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Abstract. The physical properties of algebraic geometric solutions of stationary
axisymmetric vacuum Einstein's equations are discussed. It appears that these
solutions describe an interaction of a few localized rotating string-like objects on
an arbitrary static background. If such an object collapses to a point then it
produces a Kerr-NUT black hole.

Introduction

Recently the author and V.B. Matveev have shown [1-3] that the technique of
multidimensional theta-functions first used by S.P. Novikov, B.A. Dubrovin, V.B.
Matveev, A. R. Its, and I. M. Krichever [4-6] for finding periodic and almost
periodic solutions of Korteveg de Vries (KdV), Non-linear Schroedinger (NSch)
and other equations solvable by the inverse scattering method may be successfully
applied to a stationary axisymmetric Einstein's equation in a vacuum and to the
Einstein-Maxwell system. Further in [7,8] the technique of [1-3] was extended to
the four-dimensional self-duality equations for SU(2) and SU(l,ί) groups.

The main properties of finite-gap solutions from [1-3] differ radically from the
properties of well-known finite-gap periodic and almost periodic solutions of
KdV, NSch and others. Namely the dynamics in finite-gap solutions of Einstein's
equations is set by the deformation of the algebraic curve with variable branch
points in contrast to the dynamics of the usual finite-gap solutions set by the linear
flow on the Jacobi manifold of the fixed curve. As a consequence the solutions from
[1-3] are not periodic but localized as degenerated-soliton solutions. It appeared
possible to introduce in these solutions the functional parameters corresponding
to an arbitrary static background.

This paper is devoted to the investigation of most elementary physical
properties of non-degenerated finite-gap solutions of vacuum stationary axisym-
metric Einstein's equation found in [1-3]. The general genus g solution of
stationary axisymmetric Einstein's equation describes an interaction of g localised
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string-like objects on an arbitrary static non-rotating background. Section 1
includes some general facts and a brief description of the algebraic geometric
construction of the solutions based on [1-3]. In Sect. 2 we show that the multi-gap
solution on the flat background may be considered as an interaction of a few
localized genus 1 objects. In Sect. 3 we consider the simplest genus 1 solution and
obtain some results about its topology, mass, angular momentum, NUT-
parameter, singularities and infinite redshift surface in the case of a vertical
immovable branch cut. We distinguish effectively a subclass of solutions with a
vanishing NUT-parameter. Section 4 is devoted to some concluding remarks.

1. Algebraic-Geometric Solutions
of Stationary Axisymmetric Vacuum Einstein's Equation

We will write the line element of stationary axisymmetric space in the following
widely used form:

= f~ι [_e2k(dρ2 + dz - f(dt + Adφ)2, (1.1)

where (ρ, z) are Weyl coordinates; functions /, fc, and A may be expressed in terms
of one complex valued function - the Ernst potential

kζ = 2ρ (1.2)

where ζ = ρ + iz and ζ = ρ — iz- new complex coordinates.
The Einstein's equation in terms of S(ζ, ζ) may be written in the Ernst form

(^ + # ) ( ^ z + ρ-Vρ + ̂ ρ ) = 2 ( ^ + ̂ ) . (1.3)

The construction of finite-gap solutions of (1.3) based on the zero curvature
representation found in [9] is as follows [1-3]:

Let's consider the hyperelliptic Riemann surface JS? of genus g (Fig. 1)
depending on (ζ, ζ) and defined by the equation

iζ) U (λ-Ed(λ-Fd, (1.4)

Fig. 1. Hyperelliptic curve Jέf. Continuous contours lie on the 1st sheet, dotted-on the 2n d
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where Eb Fb i = ί,...,g are independent of ζ, ζ. This curve must be real, i.e.
V/ = l,...,g, E—Fi or Eb J P ^ R . Canonical algebraic-geometric objects on ££
follow: the basis of cycles (ab bt) being chosen as is shown in Fig. 1 dual basis of
holomorphic 1-forms dUj{P)J=ί,...,g with the normalization SaidUj=δiJ; Abel
mapping UJ(P) = Sp

PodUj,P,Poe&,j=l,...,g.Matrix Bij=SbidUjXj=\,...,gis<i
matrix of fe-periods associated with JSf.

The Riemann theta-function is defined by the following series:

where zeZg, < . , . > - ordinary scalar product.
For a detailed description of the properties of ordinary algebraic geometric

objects associated with JSf, see [2].
The finite-gap solution of (1.3) found in [1-3] is written in the following form:

θ(U(ooι)-U(D)-K + n/4 + b\B)θ(U(oo2)-U(D)-K\B)

?}, (1.5)

where K is a vector of Riemann constants; oo1 '2 are infinite points on the first and
second sheets of if; nk = ±1, /c=l,...,g; D = Dγ+...+Dg is an arbitrary non-
special divisor independent of (£ ζ) (Dt e j£?) satisfying the reality condition Dτ=D,
where τ is a conjugation anti-involution on every sheet of ££. For the abelian
integral WQCP)

 w e have

W0(P)=1- Σ nkWEktFk(P),
<£ k = 0

where WQR(P) is a third kind integral with the residue +1 at point Q and — 1 at #;
cuts sk between Ek and Fk are shown in Fig. 1. The abelian integral W(P) with a
vector of b-periods 2πib is an arbitrary linear combination of abelian integrals of
the second and the third kind; all singularities of these integrals and coefficients of
the linear combination are independent of (£, ζ). The integral W(P) must satisfy the
following reality conditions: W(P)\™ϊe]R. and 2πzbeIR. These conditions impose
some restrictions on singularities of W(P) and coefficients of the linear combina-
tion; for details see [1, 2].

The integral W(P) in (1.5) corresponds to the static background. Indeed, if we
take g = 0 then /(ζ,ζ) = QxρtW(P)\™2i}eWL and (1.3) we may be rewritten as
Zl(ln<ί) = 0, where A = d* + ρ~ iδρ + 32.. This linear equation gives solutions of the
static (Weyl) class.

If we consider an infinite limit in the linear combination setting W(P) then we
obtain a solution including some functional parameters. We see that there is a close
link between the linearity of the Ernst equation for the static solutions and the
existence of the linear structure on the manifold of integrals W(P).

Dependence of S on ζ and Πs given by the dependence of B, U(oolt2)—U(D),
W(P)\%\ and K on ζ and ζ, i.e. by the movement of our curve Jέf with fixed divisor D
and singularities of W(P) in the moduli space.

To obtain from (1.5) the multi-Kerr-NUT solution on flat background we can
choose

W(P)= Σ 2i«kWEkFk(P),
k= 1
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where αfc e R is independent of (ζ9 ζ). Cuts sk between Ek and Fk and the contour /
between oo1 and oo2 (Fig. 1) are chosen such that W(P)\™2i = 0 (i.e. the background
is flat indeed) and bk = ίock.

Let's consider a limit Ek, Fk -> λk e R. fc=1,..., g. In this limit S£ degenerates into
a surface of genus zero and &(ζ9ζ) may be expressed in elementary functions; it
describes an interaction of g Kerr-NUT objects.

However, 4g physical parameters of this solution: masses, angular momentum,
sites on the axis and NUT-parameters, are set only by 3g real parameters: Dt, λi9

and at. To obtain a general family of multi-Kerr-NUT solutions it is necessary to
take g = 2g and Df = Df+p i = 1,..., g, where * is an involution on Jέf interchanging
the sheets. Then (1.5) describes an interaction of g Kerr-NUT objects with the
horizons dependent on 4g real parameters: λl9...9λ29 and al9...9 a2Ψ If some pair
{λi,λi+s) is not real but Af = Xf+&, then the corresponding Kerr-NUT component
has a naked singularity instead of the horizons.

2. Asymptotic Properties of Finite-Gap Solutions

Here we will show that in some sense the finite-gap solution may be considered as
an interaction of a few localized one-gap solutions and a static background set by
W{P). Asymptotic behaviour of the finite-gap solution is defined in zero
approximation only by static background, i.e. the asymptotic properties of
finite-gap solutions coincide with the properties of degenerated-multi-Kerr-
NUT solutions on static background.

We shall use in this paper the expression "asymptotic flatness" in two senses.
The solution will be called asymptotically flat in a weak sense if the Ernst potential
tends to 1 on the infinity; if also the mass of the object is real, then the solution will
be called asymptotically flat in a strong sense.

At first we shall show that one-gap solution on a flat background is
asymptotically flat in a weak sense if contours s and / are chosen as shown in Fig. 1
(for g = l). Let β = ζ/\ζ\; consider a limit |£|->oo with β = const. Solution (1.5) is
invariant under the similarity transformation of i f with the pole divisor; let's
define by «£?' the result of this transformation with the centre in 0 and coefficient

via
In the limit |ί|->oo curve JSfr degenerates into a zero genus curve. Therefore we

can apply to this case the results of [1,2] about the behaviour of all algebraic
geometric objects in this limit:

Re(iB)=--ln|C| + O(l),
π

IB -4-1

So $ tends to 1 in any direction and one-gap solution on the flat background is
asymptotically flat in a weak sense.
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In a full analogy we can prove the same fact for a g-gap solution when g >1 and
the contour / doesn't cross the contours si9 i = l9 ...,g. If contour / crosses some of
the contours st then the factor exp {W0(oox) — W0(oo 2)} independent of (ρ, z) may be
not equal to 1. In this case the asymptotic value of the Ernst potential is equal to
the value of this factor. Therefore our choice of contour / corresponds to one of the
asymptotically flat in a weak sense ("physical") sheets of the manifold set by the
solution (1.5) in the case W(P) = 0.

Let's consider the genus g solution with W(P) = 0 when the distances between
branch cuts [Eb FJ are large in comparison with the lengths of the cuts. Let also
point Dt be situated in the neighbourhood of the cut [Ei9FJ9 z'=l,...,g. More
exactly, let's consider a limit £->oo when

ιj = l,...,g, ξelk,

Consider again a similarity transformation of if with the coefficient ξ~ 1-curve
JS?". We intend to investigate the behaviour of this solution in the neighbourhood
of the ith cut when C = ̂  + 0(1) (in the limit £->αo). Inthis limit curve <£"
degenerates, all branch cuts tend to points; branch cuts [iζ, iζ] and [£ f, FJ are also
glued.

The behaviour of the basic holomorphic differential dU'k\P) on if" is the
following: 1 J I

dUk'(P) > — - = , JfcΦi;
ζ̂ oo 2πι λ-κk

ζ-^oo
dϋi(P)9

where dϋ^P) is a normalized abelian differential of the first kind on a genus one
surface Jίf, with branch cuts [ — iζ,iζ] and [EbF^\.

Therefore the elements of the matrix B (the same for if and if") are:

(2.1a)

; (2.1b)

->cx), (2.1c)
where ft, is a 1 x 1 matrix of ft-periods of curve ^{.

For the Abel mapping of the divisor £) on if we have:

(2.2a)

Bjj+0(ί), J + i, (2.2b)

Uk(Dj) = 0(1), j*k, j,k = 1,...,g. (2.2c)

Substituting (2.1) and (2.2) into (1.5) and using the definition of the theta-
function it is easy to obtain

ζ->oo
|ζ-£i|=O(l)

where S^ζ, ζ) is a genus 1 potential corresponding to curve 5£{ with the divisor Ό{.
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So the genus g solution on a flat background in the limit £->oo splits into g
localized genus one components; their interaction vanishes if the distances
between the components tend to infinity, but their sizes remain constant.

Note that we proved rigorously this statement only for identical "splitting
rates" of the branch cuts and corresponding points of the divisor. However, this
assumption was introduced only for convenience and the previous statement may
be easily proved in the general case too.

Let now W(P) Φ 0, i.e. the static background is not flat. In full analogy with the
case W(P) = 0 we can check that the rotating one-gap objects are localized; as a
consequence, the behaviour of g(ζ9 ζ) on infinity is set [with the precision o(l)] by
the static background.

So to obtain a more or less complete physical interpretation of the genus g
solution it is necessary to investigate the elementary genus 1 solution.

3. Analysis of Some Physical Properties of the Genus 1 Solution

In this section we shall consider the simplest asymptotically flat in a weak sense (on
the "physical" sheet) genus one solution. The main focus will be on the case of a
vertical immovable branch cut on an associated algebraic curve (Fig. 2), because
this case seems more transparent from the physical point of view in comparison
with the case of a horizontal immovable cut. For both cases we discuss the
behaviour of the solution on the symmetry axis, its mass, angular momentum and
NUT-parameter. For the "vertical" case we investigate also the topology, infinite
redshift surface, singularities and some other properties.

If g = l and the background is flat then formula (1.5) may be written as

0(1/(00 2) - U{D) - K +1/4 + ία)fl( I7(oo *) - U(D) - K)
( ζ ' ζ ) ~ 0(l7(αox)- U(D) - K +1/4 + iα)0(C/(oo2)- U{D) - K)

(3.1)

where we introduce a new notationEί =E,Fί=F;D is an arbitrary immovable
point of the curve ££.

If if degenerates, i.e. £,F-^yeR, solution (3.1) transforms into a three-
parametric Kerr-NUT solution with the horizons.

Namely, (see [1, 2]) if we introduce prolate ellipsoidal coordinates (xo^o)1

C / ( ) / Φ ) ] y o = ^ LMy)-fo(D)~], (3.2)

where fo(λ) = (ρ2 + (λ-z)2)ίl2 then (3.1) takes the form

This is a Kerr-NUT solution with NUT-parameter arctg(e2πα) and mass

M = - (D — y)(\ + ie~2πa). Expression (3.3) gives a three-parametric subclass of a

general four-parametric Kerr-NUT family. We shall use formulae (3.2) and (3.3) for
the investigation of the behaviour of a non-degenerated solution on the symmetry
axis.
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Now let's consider a topology of "Ernst manifold" corresponding to the
solution (3.1).

A. Topological Structure of Ernst Manifold:
Case E = F; Topological Reconstruction in Kerr-NUT Limit

Due to the presence of two Killing vectors we can consider here the two-
dimensional section ί = const, φ = const 501 of the four-dimensional "Ernst
manifold" 501. So we can use in application to SDΪ a convenient language of the
theory of Riemann surfaces.

Note that due to the integral character of the link (1.2) between the Ernst
potential and metric coefficients the Einstein manifold corresponding to our Ernst
manifold 501 is in the general case a covering of 501; the branch points of this
covering may be at points where the Ernst equation is not valid.

For 501 to have no boundary it is necessary to consider a symmetrical
continuation of ${ζ,ζ) in the domain of negative ρ: S{ — ρ,z) = $(ρ,z) (or,
equivalently, to consider a section of 501 ί = const, φ = const + fcπ, fc = 0,l).

As a result we can consider 501 as a covering of a plane with complex coordinate

ρ
Denote by JSf) (in our case i — \,2JeΈ) the curve Jδf with some set of branch

cuts, basic cycles and contours [oo1, oo2] marked by the pair (}). We shall mark
also by the indexes i andj all objects related to curve S£). So S) is an Ernst potential
set by (3.1); 501* is a corresponding sheet of the Ernst manifold.

Let's start with the curve S££ shown in Fig. 2a. It seems obvious that the branch
points on 501 may lie only at the point iζ= E where the Ernst equation is not valid.

Fig. 2a and b
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After a round of iζ about E on 5£\ in a positive direction we obtain the curve J£? \
(Fig. 2b). This round leads to the following transformation of the variables setting
the Ernst potential:

B} = B j ι) -

} = (C/(oo2)

) - U(D))h

that
Then using the periodicity properties of the theta-function it is easy to show

So the points E and F are really branch points on 501. Sheet 9K} seems to be
"unphysical" because the Ernst potential tends to a negative limit — e2πa on its
infinity.

If α = 0 then a double round of point iζ about E leads on the initial sheet SDΪQ
Therefore in this case our connection component 99Ϊ1 consists of only two sheets:
SDΪQ a n ( l STOi (Fig. 3a) and —£Q = $\\ sheet SDΪQ seems to be "physical" and sheet
9M} "unphysical".

Case α φ 0 is more complex. If we round) times about point E then we arrive on
sheet SDΪj where

Hence in this case 9DΪ1 consists of an infinite number of sheets (Fig. 3b). Sheets
with even numbers Jί\k are "physical"; they are connected with SRQ by some

•m\

* ! = —P^π M'l .

Fig. 3a and b. Topology of 9K1 :a. α = 0, b. α=t=O; Ernst potential on different sheets
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scaling transformation; sheets with the odd numbers SRifc-i seems to be
"unphysical" because the Ernst potential is negative on their infinities.

So we described the topological structure of the connection component SDt1

which include the sheet SERQ related to the curve 5£\ shown in Fig. 2a.
Now it is necessary to make this description agree with the well-known

topological structure of the Kerr-NUT solution which arises in the limit
£,F->ye]R. For this purpose it is necessary to consider another connection
component SDΪ2 of manifold S01 starting from the curve <£% shown in Fig. 4. It is easy
to verify that &\ — ($Ί)" \ If we rounds times about point E then we arrive on sheet
Wl], where S) = (β])~ι (/ = 0,l for α = 0 and e Z for α + 0).

If E, F-*ye]R then curves ££)'2 degenerate and a passage between E and F
becomes impossible. Components SOI1 and 9JΪ2 split on the separated sheets.
Instead in this case we can continue potential δ) from SPΪj to SOΪ2 and obtain
potential $>j = ($>j)~1 (for anyj). Therefore in this limit we obtain a family of non-
connected Kerr-NUT manifolds. In the case α = 0 it consists of two components -
the first is "physical" and the second seems to be "unphysical". The considered
topological reconstruction in the case α = 0 is shown in Fig. 5a, b. In the case α + 0

Fig. 4

ml—•-
3)

-φ—

m\—•-

Fig. 5a and b 3) E=F=γ
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one obtains an infinite family of similar "physcial" black holes and an infinite
family of similar "unphysical" black holes.

It is rather interesting to describe in our terms [in Weyl coordinates (ρ, z)], for
example, the continuation from SDϊJ to S0ΐo> i e. the well-known continuation from
the first sheet of the Kerr-NUT solution through the horizons on the second sheet.
To obtain this continuation in our framework it is necessary to continuously
deform J£?J (with E — F = y) into 3?\. Note here that formula (1.5) may be used to
provide not only stationary axisymmetric solutions but also non-stationary
cylindrically-symmetric ones: it is sufficient to take ρ = it; then the moving branch
cut [z — ί, z + ί] on JS? lies on the real axis. This situation takes place between the
horizons in the Kerr-NUT solution.

The way to deform JS?Q to <&o i*1 (i e to glu e ^o a n d SDΪo) *n the case E = F = y is
represented in Figs. 6a-6g. Segment [D, y] plays the role of the horizons.

It is easy to see that the direct generalization of this procedure on the non-
degenerated case is impossible; it seems that in this case the horizons are absent;
the behaviour of the metric on the axis will be discussed in B.

B. Behaviour of ${ζ,ζ) on Symmetry axis;
Mass, NUT-Parameter and Angular Momentum

Let's consider a behaviour of genus one solution (in both: E = F and E, F e R
cases) on symmetry axis (ρ = 0) of SDΪQ I n this limit curve Jέf J (Fig. 2a) degenerates
and it appears possible to find the dependence ${ρ = 0, z) in elementary functions.
For this purpose we can take expressions (3.2) and (3.3) and to make substitutions:

\ζ--\ζ

2) \ΪUS X

Fig. 6a-g. Deformation of £β\ to SB% in the case E = F = y. Point on Kerr-NUT manifold is
situated: a On the 1st sheet outside of the event horizon, b On the event horizon, c-e Between the
event and Cauchy horizons. fOn Cauchy horizon. gOn the 2n d sheet



Algebraic Geometric Solutions of Einstein's Equations 393

, γ-*z9 iζ^E, — ίζ^F. Integral WEF will produce additional multiplication on

As a result one obtains:
ie~2πa.

where x=^-[/(z)+/φ)], y=^U(*)-fΦΪ\ and /μ) = ((Λ-£)

x(A-F))1 / 2

From (3.4) we can find the mass of our object on

Mo = ̂ γ~ + - ((£ + F-2D)ch2πα+2/φ)sh2πα). (3.5)

We see that the mass is complex, i.e. it consists of the ordinary mass ReM0 and the
"magnetic mass" ImM0.

In the simplest case α=0 (3.5) takes the following form:

Mo= i ]/(£-D)(F-Z>)+ £ (E+F-2D),

i.e. the ordinary mass is half of the geometric average oϊE — D and F — D and the
magnetic mass is half of the arithmetic average oϊE—D and F—D. The presence of
the magnetic mass is equivalent to the presence of the non-vanishing NUT-
parameter β0 with arctg/?0 = ReM0/ImM0; when ImMoΦ0 (or, equivalently,
β0 φ 0), the solution is asymptotically flat only in the weak sense. In some relations
the role of the magnetic mass in relativity is equivalent to the role of magnetic
charge in electrodynamics: the structure of geodesies in the field of magnetic mass
is very similar to the structure of the trajectories of the charged particle in the field
of the magnetic monopole [10].

The NUT-parameter may, of course, be omitted by the well-known Ehlers
transformation; the resulting solution will have mass M'0 = \M0\. However, we
shall not consider this possibility here.

To delete the NUT-parameter on 50lo it is necessary to require

(E + F- 2D) ch2πα + 2]/(E-D)(F-D) sh2πα = 0 (3.6)

or, equivalently,

D= \ (E + F)± l- (£-F)sh2πα.

It is easy to see that we can satisfy the condition (3.6) only in the case of a
vertical immovable cut, i.e. E = F. Indeed, in the case E, F e R point D given by (3.6)
is complex (if α φ 0) that is impossible due to the reality of the pole divisor. If α = 0,
one obtains /) = (£ + F)/2; this is impossible too because D must lie outside of the
cut[£,F].

We see that the case of the vertical immovable cut seems more physical; for this
reason we considered in A the topological structure of the solutions from this class.

Using (3.4) we can directly compute the angular momentum of our object on
501Q i n the case of vanishing NUT-parameter when E = F and D is set by (3.6):

J 0 =-(Im£) 2 ch2πα. (3.7)
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The mass of this object is equal to ReM0 where D is set by (3.6):

M 0 =^(Im£)ch2πα. (3.8)

In the simplest case α = 0 we have

M0=^lmE, J0 = (lmE)2.

As we shall see below, the factor ch2πα may be considered as the density of our
object.

C. Singularities of the Ernst Potential: Case E = F

Here we shall consider the singularities of the Ernst potential: $= oo, because the
rigorous analysis of the singularities of curvature is very complicated. However, for
Kerr-NUT solutions these two types of singularities coincide; it is natural to
suppose that this fact is also true for non-degenerated solutions.

Using well-known facts about the zeros of theta-function we immediately see
that all points where $ = oo,0 may lie only at the point iζ = E.

Let's consider, for example, the behaviour_oΐ <?o(ρ, z) in the neighbourhood of
the "branch ring" iζ=E. To use in the limit ίζ->D the standard technique of the
degeneration of finite-gap solutions (see, for example, [1,2,8]) one has to insert on
JS?o a n e w canonical basis of cycles {a\b') — (b, —a) (cycles a and b are shown in
Fig. 2a). In the new basis formula (3.1) takes the following form:

θ{U'{κ2)- U\D)-K' + Έ'{\IA + m))θ{Uf{^)- U\D)-K')
i ς ' g 0(l/'(oox) - U\D) -K' + BX1/4 + ια))0(l/'(oo 2) - U\D) - Kf)

xexp

where all shaded objects relate to the new basis (a', V).
In the limit iζ-*E we have:

ιζ-*E

Now using the definition of the theta-function we can apply the standard
degeneration technique and obtain that the theta-function term in the previous
formula for $ is finite in our limit. For the exponential term we have:

exp {( 2 i α + I ) (WEF-πiU')\ή ^ exp
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As a result we see
= °) or

i.e. the singularities of δ on 501ι are absent and on SOί2 they lie in the branch point
iζ= E. Note that the behaviour of S(ρ, z) near E completely agrees with the "branch
role" of the ring iζ = E on the Ernst manifold for our solution.

D. Infinite Redshift Surface Re(T = 0: Case E = F

The infinite redshift surface £f, where the metric coefficients are singular, is defined
by the equation gtt = Reδ = 0. From (3.4) we immediately see that this surface
crosses the symmetry axis only at point z = D on every sheet of SOΪ (in the non-
degenerated case). It is obvious that point iζ= E belongs to £f too (on every sheet).
In the degenerated case E = F this surface crosses the axis at the points z = D and
E = F; from the topological point of view it is a sphere.

It appears possible to prove rigorously that in the case α = 0, D = Reδ the
surface Sf has a form of a disk z = Re£, ρ ̂  Im£ on any sheet of 501. For example,
let's prove this fact on SDΪQ If z = Re£ and ρ^ImE then the curve 5£\ has a very
symmetric form (Fig. 7) admitting an involution λ-> — λ. Using this involution we
immediately obtain that

= j , U(oo2)-U(D)= -j-\

Therefore δ\(z = Re£, ρ <imE) = ί ̂ - ^ r and Re<ί£ = 0 on our disc (Fig. 8a). It is
0(1/2)

obvious that this fact is true on every sheet of SIR.
Analogously we can prove that on the plane z = Re£ outside of the disc

ρ^ImE the Ernst potential is real.
When D = Re£ but α + 0 the form of Sf changes. It seems impossible to obtain

the simple equation for the form of &* in this case; we know only that it stretches
the "branch ring" iζ=E and crosses the symmetry axis at z = D (Fig. 8b) on every
sheet of Ernst manifold. Then we see that on all sheets of Ernst manifold the surface
tf is a boundary between the "physical" sheets where Reδ >0 and "unphysical"
sheets where

Fig. 7
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9=0

9=IImEI
z=ReE

9=0

w Λ , , Re<T = 0 9=IImEI
Fig. 8a and b ?

z = R e E

E. Behaviour of Metric on Symmetry Axis;_
Structure of Einstein's Manifold: Case E = F

Let's consider the behaviour of metric coefficients A(ρ, z) and k(ρ, z) set by (1.2) on
SDΪQ. If we impose on SDIQ the condition of asymptotic flatness then the coefficients A
and k have to vanish on the infinity. From (1.2) we see that Aζ(ρ=0,z) = 0 and
fcζ(ρ = 0, z) = 0 in all points where Re $ φ 0 (in our case in all points of the symmetry
axis excluding z = D). So vanishing of k and A on the infinity considered as initial
conditions for the integral links (1.2) provides a regular behaviour of metric
{A >0,k >0) on the symmetry axis of S51Q. If w e cross infinite redshift surface

ρ-*0 ρ->0
9> then the behaviour of the metric becomes "unphysical."

Einstein's manifold in the case α =t=0 coincides with the Ernst manifold because
in this case manifold Sθί1 doesn't include non-trivial closed cycles. When α = 0 the
5011 is a two-sheeted manifold and includes such cycles. Therefore in this case
Einstein's manifold seems to be the infinite-sheeted covering of the Ernst manifold.

So the structure of Einstein's manifold seems to be the same for all α. If starting
from one of the "physical" sheets of this manifold we pass through the "branch
ring" iζ = Ejtimes then we arrive on the/ h sheet; if j is even then the new sheet
appears "physical" too; if; is odd then the new sheet appears "unphysical."

Of course, we discussed the continuation from one sheet to another only in
terms of the Ernst potential although the rigorous analysis requires to consider
this continuation in terms of the metric coefficients (particularly when we cross the
infinite redshift surface). Therefore the statement about the unphysical character of
the "odd" sheets of Wl1 is not quite rigorous and requires an additional
consideration.

The previous treatment is true for both connection components considered in
this section and marked by indexes 1 and 2. However the component SDΪ1 seems
more "physical" in comparison with SDΪ2 because on 9K2 we have singularities of the
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Ernst potential on the "branch ring" and the mass of our object even on the
"physical" sheets of 9J12 is negative in contrast to 9J11.

From (3.7) and (3.8) we see that in the case of the zero NUT-parameter the
factor ch2πα may be considered on 501J as a density parameter of our massive
rotating string-like object. However, the form of the infinite redshift surface
depends essentially on α (Fig. 8): this form is simplest if α = 0 - the disc (Fig. 8a).
In the case α + 0 this surface seems to take a form of a "sack" (Fig. 8b).

4. Concluding Remarks

This paper is devoted to some initial steps in the clarification of the physical sense
of algebraic-geometric solutions of stationary axisymmetric vacuum Einstein's
equation found in [1-3]. We show that the asymptotic properties of these
solutions coincide with the properties of degenerated-soliton solutions which
describe the interaction of a few Kerr-NUT black holes on an arbitrary static
background. Non-degenerated solutions describe an interaction of a few localized
rotating genus one components on the static background. We consider in more
detail a genus one solution on a flat background in the case of a vertical immovable
branch cut; the opposite case of horizontal immovable branch cut seems less
transparent and requires some additional consideration.

In the case of a vertical cut our genus 1 solution is set by four real parameters:
divisor D e l , end of immovable branch cut E e (C and "density parameter" αeR.

The most "physical" connection component of Einstein's manifold related to
our solution consists topologically of an infinite number of K 4 glued along a ring
z + iρ = E. Half of these sheets are "physical"; others seems to be "unphysical." The
mass of our object on one of the "physical" sheets is set by (3.5), i.e. consists of the
real part - the ordinary mass, and the imaginary part - the magnetic mass
responsible for the non-vanishing NUT-parameter. The infinite redshift surface
seems to have in the general case a form of the "sack" (Fig. 8a) stretching the
"branch ring" ρ = |Im£|, z = Re£ on all sheets and crossing the symmetry axis at
point ρ = 0, z = D; we proved rigorously that if α = 0 and D = ReE then it has a form
of the disc. It divides the "physical" and "unphysical" sheets. The passage through
the "branch ring" leads after the crossing of the infinite redshift surface from the
"physical" to the "unphysical" sheet and vice versa.

For the NUT-parameter to be equal to zero the divisor D has to satisfy
condition (3.6); then one obtains a three-parametric solution which is asymptoti-
cally flat in a strong sense. The mass and angular momentum of this solution on
501J are given by (3.8) and (3.7). The factor china may be considered as a density
parameter of the massive rotating string-like object: the form of the infinite
redshift surface depends essentially on this factor (Fig. 8). In the simplest case
α = 0 it has the form of a disc (Fig. 8a); in the case α Φ 0 the probable form of this
surface is a "sack" (Fig. 8b). Three parameters of our solution with a real posi-
tive mass play the role of the site on the axis, the radius and the density of the
"string;" the angular rate is determined only by the radius of the "string" - for the
equilibrium between the gravitational attraction and the centrifugal force.

Of course, the algebraic geometric solutions of gravity equations require
further investigation. It is necessary to better understand the physical status of
vacuum genus one solutions which were considered in this paper in both -
"horizontal" and "vertical" situations. It would be interesting also to analyze the
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properties of genus one solutions of the Einstein-Maxwell system [1,2] and to
consider the effects of the interaction of few genus one objects.

It is a well-known fact that the manifolds of well-known algebraic geometric
solutions of KdV, NSch and others are dense in the manifolds of all almost
periodic solutions of these equations. So we can suppose that the class of algebraic
geometric solutions of Einstein's equation is dense in the class of all stationary
axisymmetric asymptotically flat solutions. Then it is quite probable that the
simplest genus one solution considered in this paper has some important physical
sense.
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