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Abstract. We consider the metastable behavior in the so-called pathwise approach
of a ferromagnetic spin system with a Glauber dynamics in a finite two dimensional
torus under a positive magnetic field in the limit as the temperature goes to zero.
First we consider the evolution starting from a single rectangular droplet of spins
+11in a sea of spins — 1. We show that small droplets are likely to disappear while
large droplets are likely to grow; the threshold between the two cases being sharply
defined and depending only on the external field. This result is used to prove that
starting from the configuration with all spins down (— 1) the pattern of evolution
leading to the more stable configuration with all spins up (4 1) approaches, as the
temperature vanishes, a metastable behavior: the system stays close to —1 for an
unpredictable time until a critical square droplet of a precise size is eventually
formed and nucleates the decay to +1 in a relatively short time. The asymptotic
magnitude of the total decay time is shown to be related to the height of an energy
barrier, as expected from heuristic and mean field studies of metastability.

1. Introduction

The problem of metastability has continued to attract a great deal of attention
during recent years (see for instance the update [PL]). Here we consider the two
dimensional nearest neighbor ferromagnetic Ising Model, with an external magnetic
field, evolving according to a Glauber dynamics (i.e., a reversible spin flip dynamics).
In the limit as the temperature goes to zero, for fixed finite volume, we show that
this model presents the essential features that one associates with metastability.
The main result is roughly as follows. If the external field is small and positive,
the system, when started from the configuration with all spins down, behaves as
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if it where in a steady state for a very long time until a critical droplet of a very
precise shape and size is formed and nucleates, in a relatively short time, the
evolution to the configuration with all spins up. The system then stays close to
this configuration for a much longer time. The size of the critical droplet and the
typical asymptotic value for the time of the decay agree with the predictions made
on heuristic grounds (one can see the phenomenon as an escape from a potential
well). The decay time is sharply defined in the proper scale for each realization of
the process since the time needed for the final passage from all spins down to all
spins up is much shorter than the decay time. But since this decay is nucleated by
the unlikely appearance of a critical droplet, the rescaled decay time varies from
realization to realization of the process and has in fact a distribution which becomes
exponential in the limit as the temperature vanishes, characterizing its unpredict-
ability. The apparent stability around the configuration with all spins down is
evinced by the fact that in the scale of the decay time the process converges in
distribution to a very simple pure jump process which stays in the configuration
with all spins down and then suddenly jumps to the one with all spins up where
it remains forever.

The characterization of metastable behavior in the fashion above was in-
troduced in the paper [CGOV] to which we refer the reader for more through
discussion on the motivation of this picture as capturing the basic aspects of
metastability. This so-called “pathwise approach” was further developed and
applied in several situations in the papers: [KN], [Sch], [NCK], [GOV], [COP],
[MOS], [EGJL] and [Bra].

No one has succeeded so far in establishing some sort of metastability in this
pathwise sense for Glauber dynamics at fixed finite low temperature in the
thermodynamic limit. In fact for doing it one would certainly have to let the
external magnetic field go to zero as the volume grows, since otherwise nucleation
would occur throughout the system, which would behave in a very deterministic
and smooth way. A first step in this direction would be the analysis of this system
with no external magnetic field. One may then expect, for instance, the average
value of the spin (the empirical magnetization) to converge (in the proper sense)
as the volume grows and after rescaling the time to a symmetric Markovian pure
jump process with only two states, —m* and + m* = the spontaneous magnetiza-
tion.

Here we study a Glauber dynamics in a different regime. We investigate the
behavior of the system in finite volume and at very low temperature, so that the
correlation length is much larger than the system. Clearly our results still hold if
we let the volume grow slowly enough as the temperature decreases to zero. But
since we did not try to estimate how fast the volume can grow, we postpone this
question to a future investigation. From the physical point of view, the important
point is to establish for realistic volumes (of the order of Avogadro’s number) how
low the temperature must be for our asymptotic results to be good approximations
of the actual behavior of the system.

2. Results

We consider the two dimensional nearest neighbor ferromagnetic Ising Model on
a finite torus (periodic boundary conditions): Ay = {1,2,..., N}*. The Hamiltonian
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is written as

Hy(0)= —2 ¥ o(x)o(s) — 23 o(x)
2 6y 2%
where o(x)e{—1, + 1}, the first sum runs over the pairs of nearest neighbors sites
of Ay, counting each pair only once, and the second is taken over Ay. We will
always consider h > 0.
At inverse temperature f = 0 the Gibbs measure uy is given by

un(0) = (Zy)™ " exp(— BHy(0)),
Zy =) exp(—BHy(0)).

For N and h>0 both fixed and ff— o0, uy concentrates its mass on the
configuration with all spins up, which we will denote by +1. We will also write
—1 for the configuration with all spins down.

By a Glauber dynamics we mean a spin flip dynamics which is reversible with
respect to the Gibbs measure (This is called a stochastic Ising model in [Lig].). We
will only consider the Glauber dynamics where the spin at site x, when the
configuration is ne{—1, +1}4~, flips at rate

(1 it AH@m) <0
e = exp(—B(A.H(n))) otherwise

where A, H(n) = H(n*) — H(n), with
wn_n» i x#y
! (y)—{—n(y) it x=y

For each initial configuration # these rates define a continuous time Markov
process (o7, t = 0), such that, at t =0, o7 =# with probability one and, for £ #{
and ¢ >0,

M

cx,0)e+o(e) if £=(* for some xeAy
o(e) otherwise |

P(O'i'+a=€|05’=(§)={

One can construct this process by choosing at rate N? a random site in Ay and
then flipping the spin o(x) with probability c(x,o), where o is the current
configuration. The imbedded Markov chain obtained is precisely the Metropolis
algorithm for simulating the Gibbs measure.

Now we define, for each ne{—1, + 1}~ and 4 = {—1, + 1}, the hitting time

T"(A)=inf{t = 0:07e A}.

If A={&} we write simply T"(&). If # is omitted it is —1 and if A4 is omitted
itis {+1}.

Our main goal is to describe the behavior of the system when it starts from
—1 until it reaches +1 for N and & both fixed and f going to infinity. As we will
see the answer depends on the values of 4 and N.

If h> 4 any spin —1 will flip at rate 1 even if its four neighbors are also —1.
On the other hand any spin +1 will flip with a vanishing rate as §— co. Let
(67, t = 0) be the process starting from # in which each spin — 1 flips independently of
the others with rate 1 and each spin + 1 does not flip at all. It is easy to prove that:
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Proposition 1. If h > 4 then for any ne{—1, +1}4~, (o7,t = 0) converges as p— oo
to (67, t 20) in the sense that we can construct these two processes on the same
probability space in such a way that, for any t, < oo,

}i_{n P(a} # &7, for some te[0,t,]) =0.

In particular T converges in distribution to the maximum of N? independent
N2

unit mean exponential random variables and hm ET=Y o So there is no
metastability in the case h > 4. k=1

When h < 4 the first spin flip starting from the configuration — 1 increases the
energy by 4-h so that the total rate is N2 exp(—p(4 — h)) and as a consequence
T diverges to infinity as f§ increases.

If 2<h<4 and N = 3 after reaching the state with only one spin +1 three
things can happen. With rate 1 the system goes back to — 1, with rate 4 it goes to a
configuration with two neighbors + 1 spins and with rate (N2 — 5) exp (— (4 — h))
it goes to other configuration with two +1 spins. As the third possibility has
vanishing rate (as § — oo) only the first two are important. If the system goes back
to — 1 everything starts anew but if it gets to a configuration with two neighbors +1
spins then both of them are flipping back with vanishing rates (exp(—f(—2 + h)))
while its neighbors are flipping from — 1 to + 1 with rates 1. So the pair of neighbors
spin + 1 forms our first example of a critical droplet that nucleates the passage
from —1 to +1.

This behavior illustrates the general picture of the passage from —1 to +1 for
small magnetic field h. The process spends most of the time in — 1, making many
quick trips into other configurations and going back, until it reaches a critical
configuration from where it goes to +1 in a short time (we are using the scale
given by ET to decide if a time is short or long).

When 0 < h < 2 a droplet with only two neighbors + 1 surrounded by — 1 spins
is no longer critical as it tends to shrink and disappear. We will find nevertheless
that the concept of critical droplets is well defined and that small droplets tend to
shrink while big ones tend to grow. The separation between the two behaviors is
sharp and the critical droplet turns out to be a square of size close to 2/h.

Theorem 1 below characterizes the critical droplet as it describes what happens
when the starting configuration is a rectangular droplet of spins +1 depending
on “how big it is.”

Let # be the set of configurations with all spins —1 except for those in a
rectangle I/; x I, which are +1, with I, and [, less than N —1. For ne#
define | = I(n) = min(l,, l,). Before stating Theorem 1 we need two definitions.

Given ¢ > 0 and starting from a configuration ne# we say that the event S,(r),
called “the droplet shrinks e-regularly,” happens if “T"(—1) < T", from time 0 up
to time T"(— 1) all spins which where —1 at time 0 are still —1 and all spins +1
form a single cluster; also exp(B(h(l—1)—¢))< T"(—1)<exp (B(h(I—1)+¢)).” The
notion of cluster is the usual one from percolation [Kes]: the clusters of spin + 1
are the maximal sets of sites which can be connected by chains of neighboring
sites of spins +1.

Given ¢ > 0 and starting from a configuration ne# we say that the event G,(1),
called “the droplet grows e-regularly,” happens if “T” < T"(— 1), from time 0 up
to time T" the number of spins +1 is at least [;/, — I+ 1 and they form a single
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cluster such that the minimal rectangle that contains all of them also contains the
original one defined by #; also exp(B2—h—¢)) < T"<exp(f(2—h +¢)).”

Theorem 1. Suppose that 0 < h <2 and ne&.
a) If l(n) <2/h and ¢ >0 then
lim P(S,m)=1.

b) If l(n) > 2/h and ¢ >0 then
lim P(G,(n)) = 1.

The value 2/h for the threshold corresponds to what one expects heuristically
when one computes the energy of a configuration ne# in which the +1 spins
form a square of side I:

H(n)— H(—1)=4l—Ph=:e(h,l), 2

as for fixed h its maximum is attained at | =2/h. We define L =[2/h] = smallest
integer larger than 2/h. If 2/h is not an integer, then L is the size of the critical
droplet. The case when 2/h is an integer is somewhat particular as, in this case, a
ne with I(n) = 2/h can either grow or shrink with non-vanishing probabilities as
B increases. This does not cause any real difficulty but to facilitate the exposition
we will not consider this case.

If N is smaller or barely larger than L, the passage from —1 to +1 could be
nucleated by the appearance of a ring of spins + 1 around the torus Ay and not
by the appearance of a critical square droplet L x L. To concentrate on the more
interesting case, we will suppose from now on that N is large enough. We did not
try to verify how small N can be for the nucleation still to occur by the appearance
of the critical square droplet, instead we consider the following technical condition:

Standard Case: 0 < h <2, 2/h is not an integer and N > N(h):= L? + 1.
The next theorem characterizes the metastable behavior of (6,1, t=0) in a
pathwise sense.

Theorem 2. In the standard case
a)

T
———1 in distribution as f — oo,
ET 5

where T is a unit mean exponential random variable.

b) The rescaled process (6.3, s = 0) converges as f— oo to a Markovian pure
jump process (&, s>0) which stays in —1 for a unit mean exponential time and
then jumps to + 1, where it stays forever. This convergence is in the sense of finite
dimensional distributions, i.e., for every integer k=0 and 0<t, <t, < -- <t the
distribution of (0, g7, i=1,...,k) converges to that of i i=1,...,k)

Even if N is big enough it is possible, in principle, that the critical droplet is
never seen in the passage from —1 to + 1. This would happen, for instance, if the
process escapes from — 1 by the formation of two subcritical droplets that coalesce
into a supercritical one. The next theorem shows that this is not likely in the
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standard case and that in fact the decay from the metastable state is, with probability
going to one as f increases, through the appearance of a critical droplet. The next
theorem also gives a sharp estimate on the magnitude of T. Before stating it we
need some definitions.

Let ¢ be the set of configurations in # in which the +1 spins form a square
droplet of size L. Let 2 be the set of configurations with all spins —1 except for
a single cluster of spins + 1 formed by a rectangle L x (L — 1) together with a spin
+1 attached to one of its larger sides. The droplets in configurations of £ can be
considered as proto-critical droplets since they can either grow to a critical one
or shrink to a rectangle L x (L— 1), that is subcritical, both with non-vanishing
probabilities as f— oo and this decision takes place in times of order one.

For each ne# we have

H()— H(=1)=4L — (I? — L+ )h = e(h, L) + (L + 1)h =:T'(h).

Remark. Direct computations show that I'(h) is a continuous and strictly decreas-
ing function of 0 <h <2. As h—0, I'(h) ~ 4/h.

Theorem 3. In the standard case
1
a) ﬂlim Elog T = I'(h) in probability,

lﬂym%kgET=FwL
0 Jim P(T(#)<T)=1,
d) lim P(T(#)<T)=1.

This theorem can also be extended to the case 2 < h <4 and N large if one defines
% as the set of configurations with all spins down, except for two neighbor sites,
where the spins are up, and 2 as the set of configurations with a single spin up.
Then I'(h)=4— h.

After proving Theorem 1 in the next section, we will see that it has as a
consequence the possibility of dividing the set of all configurations into three
non-empty sets &/, # and € such that o/ and ¥ are, respectively, the basins of
attraction of —1 and + 1, while starting from % the system can go to <, or ¥,
both with non-vanishing probabilities as f§ increases. More precisely we have.

Proposition 2. In the standard case the set of configurations can be partitioned-into
three non-empty sets </, and € such that

a) If nes then
Jim P(T"(—-1)<T", T"(=1) <exp(B2—h))=1.

b) If n€¥ and ¢ >0 then
ﬂlip P(T"<T"(—1), T"<exp(f2—h+¢)))=1.

c) If ne# then
li;r_{ inf P(T"(—1)< T") >0,

lim inf P(T" < T"(— 1)) >0,
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and for every ¢ >0
Blij?o P(T"({—1,+1}) <exp(B2—h+e)))=1.

Precise definitions will be given in Sect. 3, but roughly speaking, these sets are
clearly as follows: configurations in &/ contain only small droplets of spins up,
configurations in ¢ contain at least one large droplet and in 4 we have droplets
of such shapes and sizes that they may either grow or shrink (for instance, the
configurations in 2).

One can easily verify that I'(h) > 2 — h, when 0 < h < 2. Hence we have that,
in the standard case, whatever the starting configuration, the system quickly relaxes
to —1 or +1 in the scale of time given by ET.

3. Characterization of the Critical Droplet

In this section we prove Theorem 1, describe the sets ./, # and # that partition
the set of configurations and prove Proposition 2.

First we identify the mechanism that is responsible for the existence of critical
droplets. It seems to us that even at the heuristic level this mechanism has escaped
people’s attention.

In order to avoid particularities suppose h<1 and that the process starts at a
configuration ne4 such that I(y) > 3. In # all the spins are flipping at vanishing
rates as f§ increases and the largest of them, exp(— fSh), are those of the spins at
the four corners of the rectangle of +1 spins. So, very likely, the first change
corresponds to a flip of one of these spins. But then the new —1 spin flips back
at rate one and the rectangle is recovered with great probability. It could happen,
however, with probability of order exp(— fh) that a second corner disappears
before the replacement of the first one. Extending this reasoning one sees then that
disregarding flips of spins + 1 which are surrounded by more than two spins + 1,
the number of spins — 1 in the region occupied originally by the spins + 1 behaves
in a way which resembles a birth and death process, births occurring with rate of
order exp (— fh) and deaths with rate of order 1. Until a time of the order exp (— hk)
the droplet will have up to k spins, but not more, missing at some moments. Hence
if only this “corner erosion mechanism” were at work, one would have the
disappearance of a whole line on the droplet border in a time of order exp (Bh(l — 1)),
since the last + 1 spin in a line at the border has positive probability of flipping
in time of order one. Opposing to this tendency there are —1 spins adjacent to
the original rectangle and neighbor to the droplet flipping at rate exp (8(—2+ h)).
The result of the competition between these two tendencies decides what happens
to this droplet. The comparison between exp (Sh(l — 1)) and exp (8(2 — h)) originates
the threshold I=2/h.

If 1 <2/h the erosion dominates and before the appearance of a +1 outside
the original rectangle one has the disappearance of a whole line in such a way
that a smaller configuration in £ is reached. Since now the erosion is easier this
behavior repeats itself until —1 is reached.

If 1> 2/h then before a time much smaller than exp (Sh(I— 1)) all the sides of
the original rectangle have at least one + 1 spin since there is not enough time to
complete the erosion. But in a time of order exp(B(2—h)), much smaller than
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exp (B(h(I—1))) for B large, one of the — 1 spins adjacent to a + 1 spin at the border
of the droplet will flip, originating a protuberance. One has now at least one —1
spin neighbor both to the protuberance and to the droplet flipping at rate 1. So
before time exp (f(2—h+¢)) for £>0 one has a protuberance with two +1 spins
together and, with great probability, an extra slice will be completed reaching a
bigger rectangular configuration. As the tendency to grow is larger for bigger
droplets, the same arguments holds again until +1 is reached.

Before going into the proof based on this heuristics we observe that if 0<h<1
even when [>2/h it is clear that the derivative at time O of the expected number
of +1 spins is negative for large f as the corner erosion mechanism dominates
for short times. In [HMM] a non-rigorous study of critical droplets for a different
Glauber dynamics (for the same Hamiltonian) was carried on, with the analysis
being based on the sign of the derivative at time zero of the number of spins in
the droplet. Our analysis here can be adapted to the dynamics considered in that
paper, yielding again the conclusion that this derivative at time zero is in fact not
a good indicator for the behavior of the droplet for long times.

In the proof of Theorem 1 we will need the following result:

Lemma 1. Let {X,},5, be a birth and death process on {0,1,...} with birth rate
0 <1 and death rate 1. If X, =0, define

O, =inf{t 2 0: X, =k}.
Then, for every k=1 and ¢ >0, we have

lim PG+ < @, <677 =1.

Proof. The unique invariant measure of this processis p(n)=(1—0)",n=0,1,2,....
Let {X?},5, be the same process with initial position chosen with distribution p.
We couple the processes starting from different states in such a way that both
evolve independently until they meet and then evolve together. Then
P(©; <077 < P(X3 # X8)
+ P(X? 2 k for some te{0,6%%,25%2,...,[6~*+5/2716%2})
+ P(X? <k for every te{0,6%2,26%2,...,[67**52162}, @; < 67k +¢)
< @)+ (@572 + (1 — ")

that goes to zero as 6 —0. (For estimating the second probability we used
stationarity and for the third one the fact that ®; is a stopping time and the rates
of jump of our birth and death process are bounded above by 1.)

Observe now that
P(@;<1)2e '(1—e M),

since this is a lower bound for the probability that from time 0 to 1 (X?) makes
k jumps up and no jump down. Since it is easier to reach {k,k+1,k+2,...} if the
starting position is not O (for a proof one can use a coupling as above), it follows that

P(@; 25 %5 <(1—e 1(1—e dk)eppk—e
which goes to zero as 6 -0. []

We now proceed to the proof of Theorem 1.
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Define two auxiliary processes (67,t =0) and (67, ¢t = 0) with P(6}=n)=P(¢§=n)=1
for ne{—1, + 1} 4" and respective rates é(x,n) and &(x, ), given by

0 if n(x) = n(y) for at least three
é(x,n) = sites y which are neighbors of x, (3)
c(x,n) otherwise.
and
0 if n(x) =n(y) =1 for at least three
&x,n) = sites y which are neighbors of x, “4)

c(x,n) otherwise.

For ne,(67) is the “ corner mechanism.” In this dynamics, the droplet can
never grow, since protuberances cannot appear and it can only lose spins at the
corners, which can also be recovered. But once a complete slice is lost, it is lost
forever.

In (67) the droplet shrinks only by the “corner mechanism,” but it can grow,
since protuberances may appear.

In this and the coming sections we will make repeated use of monotonicity
properties of (a7),(87) and (67), related to attractiveness (see Sect. 2 of Chap. III
of [Lig]). For this purpose we introduce the following partial order on { — 1, + 1} 4~:

n=( iff n(x)=<{(x) forevery xeAy.

The following is true then by Theorem 1.5 of Chap. III of [Lig]. If n < {, then we
can construct a coupling between the processes (67) and (a%) such that

P! <qtforall t20)=1.

Analogous statements hold for (6,) and (d,).

We now couple (o7),(67) and (67) with the so-called Basic or Vasershtein
coupling (see Sect. 1 of Chap. III of [Lig] for a precise definition; informally
speaking, this coupling makes the processes agree as much as possible). As another
consequences of Theorem 1.5, Chap. III of [Lig] we have that for all £ and { such
that £ <¢

P(6§ < & for all t > 0) = 1. ©)

Also these two new processes approximate the original one in the sense that for
all ne# and 6 >0

ﬂlim P(o" = 67 for all te[0,ef? """ 9]) =1, (6)
I}im P(c? = 67 for all te[0,ef? "~ 9])=1 7

as follows from the fact that the time until the first difference between (67)
(respectively (¢7)) and (o) appears is dominated by an exponential time with mean
N~ 2eP2h (respectively N ~2ef2*h),

Forne{—1, + 1}~ define T, 1 as the configuration obtained from 7 by flipping
all the spins —1 with at least two opposite neighbors. Define also T_# as the
configuration obtained from # by flipping all the spins +1 with at least three
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opposite neighbors. Applying iteratively T, (respectively T_) on n we obtain an
increasing (respectively decreasing) sequence of configurations that becomes
constant after a finite number of applications. Denote by 7 (respectively #) this
final configuration. -

If 0 <h £2, each one of the flips defining T, and T_ does not increase the
energy and therefore occurs with rate 1 for our Glauber dynamics and also for
the two new dynamics. So one has:

Lemma 2. If 0<h<2
inf inf  P(A)=:a, >0,

B=Z0 ne{—1,+1}A~

inf inf  P(B)=:a_ >0,

=0 ne{—1,+1}An~
where A and B are the following events:

A:={6"=Z 0! and 67 < 67 for every 0<s<t< 1,07 =61
B:={0?2= 07 and 672 67 for every 0<s<t<1;07 =67

7},
n}

If ne# we can suppose without loss of generality that we have I, and [,
with I(n)=1; <1, such that all the spins in n are —1 except those inside the
rectangle R={1,...1;} x {1,...1,}. We also define the slices of % to be the sets

={1,...1;} x {]} and V; —{} {1,...1,} with je{l,...1,} and ie{l,...1;}.

For the proof of part (a) of the theorem take ne and define &7 as the first
time that the process X,:=|{xeH,:67 = — 1}| reaches {I— 1}, where l— I(n).

Lemma 3. For ne# and 6 >0,
}im P(O7 < exp(B(h(I—1)+))) =

Proof. Before @1, the process X, increases by 1 with rate greater than e #" and
decreases by 1 with rate smaller than N2. So a comparison between X, and a birth
and death process with these rates together with Lemma 1 yields the result. []

Suppose now that I < 2/h and consider the times
t;=iexp[ph(—1)+¢/2)], i=1,2,...

with &£ >0 such that h(l—1)+e<2—h—e. Define £2, as the event that, for (7)
starting at configuration 7, i) @7 < t,/2 and ii) after @7 up to t, the last remaining
spin + 1 in H, flips before the flipping of any spin —1.

For part (i) in the definition of 2, we use Lemma 3 and for (ii) we use
Lemma 2 to conclude that there exists ff, < co such that for > f,,

P(@2)=a_/2.

Using the Markov property and monotonicity we have that for large f the

probability that the droplet will lose a slice in the process (67) before time
exp(B(2—h—¢)) > exp (B(h(l—1)+¢)) is greater than

1= (1= /)0

that goes to one as f increases.
Using (6) and repeating the arguments above each time the droplet loses a slice,
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we see that
‘}Lm P(T"(—-1)<T", T(—1)<exp(B2—h—¢))=1

One can now easily complete the proof of part (a) of the theorem, using (6) again
and estimates similar to those above for the process (67). We leave this straight-
forward work to the reader.

For part (b) consider ne# with | = I(7) and define the hitting times @" and @
of {I—1} for the processes Y,:= |{xeR:6}(x) = — 1}| and Z,:= |{xeR:6}(x) = — 1}|,
respectively.

Lemma 4. For ne# and 6 >0,
}im P(®" > exp (B(h(I—1)—0))) = 1.

Proof. By (5) we have that Y, < Z, and then
P(@" > exp (B(h(I—1)—5))) = P(0} > exp (B(h(I—1)—§))).

Now, before @1, Z, increases by 1 with rate smaller than N2e #" and decreases
by 1 with rate greater than 1. Comparing Z, with a birth and death process with
these rates and using Lemma 1, the result follows. []

Suppose now that [>2/h and choose ¢ small enough so that
2—h+e<min {h(l—1)—¢,2+h—¢}. 8)

Let 2, be the event that @" > ¢#2~4*9 and before time e#~"*2 the process (67)
reaches a configuration in £ in which the sides of the droplet of spins +1 are
l; +aand I, + b, with a,b >0, a+ b= 1. Now on the event {O" > eP2~h*a} there
is, from time O up to time e/ ~#*2 at least one spin — 1 outside R which touches
the droplet and is flipping in the process (67) with rate e/(2*". By considering
the times

u;=iexp(f2—h+¢/2))

as in the proof of part (a) and using Lemma 2 we obtain
Jim P(O" > exp(B2—h+4)),(2,)) < Jim (1—(1 o, [Py =0, (9)

From Lemma 4, (9) and (8), we get
I}im P((2,))=0.

The proof of part (b) of the theorem is now easily completed using (7), (8) and
the strong Markov property to restart each time a larger rectangular droplet is
reached. Details are left again to the reader.

Now we describe the sets .o/, %4 and € and sketch the proof of Proposition 2.

By Lemma 2, if 0<h<2, in a time of order 1 the system started from
ne{—1, + 1}~ can go with non-vanishing probability, as high as 7, but not higher.
So 7 must be the set of configurations # such that starting from 7 we are still
likely to go to —1 before +1. But for any #,7 is a configuration with the spins
+ 1 forming rectangles, some of which may be degenerated into rings around the
torus Ay. Also in 77, no spin — 1 is neighbor of two of these rectangles. So we define



220 E. J. Neves and R. H. Schonmann

&/ as the set of configurations n such that the droplets of +1 spins in #7 are
rectangles with longest sides not greater than N —2 and shortest sides smaller than
2/h; in case 0<h<1 some of these droplets may also be rings of width 1 around
the torus. Part (a) of Proposition 2 follows then easily from Theorem 1 and the
techniques used to prove it.

In order to define ¥ we need a new definition. Set ' = £, where ¢ =#. Again
by Lemma 2, if 0<h<2, the system starting at # can go with non-vanishing
probability in a time of order 1 as low as 7, but not lower. But even if # is reached
the system is likely to go to #’ in a time of order 1. So part (c) of Proposition 2
follows if we define € as the set of configurations # such that at least one of the
droplets of +1 spins in #’ i§ a rectangle with all sides larger than 2/h or a ring of
width larger than 1 around the torus or, in case 1 < h< 2, any ring around the torus.

Finally, 4 is the set of configurations not in ./ nor in € (for instance, those
in ). Starting from ne there is non-vanishing probability of reaching either 7
or ' in time of order 1. Since # is not in &/, 7 contains a droplet of + 1 spins that
is likely to grow. And since 7 is not in %, contains only small droplets which
very likely disappear. So we can reach either —1 or +1 with non-vanishing
probability, in the times given in the statement of the proposition.

4. Metastable Behavior Around —1

In this section we prove Theorem 2.
Set 2 = LU and define

S=T-T(%).
We will prove that
T(®
7(—)—>r in distribution, (10)
8
where 7 is a unit mean exponential random variable and y, is defined by
P(T(®)>yg)=e"". (1)
Then we will prove
S
y——»O in probability as f— oo (12)
B
from what follows that
I—»r in distribution as ff— co. (13)

Vs

After doing this we need only to replace y; by ET, which will be done using a
standard argument.

To prove (10) we introduce a Glauber dynamics restricted to the set 9. Since
we will need in the next section to restrict the Glauber dynamics to other sets we
present the idea in a general fashion.

We say that a set & of configurations has the property of being connected if
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for any pair of configurations #n,,7,€% it is possible to go from #, to 7, by a
chain of transformations in which a single spin is flipped at each step without
leaving &. Observe that 9 is a connected set. The Glauber dynamics restricted to
& is defined by the rates

feben) if nres
Cylx,n) = {0 otherwise.

Starting from ne.& the corresponding process (67, ¢ = 0) remains in & forever.
It can be coupled with (a7, ¢ = 0) in a very intuitive and useful way: the two processes
jump together until the latter escapes from &; at this moment the former process
stays still and afterward they evolve independently. We will use this coupling
several times in this section and in the next one so we give it the name of Coupling
A. The following result is very easy to prove but crucial (see Proposition 5.10 of
Chap. II in [Lig] for a discrete time version).

Lemma S. If & is a connected set of configurations, then (G,,t = 0) is reversible with
respect to its unique invariant probability measure, [i the Gibbs measured restricted
to &, defined by

un) .
if nes
i ={ 2O
0 otherwise.

In our case, with & = 2, we have also

Lemma 6. In the standard case

2) for every ne@\{—1}, H(n) > H(— 1),

b) As B— o0, i becomes concentrated on —1, where i is the Gibbs measure
restricted to 9.

Proof. Part (b) clearly follows from part (a). To prove part (a) suppose first that
n =1’ (definition at the end of Sect. 3). Then all the clusters of spin +1 in # are
rectangles which have at least one side smaller than 2/h or rings of width 1 around
the torus and since 7 # — 1 there is at least one such cluster. Now H(n) — H(—1)
is the sum of the contribution of each cluster of spins + 1, where for a rectangle
I, x I, the contribution is 2(I, +1,) — I, l,h = f(l;,1,). But if we suppose, without
loss of generality, that [, <2/h, then f(l,,1,) = 2, > 0. The energy corresponding
to a ring of width 1 is N(2—h) > 0. So the proof is finished if # =#’. On the other
hand, if ###’, then H(y)> H(y'), because the transformations n—{=n and
{ -’ = {strictly decrease the energy when they are not the identity and 0<h<2.
But then H(p)— H(—1)> H(y')— H(—1) = 0, where the last inequality follows
from the arguments given above, with the difference that now we may have
=1 04

We prove now (10) by showing the corresponding asymptotic loss of memory
(a technique used in several of the former papers on the pathwise approach to
metastability; see for instance [CGOV]). This consists in verifying that

lim 45(5,) =0, (14)
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where Ay(s,t) = |P(T(6) > (s +t)yg) — P(T(6) > syg) P(T(6) > ty,)|.
To see how (14) implies (10) see, for instance [CGOV].
Using the Markov property we have:
P(T(®)> (s+t)yg) = Y. P(T(%)> sy, as'y} =n)P(T"() > typ).

neg

Hence by dividing this sum according to n = — 1 or ne2\{—1} we have

Ay(s,t) S P(T(6) > 75,04, # — 1) S PG, # — 1), (15)

where in the last inequality we used the Coupling A with & = 2. The right-hand
side of (15) can be controlled using monotonicity, but we avoid its use because we
will need a similar estimate in the next section where monotonicity is not available.

We now couple (67,t = 0) and (6, L,¢ = 0) in the following manner: the initial
configuration of the former one is chosen with respect to fi; they evolve
independently until they meet and after that they evolve together. This is a very
standard sort of coupling and here we call it Coupling B. So

PG, # — 1) S PG5t #60) + P@6h, # — 1) S 20(2\{—1}), (16)

sy
where the last inequality follows from the invariance of i (Lemma 5). Now (15), (16)
and Lemma 6, imply (14) and therefore (10). To prove (12) we observe that since
T is larger than the time needed for the first spin to flip on — 1, we have

Vs Z exp (B(4—h)).

(12) follows now using part (b) of Proposition 2, finishing the proof of (13).
To replace y; by ET, observe that, by monotonicity,

P(T > ygu) < (P(T > y))".

Using (13) it follows that P(T >y,) < 1 if f is large, so we can use dominated
convergence below:

[ P(T > t)dt " "
lim —=1im > =1lim [ P(Tly,>uwdu= | e “du=1. 17
pow g oy jim [ (Tl wdu=| (7

And the proof of part (c) of Theorem 2 is finished.

We turn now to the proof of part (b) of Theorem 2. At a certain point below
we will have to use part (b) of Theorem 3, which will be proved in the next section
using part (a) of Theorem 2, proved above, but there is no circularity in the
reasoning.

Given sets of configurations %, %,,..., define

1 if —le¥, i=1,...,m

Fnl s o0 ) = {0 otherwise

and
Gm(yl,'--,ym)=Fm(_yla'“a _ym)a
where — & ={—n:neS}. We set also Fo=G,=1.
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We have to prove that for every positive integer k and every 0<t, <--- <t, < 0,

ﬁlim P(o, jr€Lni=1,....k)

k
= Zo P(tm<T<tm+1)Fm(y1,~--;ym)Gk—m(ym+1s-'-9yk)9 (18)

where t, =0, t,,;, = 00 and 7 is a unit mean exponential random variable.
To prove (18) we write u; = t;ET and

Po;te,i=1,... k)= y P e, i=1,...,k|Ep,)P(En,), (19)
{0

=m<k,msnzk}

where E,, , = {ty S T(€) <thps 1,4y < T <thyy 1 }.

From part (a) of Theorem 2, (10) and (17) we have that as § - oo, T/ET -7 in
distribution and (T — T(%))/ET — 0 in probability. Hence
0 if n#m

P(t,<t<ty,,) if n=m (20)

lim P(Ep) ={
In particular in the limit, we can neglect in (19) all the terms with n#m.
But using Coupling A
P(o, 'e%,i=1,...,m|E,,)= PG, e, i=1,...,m|E,,).
Without conditioning we obtain, as in (16),

lim PG, eFpi=1,..m)=Fp(S,.... S 1)

And since the limit in (20) is positive in the case n =m and F,(¥,...,%,,) =0or 1:

fim Plo, ei=1,....m|Epp) = Fpl(F 1.0 ) (22)

To control what happens after T, we compare the Glauber dynamics with
different values of the external field. When the external field has a value which is
different from the one that appears in the statement of the theorem, we write it
explicitly. It is known (see for instance Theorem 1.5 of Chap. III of [Lig]) that we
can couple two Glauber dynamics with external fields A, < h, in such a way that

Ohi = Opys (23)
for every t 2 0.
We want to show that
’}ijn PloteSi=m+1,.. . k|E, ) =G (Fms1s---» F)- (24)

This will follow from the Markov property once we show that for every positive
integer jand 0 <s; <--- <s;< 00,

lim P(o)teS,i=1,...,))=G{(%1,..., %)), (25)

p— o
where v; = s;ET. Using symmetry
Pejlei=1,...,)) =P p,e—Fpi=1,...,)).
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Therefore (25) will follow using (23) if we prove that for some A’ > — h,
’}im Ployie—Fni=1,.., j))=F(—%,....,— F)=G{(L,....%). (26)

Set
T =inf{t20:0, ;= + 1}.
We can choose ' < h close enough to k so that [2/h'] =[2/h]. Then we can apply
part (b) of Theorem 3 to conclude that
log(ET/ET')
B

Hence, ET/ET' -0 as §— co. Using part (a) of Theorem 2 in the case in which
the field is 4’ we have then

plim Pv;<T)= ﬂlim P(s;<(T'/ET')(ET'/ET)) = 1.

=I'(h— ' (K)<O.

Now, from the same arguments which led to (21), we obtain (26), and hence (25)
and (24). Equation (18) follows from (19),(20),(22) and (24) finishing the proof of
Theorem 2. []

5. Escape from the Metastable Situation

We will prove in this section Theorem 3. Our first goal is to show that for every ¢ > 0,
ﬂlim P(T > exp (B(I"(h) + 3¢)))=0. 27)

The main estimate in this direction is

Lemma 7. Inthe standard case, for every ¢ > 0, there is B, < co such that for B > B,
P(T(%) < exp (B((L — 1)h + 2¢)) 2 3exp (— fe(h, L)),

where e(h,l) was defined in (2).

Proof. Let & be the set of configurations in which all spins + 1 are inside a square
L x L (but there may be also — 1 spins in this square). Set # = 2U& and consider
the Glauber dynamics restricted to the set & in the fashion described in the last
section. Since & is a connected set, Lemma 5 applies. As in the last section we
will use the notation (6,) and ji for the restricted process and corresponding Gibbs
measure without making & explicit. Later we will use other sets to restrict the
dynamics and will use again the same notation, but no confusion should arise.
Define

T(¢)=inf {t > 0:0, 1c%}.
Now using the coupling A, and writing V = exp (B((L — 1)h+ 2¢)), we have
P(T(®)> V)< P(T(®)> V). (28)

We couple now (g, 1) to (67) so that they evolve independently until they meet
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and from then on evolve together (Coupling B). Now
P(T(%)> V)< P(o; 1 # 6" for 0t S V) + P(6L¢%). (29)
Write W = exp (B((L — 1)k + ¢)). Then using the Markov property,

i Lexp (Be)]
P67t #6for0St<V)< (sup P@T#65for0<t< W)> , (30
ni{eF

where (67) and (6%) are independent processes. The next step will characterize
exp (B(L — 1)h) as the relaxation time for the process (,). In a time of this order
the process is likely to go to —1, where it stays for an exponential time of mean
exp (8(4 — h)), much greater (at low temperatures) than exp (B(L — 1)h) before a spin
—1 appears. (Since 0 < h <2, we have (L — 1)h <4 — h.) More precisely we claim
that

lim sup P(67# —1for0<t<W)=0. (31)

oo g
And then, from the remark above (if ¢ is small)

lim sup P(6}, # —1)=0

w0 yeg
so that
lim sup P(67#6% for 0t < W)=0. (32)

B=© ptes

The proof of the crucial relation (31) is similar to that of part (a) of
Theorem 1, done in Sect. 3, so we merely sketch it, leaving the details for the reader.
First observe that in the dynamics restricted to &, in any interval of time of
order 1 there is a positive probability (uniform in § and the initial configuration)
that the system will reach a configuration where all the clusters of spin +1 are
rectangles and no spin — 1 has two neighbors which are + 1. This configuration
must be in L UZ (¥ is the set of configurations with a single critical droplet). So
in time of order 1 the system is likely to reach such a configuration. If it is in <,
then part (a) of Proposition 2 completes the proof of (31) since (L— 1)h>2 —h. If
the system is in %, then no spin —1 outside the square L x L can flip in the
dynamics restricted to & until the system reaches 2. But the “corner erosion
mechanism” will then make the system hit & with large probability in a time
exp (B((L — 1)h+¢/2)) (as in Lemma 3). But each time the system reaches 2 it has
positive probability of reaching &/ in a time of order 1 (Lemma 2) and then —1
in a time exp (B(L — 1)h). This completes the sketch of the proof of (31) and hence
of (32).

Using now (28), (29), (30) and (32), we have for f§ larger than 8, < oo,

P(T(®)> V) = (12PN + (1 — i(¥)).
Hence
P(T(6) < V)2 (%) — (1/2)r L, (33)
For any ne# \{—1} we have
H(n)—-H(-1)>0
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because if ne2\{—1} this is Lemma 6 and if ne#\ 2 then /€% and therefore
H(n)—H(—1)= H(7)— H(—1) =e(h, L) > 0.

So, for B larger than some f, < oo,

iE=73 eXp(—ﬁH(G))/ ) eXp(—ﬁH(G))ééeXp(—ﬁe(h, L)). (34)

52 oeF

Lemma 7 follows from (33) and (34). [

To prove (27) now write

P(T > exp (B(I"(h) + 3¢)))
< P(T > exp(B(I'(h) + 3¢)), T(%) < exp (B(I"(h) + 3¢)) — exp (B((L — 1)h + 2¢)))
+ P(T(¥) > exp (B(I"(h) + 3¢)) — exp (B((L — 1)h + 2¢))). (35)

The first term in the right-hand side of (35) goes to zero by part (b) of Proposition 2
since h(L — 1) > 2 — h as we have L > 2/h. For the second term consider the times

t;=iexp(B(L—1Dh+2)), i=12,...
and use monotonicity to obtain

P(T(®) > exp (B () + 38)) — exp (B(L — Dh + 22)))
< [P(T(6) > exp (B((L— D + 22))) ] heethior =2

that also goes to zero, by Lemma 7.
We will prove now part (c) of Theorem 3. Define || = |{xeAy:n(x)=1}| and

H ={ne{—1, +1}4%:n| < L?},
So={ne{—1,+1}™:|n| =5},
I =9, (36)

and observe that ¥ = .# < #.
Lemma 8. In the standard case,

a) for every ne#\{—1}, H(n) > H(~1),
b) for every ne#\Y, Hn)— H(—1)=e(h,L) + 2.

Proof. If we transform a configuration # with more than one cluster of spins +1
into a configuration { with a single cluster by translating each cluster until it
touches another one (without deforming it), clearly H(x) = H({). So the energy must
be minimized over ., at configurations with a unique cluster of spins + 1. For
such a configuration ne#,, with 0 <s < L? this cluster can not “go around the
torus Ay,” since N > N(h)> L2 (This is the only place in the whole paper where
we use this hypothesis contained in the definition of the standard case.) Let now
M and N be the sides of the smallest rectangle that contains the cluster of spins
+ 1. Then a simple argument shows that the boundary of the cluster must have
length at least 2(M + N) and so

H(n) = — hs+2(M + N). (37)
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But MN >s and M, N >0 imply that M + N =2./s. So
H(n)Z —hs+4./s = e(h,\/5).
LZ

Part (a) of the lemma follows now from the fact that #\{—1} = U J, and, since

0<h<2, for0<\/§<L<4/hwehavee(hJ)>O =1

For part (b) of the lemma we proceed as above and observe that, since
MN 2 1%, M,Ne{1,2,...} and at least one between M and N is not L (because
we are not in %) we must have M+ N = 2L+ 1. The conclusion follows from

G¢n. O
The following lemma will be used several times. T'(n) below is the hitting time
of n starting from — 1 for the Glauber dynamics restricted to <.

Lemma 9. Let & be a connected set of configurations containing — 1. Suppose that
Jor every ne#\{—1},H(n) > H(—1). Then for every ne and every ¢ >0,

lim P(T(n) <exp(BH(n) — H(—1)—¢)))=0.

Proof. The argument is the same used to prove part of Lemma 1, and is borrowed
from [LS]. Couple (o, 1) to (6%) so that they evolve independently until they
meet, evolving together after this (Coupling B). Now

P(T(n) < exp (B(H(n) — H(—1) ~ ))) < P(65 * # 59)
+P(6} =1 for some te{f™",287",..., [Bexp(B(H(mM—H(~1)—¢)157'})
+ P(67 changes state between times T"(y) and T%(n) + 1)
S US\{—1}) + (Bexp (B(H(n) — H(—1) — &) + 1)ii(n)
+(1—exp(—B7'N?), (38)
which goes to 0 as f—>o00. [

Consider the Glauber dynamics (,) restricted to #. Since only one spin can
flip at a time in the Glauber dynamics, for every path we must have T(#)=T(#)< T,
where (G, 1) and (6, 1) are coupled in the usual fashion (Coupling A4). So

P(T(%)>T)=P(T(#)< T < T(%)<P(T(F\%) < T)
< P(T(S\%) <exp(B(I'(h) +¢)) + P(T > exp(B(I"(h) + &) (39)
for arbitrary ¢ > 0. But we can choose ¢ so that I'(h) + e=e(h, L)+ (L—1)h + ¢ <
e(h, L)+ 2 < H(n) for every ne#\¥%, by Lemma 8. Part (c) of Theorem 3 is now a
consequence of (39), (27) and Lemma 9.

Define now %4, as the set of configurations e/ which can be obtained by
taking a configuration in .« and flipping one of its spins — 1.

Lemma 10. In the standard case

a) Bo< B,
b) P(T(#)=T(%,))=1
c) P(T(B) < T(¥)) = P(T(B,) < T(¥))=1.

Proof. Take ne4,, {es/ and xe Ay such that {(y) = y(y) for y # x, &(x) = —1, and
n(x) = + 1. Since {e.o/ and ne.«/*, we must have (e« and 7je%. In particular { # 7.
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Therefore in { and in 5, x can have at most one neighboring spin that is + 1. But this
implies that n(x) = —1, and so n ={, implying that ne. Since 7€¥ and ne<,
we must have 7eZ and part (a) is proven. Parts (b) and (c) follow from part (a),
and the fact that only one spin flips at a time in the Glauber dynamics. []

Set now

P, ={neRBy:ne%},
&1 ={neBo\P;:|n| < L?},
&2 ={neBo\P,:Inl 2 L?}. (40)
Lemma 11. In the standard case,
}Ln; P(T(#,) > T(¥))=0.

Proof. From part (c) of Lemma 10,

P(T(2,) > T(¥)) < P(T(%,\P1) < T(%) = T(9)). (41)
Since only one spin flips at a time,
P(T(¥,) < T(9) = P(T(J\¥) < T(¥)). (42)

Observe that if the process is in 7€, and it goes to 7 flipping only spins from
—1 to +1, then it must hit .# before it hits %. Hence, from Lemma 2 and the
strong Markov property

P(T(F\9)) < T(9) 2 a4 P(T(S,) < T(¥)) (43)
using (41), (42), (43) and the last inequality in (39),

lim P(T(2,)> T(6)) < lim [(1 +%>P(T(J’\g) < T(.@))]

B

< lim [(1 + %)P(T(J\g) < T)} =0. (44)

Lemma 12. In the standard case

a) P={ne?P:In|2L*-L+1},
b) For every ne2,\?, H(n) — H(—1) > I'(h).

Proof. Clearly 2 is contained in the set in the right-hand side of (a). We will prove
now the complementary relation. If ne, there is e/ such that  and ¢& differ
only at one site, say x. Let R be the square where 7 has the spins + 1, that we
take, without loss of generality, to be given by {1,...,L}*>. We use now an idea
from percolation theory (see [Kes]), namely the duality between site percolation
and *-site percolation . The *-neighbors of a site xe Ay are the 8 sites y such that
max{|y; — x|,|y, — x,|} = 1. A chain (respectively *-chain) of sites from 4 = Ay
to B< Ay is a sequence Xq,X,,...,X, such that x, €A, x,eB and x; and x;_, are
neighbors (respectively *-neighbors), i=1,...,n— 1. Consider the four external
slices of R: Hy ={1,...,L} x {1}, H = {1,...,L} x {L}, Vi ={1} x {1,...,L} and
V,={L} x{1,...,L}. A vertical path (respectively *-path) in R is a chain
(respectively *-chain) from H, to H; contained in R. The definition of a horizontal
path is analogous with V, and V, replacing H, and H,. By duality, either there
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is a horizontal (respectively vertical) path where all the spins are +1 or there is a
vertical (respectively horizontal) *-path where all the spins are —1. It is easy to
see that in ¢ we can not have both a horizontal and a vertical *-path in R where
all the spins are + 1 since otherwise we would have £¢.o/. Hence we must have in
¢ a horizontal or a vertical path in R where all the spins are — 1. Since we are
assuming that || = L* — L + 1, we must have |¢|= L> — L and the only way for
this to happen is that the chain of spins —1 is a straight line. But since €</, this
straight line must be one of the external slices of R. Hence ¢ consists in one rectangle
L x (L—1) of spins +1 in a sea of spins —1 and ne2.
To prove part (b) we write H(y) = H,(n) + H,(n), where

1 h
Hi=—3 Y. n(x)n(y), Hi(n) = —52’7()6)-
(€3] x

It is clear that H,(7) < H,(n) for every configuration #. If ne2,\ 2, then 7je¥ and
from part (a) of the lemma

H(n) 2 H,(7) + Ha(n) 2 H() + hL
=H(—1)+eh, L)+ hLZH(—1)+ T(h)+h O

Considering now the Glauber dynamics restricted to & coupled to the Glauber
dynamics by coupling 4 and using Lemma 11 we have

lim P(T(2)>T)  lim P(T(#,) < T(€) < T < T(P))
< }Lm P(T(@\?)<T)< t}gm [P(T(2,\?) < exp(B(Ih)+¢)))
+ P(T > exp (B('(h) + €)1 = 0, 45)

where ¢ > 0 was chosen conveniently and we used (27), Lemma 9, part (a) of Lemma
6 and part (b) of Lemma 12. This completes the proof of part (d) of Theorem 3.
It is easy now to complete the proof of part (a). Using (45) and the same coupling
and arguments given there, for ¢ >0

lim P(T <exp (B((H) = 2))) < lim P(T(2) < T(®) < exp (B () = 2)))
< lim P(T(2) < exp(B(I"(h) —¢)) = 0. (46)

Part (a) of Theorem 3 follows from (27) and (46). Part (b) of Theorem 3 follows
easily from part (a) and part (a) of Theorem 2. This completes the proof of Theorem 1.

We end this section by observing that in fact our proof of Theorem 3 gives us
even more information about the way the system escapes from the metastable
situation around — 1. It follows that

Jim P(T(#%) = T(Z)) =1,

i.e., the system is likely to escape from . jumping to 2. But once in £ there are
probabilities of order 1 that in a time of order 1 the system either jumps back to
& (loosing the protuberance of the droplet) or jumps to € (if the protuberance is
enlarged and stabilized by the appearance of another spin + 1 neighbor to the
original one). The probability of anything else happening with the configuration
in & vanishes as f— oo. If the portuberance is lost and the system is back to <7,
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Then it is likely to return to — 1 before reentering /¢ and everything restarts anew.
On the other hand, if the system enters in %, then it is likely to go to + 1 before
leaving ¥ again. So we see that the system will probably visit £ a finite number
of times returning to —1 afterward except for the last time when it goes to +1
and in its way to + 1 it will very likely through 4.

Acknowledgements. Continuous and helpful discussions on metastability with the following people
are thankfully acknowledged: M. Aizenman, M. Cassandro, A. Galves, J. Lebowitz, J. F. Perez,
E. Presutti, E. Olivieri, M. E. Vares.

References

[Bra] Brassesco, S.: Tunelling for a non-linear heat equation with noise. Preprint (1989)
[CGOV] Cassandro, M., Galves, A., Olivieri, E., Vares, M. E.. Metastable behavior of stochastic
dynamics: A pathwise approach. J. Stat. Phys. 35, 603—634 (1984)
[COP] Cassandro, M. Olivieri, E., Picco, P.: Small random perturbations of infinite dimen-
sional dynamical systems and nucleation theory. Ann. Inst. Henri Poincaré (Phys.
Theor.) 44, 343-396 (1986)
[GOV] Galves, A., Olivieri, E., Vares, M. E.: Metastability for a class of dynamical systems
subject to small random perturbations. Ann. Probab. 15, 1288-1305 (1987)
[EGJL] Eston, V. R,, Galves, A,, Jacobi, C. M., Langevin, R.: Dominance switch between two
interacting species and metastability. Preprint (1988)
[HMM] Huiser, A. M. J,, Marchand, J.-P., Martin, Ph. A.: Droplet dynamics in two-dimensional
kinetic Ising model. Helv. Phys. Acta, 55, 259-277 (1982)

[Kes] Kesten, H.: Percolation Theory for Mathematicicians. Boston—Basel: Birkhauser 1982

[KN] Kipnis, C., Newman, C. M.: The metastable behavior of infrequently observed, weakly
random, one dimensional diffusion processes. SIAM J. Appl. Math. 45, 972-982 (1985)

[Lig] Liggett, T. M.: Interacting particle systems. Berlin, Heidelberg, New York: Springer
1985

[LS] Lebowitz, J. L. Schonmann, R. H.: On the asymptotics of occurrence times of rare
events for stochastic spin systems. J. Stat. Phys. 48, 727-751 (1987)

[NCK] Newman, C. M., Cohen, J. E., Kipnis, C.: Neo-darwinian evolution implies punctuated
equilibria. Nature 315, 400-401 (1985)

[MOS] Martinelli, F., Olivieri, E., Scoppola, E.: Small random perturbation of finite and infinite
dimensional systems: Unpredicted of exist times. Preprint (1988)

[PL] Penrose, O. Lebowitz, J. L.: Molecular theory of metastability: An update. Appendix
to the reprinted edition of the article “Towards a rigorous molecular theory of
metastability” by the same authors. In: Fluctuation Phenomena (second edition).
Montroll, E. W., Lebowitz, J. L. (eds.) Amsterdam: North-Holland Physics Publishing
1987

[Sch] Schonmann, R. H.: Metastability for the contact process. J. Stat. Phys. 41, 445-464
(1985)

Communicated by M. Aizenman





