.

2.8. Proposition. Let ωbe a locally normal state on jtf such that for a set Λ e S the
family (Λu>φ)φeM °f conditional states exists. Then for Qω-a.a. φ we have

Λω«{OY) = Qω(Y\ ΛM){φ) (YE ΛW) . (2.6)

In Part I of this series we always assumed that Qω is a I"v-point process. There
are some hints for the conjecture that all conditional states exist if Qω is of the type
Σ'v. However, this could be shown only for normal states.

2.9. Proposition. Let ω be a normal state on Z£(Jl) such that Qω is a Σf

v-point
process. Then for all A e $5 the family (Λcoφ)φeM of conditional states of ω on A
exists.

In I we introduce the c.r.d.m. and showed that it is a useful tool for the
characterization and for the description of the state. States possessing all
conditional states are just the states having a c.r.d.m.

2.10. Theorem. Let ωbe a locally normal state on stf such that Qω is a Σ'v-point
process. Then the c.r.d.m. of ω exists if and only if for all A e 95 the family (Λcoφ)φeM

of conditional states exists.

In Theorem 1.7.3 we gave sufficient conditions on a point process Q and a
function k ensuring the existence of a (unique) locally normal state ω with position
distribution Q and c.r.d.m. k. From Theorem 2.10 we thus obtain that for the state
constructed from Q and k all conditional states exist, and we have the following
relation:

2.11. Proposition. Let ωbe a locally normal state on si such that Qω is a Σf

v-point
process and the c.r.d.m. k exists. Then for all Ae9& and Qω-a.a. φ

) , (2.7)ΛωψΛA) )
ΊQω\mΛ)

where K^ΛC is the positive trace-class operator with kernel k( , , φΛC).
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From the proofs of the above statements we get also that the c.r.cLm. is a.e.-
uniquely determined (for normal states this was shown already in I - cf.
Theorem 1.6.4).

2.12. Proposition. Let ω be a locally normal state on s/ such that the position
distribution Qω is a Σ'v-point process, and let kuk2 be two c.r.d.m. of ω. Then for
FxFx Qω-a.a. (φl9φ2,φ) we have kx{φuφ2,φ) = k2(φl9φ2,φ).

It seems to be obvious that a locally normal state is a normal one if (and only if)
Qω is a finite point process. However, based on the above result we can show it only
for states possessing a c.r.dm.

2.13. Proposition. Let ωbea locally normal state such that Qω is a Σ'v-point process
and the c.r.d.m. exists. Then ω is a normal state if and only if Qω is a finite point
process.

Summarizing, we can give the following characterization:

2.14. Proposition. Let ωl9ω2 be locally normal states such that Qωι and Qω2 are
Σy-point processes and the c.r.d.m. kωι,kω2 exist. The following statements are
equivalent:
(i) ω1=ω2,

d kωι = kω2 a.e.

3. Proofs

3.ί. Proof of Lemma 2.4

Observe that A e Ast £ ^ ^ J / , YE ΛM Q AKJΛM. Thus AOY e ΛuA,st. For all Ψ e Jί9

φ e M we get

S(YnMΛC,OMΛAOMΛ)Ψ(φ)

= Σ XγnMΛXΦ)XMΛ(<P-φ)(AOMΛΨΦ)(φ-φ)
φgφ

= Σ Xγn
ΦQ<PΛ

= XγnMJφ

= OγAΨ(φ). Π (3.1)

3.2. Proof of Proposition 2.6

1 °. We fix an A eΛjtf, A^.0. Suppose there are given two versions (ωJ)φeM, j—ί,2
of conditional states of ω on s/Λ.

We thus get for all YeJJlL

X{A)= \ Qω(dφ)ω*2(A). (3.2)
Y

Since Λ

<SR1QΛC

<SR and for each YeΛ$Sl there exists an increasing sequence
1 with Jim Yn= Y (3.2) holds for all YeΛM.

The mapping φ\-^ωJ(A) was assumed to be ^cSJl-measurable. This implies
ω^(A) = co%{A) for Qω a.a. φ. Since each operator from Asi may be expressed in a
unique way as a sum At — A2 + iA3 — iA4 of four positive operators from Λstf we
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get for all AeΛs/ ω\(A) = ω^(A) for Qω-a.a. φ. This proves assertion (i) of
Proposition 2.6.

2°. Λω
φ is a normal state on As/ if and only if ωφ

A defined by (2.4) is a normal state
on s/A. It is known that a state on siA is normal if it achieves its norm already on
compact operators from s/Λ (cf. [1, Theorem 2.6.14]), i.e. we have to prove that for
Qω-a.a. φ

sup{|ω5(i4)|: Aes/Λ, A compact, \\A\\ = 1} = 1. (3.3)

Consequently, it suffices to show that there exists a sequence (An)n^0 of
compact operators from s/Λ with ||i4J| = 1 such that for Qω-a.a. φ lim ωΛ'(An) = 1.

Let (Ψn)n^0 be an orthonormal base in JίA and denote by An the (finite rank)
projector" onto the span of {Ψ0,...9ΨH}, n^O. We have ||^4J = 1,
0 ^ An ^ An+i ^ 0MΛ for all n ̂  0. Thus the limit lim ω^(,4π) exists for all φ and we
have

. (3.4)

( 4 ι ) ι ι * o c o n v e r g e s t o O M ^ i n t h e σ - w e a k t o p o l o g y o n s/A. S o ( ( J ^
c o n v e r g e s σ - w e a k l y i n <£{M) t o O y for al l YeSPΐ. S i n c e t h e l o c a l s t a t e s a r e
c o n t i n u o u s i n t h e σ - w e a k t o p o l o g y w e get for e a c h Yε^SDt 1 ,

lim ω((JΛAnOγ) = ω(Oγ)- QJY). (3.5)
n~* oo

Using Lebesgue's dominated convergence theorem which can be applied
because of (3.4) we obtain for all Ye ΛW

L

Qω(Y)= lim \Qω{dφ)Λω"{JΛAn)=\im. JQJdφ)ω*Λ(An)
n->x, Y n->oo Y

= J βjdφ) lim «>S(Λ) = J βjrfφ) 1.
y π~* oo y

Since (Λ<x>φ)φeM

 w a s assumed to be ^cSR-measurable we finally get that for Qω-a.a. φ
lim ωftAJ = 1. Thus, for Qω-a.a. φ ωφ

Λ is a normal state on ^ , i.e. ̂ ω^ is a normal

one on Astf. •

3.3. Proo/ o/ Proposition 2.8

For all Yx G ̂ SDΪ, Y2 G ̂ SOΪ1 we get from the definition of the conditional state

ω(0Yι0y2) = J Qω(dφ)Λcoφ(OYι). (3.6)
Yi

On the other side, from OYίOY2~OYinY2 we conclude

ω(OYιOY2)=ω(Oγ ιnY2) = 2,(7 ! n 72). (3.7)

(3.6) and (3.7) lead to the relation

ί Qω(dφ)Xγι(φ) = ί QΛdφ)Λω
φ{0Yι) (7, e β Ά , Y2 eβSlL). (3.8)

Y2 Yl

As in the first part of the proof of Proposition 2.6 one can see that the equality
in (3.8) holds for all Y2 e ^501. Since φ H-> Λω

φ(OYι) is ^cSJl-measurable we get that for
all YeβR

Λω*{0γ)=QJY\Λjm){φ) (Qω-a.a.φ). • (3.9)
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3.4. Proof of Proposition 2.7

We fix a set A e 93. From Proposition 2.6 we know that for Qω-a.a. φ ω\ [defined by
(2.4)] is a normal state on s/A. This implies that the position distribution of ωφ

Λ

(which we will denote by Q%) is a finite I^-point process concentrated on MΛ (cf. [2,
Proposition 3.1]). The ^cSR-measurability of {Λof>)φeM causes that for Qω-a.a. ψ

From [6, Theorem 2.13] we conclude that for all φeMΛC there exists a
measurable function gA φ:M-^K such that

φ) (YemΛ). (3.10)

From Proposition 2.8 and (3.10) we finally get that for all A e IB, Ye JJl and Qω-a.a.
φ,

= ί FΛdφ)gΛ,φJΦ)- (3.11)
vΛΎ

Condition (3.11) is necessary and sufficient for Qω to be a Γy-point process [5,
Theorem 2.11]. •

3.5. Proof of Proposition 2.9

There exists an orthonormal sequence (Ψn)n^0 from M and a sequence
oo ~

απ^0, £ απ = l such that
n = 0

where ρ is a density matrix given by

Q= Σ oin{Ψ",)Ψ\ (3.12)
n = 0

and Qω can be written in the form

QJY)= iF(dφ)D(φ) (YeW)

with

D(φ)= Σ «»m<?>)|2 (ψεM). (3.13)
n = 0

One easily shows that (if Qω is of the type Σ'v) the density D(φ) has the property
that

D(φ + φ)>0 implies D(φ) > 0 (F x F-α.α. (φ, φ)) (3.14)

and the conditional intensity measure rfQw of β ω is given by
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For all A e $ and all φ e M we set

! ) l«^OMΛAOMΛΨlJ (ie^). (3.16)

The right side of (3.16) is well-defined because for each ΨeJί,
(Lemma 1.2.7) and

Σ (KΛ*>0MΛt0MΛΨ
n

φJ= J F(dφ)D(φ + φΛC)
π = 0 MΛ

Z). (3.17)

Since for Qω-a.a. φθ< η%£(MΛ) < oo from (3.16) and (3.17) we get that (Λω
φ)φeM is

a ^cSOΪ-measurable family of states.
Finally, for all A e 95, A e Λstf, and Ye AWlL we get using Lemma 1.2.5 and the

fact that YeAM,

= J QΛdφ)ηφ

QJMΛ)ΛCθφ(A)
YnMΛ'

= ί F{dφ)ηUMΛ)D{φ)ΛωM)
YnMΛ°

= i F(dφ) Σ «n(Ψ°φ,OMΛAOMΛΨ"φ)
YM 0

J F(dφ) J F(dΨl)Xi(φ) Σ 0inΨ
n

φ{φ^OMΛAOMΛΨ
n

φ{φ,

Σ
π = 0

= ίF(dφ)χγ(φ) Σ ctnΨ\φ)AΨ"{φ)= Σ ̂ (ψ-,
n=0 n=0

= ω(AOγ). •

3.6. Proo/ o/ Theorem 2Λ0

1°. We first assume that for each A e 2? the family G ω φ ) φ e M of conditional states
exists. From Proposition 2.6 we have that for all A e 95 and Qω-a.a. φ Λω

φ is a
normal state on Asf. Thus ωφ

A defined by (2.4) is a normal state on s/A. Now, we fix
a set A e 95. Without loss of generality we may assume that ωφ

A is a normal state for
all φeM. Since (Λcoφ)φeM is assumed to be ̂ cSDΪ-measurable we have, of course,
ωφ

A = ωφ

A

ΛC for all φeM. Denote by Qφ

A the position distribution of ωφ

A. Q
Ψ

Λ is a finite
I"v-point process on [M^, 501̂ ] [2, Proposition 3.1]. We will show that Q\ is even a
I"v-point process. Indeed, from Proposition 2.8 and Lemma 1.5.3 (iii) we obtain for
all remand all φeM,

QφΛY) = <(OY) = Aa>*(v2 * Y) = QJυA ' Y \ ΛM){φ)

φ,φAC), (3.18)

where K is a version of dC{^J/d(F x Qω).
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For all A'e&nΛ, Yeffl^ andφeM we get

' x Y)= $Q*Λ(dφ) ί Φ(dx)χY(φ-δx)
A'

1 Σ A f
1 W! Λ n

ί v(dx)χY(δχn-i)κ(δχn-i + δx,φΛC)
A'ί
A' 1 J F Λ ( # ) \ΛV(dx)κ(φ + δx,φΛ<). (3.19)

Since Qω is a Σ'v-point process we have

κ(φ1 + φ29φ) = κ(φl9ψ)κ(φ2,φ + φγ) (FxFxQω -a.a. (φl9φ29φ))

(cf. [4, Chap. 9] or also (6.10) in I). Thus we may continue (3.19)

x J i

A'

Y A'

This proves that C$}<vx Qφ

Λ and

From (3.20) we easily get that for all A e 33, φ e M,

>= ΊΠΓ^J = <ΨuΨ + ΨΛ) (ΨUΨI^MJ. (3.21)

2°. Above we thus have shown that for all A e 93 and all φ e M ω\ is a normal
2"v-state on s/Λ. Applying Theorem 1.6.4 we obtain that there exists the (a.e.
uniquely determined) c.r.d.m. kφ

Λ of ωφ

Λ having the following properties:
For all Ye <3RΛ and integral operators A e stfA such that SΛ(Y, A) e s/A we have

ωWSAY, A)) = f QXdφJ J F ^ d φ a ) ^ * k^A(φ2, Ψl) (3.22)

and for FΛ x Qφ

Λ-a.a. (φl9 φ2),

Kiψu Ψι> Ψi) = K(<PU ΨI + ΨA*) - (3.23)

Now, for all A e S we put

kΛ(φί,φ2,φ) = k(%ΛC(φι,φ2,φ) (φί9φ2eMΛ9 ψsM). (3.24)

We will show now that for all A,AΈ95 AQA' one has

M<Pi> Ψ2> Φ) = kA'(φl9 φ2, φ) (FA xFAx Qω-a.a. (φl9 φ29 φ).
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We fix Λ,Λ'e®9 ΛQΛ'. Let Y±eAm
f

9 Y2eΛΛΛW, Y3eΛM\ Then
YίnY2eA>yjlf, and for all integral operators Aes/% (Qstf{) we have
S(Y1ΓiY29A)eA*sf (Proposition 1.3.4) and consequently we get using (3.22),

ί QJdφ) J QWΨI) ί FAdφ2)kA * kΛ,(φ2, Ψi)
Y3 vΛ>(Y1nY2)

 Λ

ί QJdφ) I FΛ{
Y3 vΛ,(YίnY2)

J QJdφ) ί

= ί QJdφ)iFΛ(dφ2)kA * kTΆφ2, ΨΛ)
YmY2nY3

 Λ

= ί QJdφ)\FΛ(dφ2)kA*kA,(φ2,φ). (3.26)

On the other side, it is easy to check that

Consequently, we get (S(YuA)eAj!/, Oriny3eΛ5ίR-L)

coiS(Yt n Y2, A)0Ϊ3)=ω{S(Y1, A)0ϊinY3)

= ί QSdφ)ωΛ{SΛ{vΛYί,A))
YY

= ί QJdφ)SQΛ(dφι)\FΛ(dφ2)kA*kΛ(φ2,φ1)
Yir.r3 Y2

 Λ

= ί QJdφ) J FΛ(dφ2)kA * ^ fo>

= f β ω ( # ) ί ^ ( ^ 2 ) ^ * M φ 2 , < p ) (3-27)

Since yl9K/nylΛΛS0ί/nyl,SDΪ1 generate SDί and the integral operators from s/A are
dense in this space we conclude from (3.26) and (3.27) the relation (3.25). Now, we
choose an increasing sequence (An)n>0, AneSB such that limΛ =G. For all

— n-»αo

φί9φ2e Mf there exists a n n o e N such that for all n'^n0φί,φ2e MΛn. Thus, from
(3.25) we get that

kω(φ» Φ2> ψ)= lim kAn(φl9 φ29 φ) (3.28)
n~* oo

exists for FxFxQω-a.a. (φuφ2,φ), and defines a measurable function from
Mf x Mf x M into (C. Setting kω(φu φ2, φ) = 0 for φ1 e M\Mf or φ 2 e M\Mf we
obtain a well-defined measurable function from M 3 into (C.

3°. We show that kω is the c.r.d.m. of ω, i.e. we must show that kω has the properties
given in Definition 1.7.1.
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From (3.28), (3.23), (3.24), and (3.25) we obtain for all A e 93 and FΛ x Qω-a.a.

k ( ψ Ψu ΨΛc) = k Λ ( φ l 9 φ l 9 φΛc) = k ^ Λ \ φ l 9 φ l 9 Φ)
φΛC

j
what proves (i).

For Λ e SB and φ e M we set

Kφ

ΛΨ(φι)=ίFΛ(dφ2)kω(φ1,φ2,φΛ<!)Ψ(φ2) (ΨeJΪΛ, ΨίsMΛ). (3.29)

Since for AesiΛA = SA({ΰ),A) we get from (3.22),

( ίC^). (3.30)

Since ω\ is a normal state Kφ

Λ is a positive trace-class operator on MA.
Finally, we have to show that kω fulfills (1.7.1). For all Λe33, Fe^SK and all

integral operators Aes/Λ such that S(Y, A)e Λstf we get (using (3.22) and the fact
that MeJJl1)

ω(S(Y, A))=ω(S(Y, A)OM)= SQω(dφ)ωΛ(SΛ(vΛY, A))

= JΛQJdφ)η*QJMΛ) J^ QΛ(dφι)\FΛ(dψ2)kA * kΛ(φ2, Ψl)

= i QJdψ)\FΛ{dΨι)kA * kγ\ψ2, Ψl)
Y Λ

4°. We still have to show the converse, and we assume now that the locally normal
state ω possesses a c.r.d.m. Then we use (3.29) and (3.30) to define a family {ω^)φeM

of positive linear functionals on s/A9 i.e. we put

QφΛY)=QΛvA

iY\ΛM)(φ) (YemA,φeM)

and

<{A) = QS({Φ}) Tτ(K^A) (A e s/Λ), (3.31)

where Kφ

Λ is defined by (3.29).
Since κ(Φ,φ) = l and

C W Γ 1 } F(dφ)κ(φ,φ) (3.32)

we get

Q\m)=w:{MA)ri. (3.33)

Further, it is easy to see that

Thus, (ωA)φeM is a ^SW-measurable family of normal states on s#Λ, and by

Aω"{A)=<(OMΛAOMΛ) (A e Λ ^
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there is defined a ^cϊR-measurable family of normal states on Λs/. We finally have
to show that these states are just the conditional states of ω. Let A e stfΛ, Ye Λ$Ά,
ΛnΛ' = Φ, A,A'e95. From Lemma 2.4 we know that JΛAOγeΛnΛ,sί and JΛAOY

= S(YnMΛc,A). Consequently, if A is an integral operator we get from the
definition of the c.r.d.m.,

ω(JΛAOγ)

= ω(S(YnMΛC,A))

= ί Qω(dφ) f F ΛuAdφύ \ FAvjA,(dφ2)kA(φl9 <Pi)K(<p2> Ψi, Φ)
YnMΛ

c

= ί Qω(dφ) f FJdφJ f FΛ(dφ2)kA(φί9 φ2)kω(φ2, φl9 φ)
YnMΛc

= J QJdφ)τr(K'AA)= J Qω(dφ)η*QJM A)Q*Λ(W)Ύr(K«AA)
YnMΛc YnMΛc

3.7. Proo/ o/ Proposition 2.11

The proof follows immediately from the proof of Theorem 2.10 [from (3.31), (3.33),
and (2.4)]. •

3.8. Proof of Proposition 2.12

Let ku k2 be two c.r.d.m. of ω. As in the proof of Theorem 2.10 [(3.26), (3.27)] one
easily shows that

ki(ψu Ψi> ψ) = k2{φu φ29 φ) (FΛ *FΛxQω- a.a. (φl9 φ2, φ)).

Since F is concentrated on Mf = (J MΛ this implies immediately that the c.r.d.m.

is a.e. uniquely determined. •

3.9. Proof of Proposition 2.13

If ω is normal it follows from Proposition 1.6.1 that Qω is a finite point process.
Now, let Qω be a finite Σ'v-point process. It is easy to see that the c.r.d.m. kω of ω
fulfills the assumptions of Theorem 1.6.8. Consequently, there exists a normal
Γy-state ώ such that Qώ — Qω and kώ = kω a.e. Since a normal state is also a locally
normal one we conclude from Proposition 2.12 that ώ = ω [more precisely, ω may
be extended in a unique way to a normal state on <£(Jί)~\. •

3.10. Proof of Proposition 2.14

The implication (i) => (ii) is a consequence of Proposition 2.12 and of the
uniqueness of the position distribution [2, Theorem 3.3]. The implication (ii) => (i)
follows from Remark 1.7.5, 5°.
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