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Abstract. We give an explicit description of all inequivalent Heisenberg subalgebras
of the affine Lie algebra g1,(C) and the associated vertex operator constructions
of the level one integrable highest weight representations of this algebra. The
construction uses multicomponent fermionic fields and yields a correspondence
between bosons (elements of the Heisenberg subalgebra) and fermions.

1. Introduction

In 1978 Lepowsky and Wilson [1] gave the first explicit realization of the basic
representation L(A,) of the simplest affine Lie algebra sl,. Their construction was
soon generalized to the case of arbitrary simply-laced affine Lie algebras and to
the case of twisted affine Lie aigebras (see [2]). In this so-called principal realization
of the basic representation an important role was played by a set of formal
generating operators, which resembled closely the vertex operators, known at that
time from the theories of dual models and strings in physics. Inspired by this
discovery, Frenkel and Kac [3], and independently Segal [4] gave a different
construction of the same module. The formal generating operators used in their
construction are precisely the vertex operators from physics.

So in the early 80’s there already existed more than one realization of a level
one highest weight representation of a simply-laced affine Lie algebra. At that time
these constructions seemed totally disconnected. The link between distinguished
constructions was first made in [5] and, from a somewhat different point of view
in [6]. It turned out that each realization depends on the choice of a so-called
Heisenberg subalgebra, i.c., a subalgebra of the affine algebra with basis {py, gy }xen
and the canonical central element ¢, whose elements satisfy the well known
Heisenberg commutation relations:

[P g;]1=dyjc. (1.1)
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One also encounters this algebra in a slightly different disguise, namely as a
collection of bosonic oscillators a(k), keZ with commutations relations:

[a(k), 2(j)] = kb, j,0C. (1.2)
The connection is made by leaving out the zero mode «(0) and defining for k > 0:
pii= k), g,:= 1/ko( —k).
It is easy to construct a representation of a Heisenberg algebra; take the
polynomial ring C[x,; keN] and represent the p,’s and g,’s by:

pkH@7 o x, c—l (1.3)
k

It is well known that any irreducible representation V in which c acts as the identity
and which contains a vacuum vector, i.., a vector which is annihilated by all p,’s,
is isomorphic to this module. Under certain mild restrictions on the Heisenberg
subalgebra (see, e.g., [7]) it is possible to show that the integrable highest weight
representations of an affine Lie algebra are completely reducible with respect to
the action of the Heisenberg subalgebra. Restricting ourselves to the basic
representation L(A,), we conclude that it can be written as a tensor product of an
irreducible module over the Heisenberg subalgebra and a so-called vacuum space
Q(A,), consisting of all vectors in L(Ay) which are killed by the p,’s;

L(Ag) = 2(A0)® Clx,],
QAo):= {veL(Ao) | pe(v) = 0 VK}. (1.4)

The choice of the Heisenberg subalgebra will be reflected in the structure of
the vacuum space 2(A,). This can be illustrated with the simple example of the
affine algebra s72. In this case there are essentially two inequivalent Heisenberg
subalgebras, namely the principal one used by Lepowsky and Wilson:

1

2k—1

and the homogeneous one used by Frenkel-Kac and Segal:

pu=e* Ve ek f g = (e7ik=Vbg 4 o~k0 f) Yk >0, (1.5

Pii=e*%h qk:=ie‘"“’h Vk >0, (1.6)
2k
where we have used the standard basis {e, f, h} of sl,(C). The difference between
the vacuum spaces for these two Heisenberg subalgebras is tremendous; one can
show by a character theoretical argument that in the principal case the vacuum
space contains only multiples of the highest weight vector v, , while in the
homogeneous case it has a basis {T* v, }icz, Wwhere T is some lift of the matrix

eiO 0 —~
<0 e_w)eSLz (1.7)

to the associated Kac-Moody group §i2. In particular, it is infinite dimensional!

The importance of the non-homogeneous realizations for physics was soon
realized. It turns out that the non-homogeneous Heisenberg subalgebras become
homogeneous if one works in a twisted realization of the affine algebra. Such a
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twisted realization is constructed by means of a finite order automorphism of the
underlying finite dimensional Lie algebra. These automorphisms can also be used
to construct so-called orbifold models in string theory (see, e.g., [8]).

Apart from their applications in string theory the different realizations of
representations also play an important role in the theory of integrable partial
differential equations (soliton equations). In such equations one often encounters
an infinite dimensional symmetry group, showing that the solutions of the equations
lie on (an) orbit(s) in some representation space of this group. Conversely, it is well
known (see [9]), that the orbit through the highest weight vector in a level one
highest weight representation of an affine Kac—-Moody group can be described by
a family of integrable partial differential equations. The point is that these describing
equations can look different in different realizations of this representation, whence
one can associate different integrable systems to the same object, namely the orbit
of a Kac-Moody group. This was illustrated in [7, 10] for the simple case of SLZ,
the principal realization yields the KdV-family of p.d.e.’s, the homogeneous one
the so-called Toda-AKNS system.

These applications provide a strong motivation to consider more general cases
than the principal and homogeneous Heisenberg subalgebras and more general
affine algebras than sl,. To do this, one first has to classify all inequivalent
Heisenberg subalgebras of an affine Lie algebra §. In this context inequivalent
means of course: nonconjugate under the adjoint action of the associated
Kac—Moody group. One can show (see [5, 11, 12]) that the inequivalent Heisenberg
subalgebras, which come from a compact form g, of § are parameterized by the
conjugacy classes in the Weyl group of the underlying finite dimensional Lie algebra
g. For the simply-laced Lie algebras the associated vertex operator constructions
were given in [5] and in a somewhat different manner in [6]. Kac and Wakimoto
[13] have used these constructions to calculate the hierarchies of p.d.e.’s describing
the group orbit through the highest weight vector in the principal and homogeneous
realizations. . R

In this paper we readdress the case sl,(C) or rather gl,(C). Because of the
particular simple structure of the Weyl group of sl,(C) it is easy to describe all
inequivalent Heisenberg subalgebras. The associated vertex operator constructions
can be given in a very simple and explicit manner by using the language of
multicomponent free fermions from two dimensional quantum field theory. In a
forthcoming paper we will generalize this description to the algebras D{. We hope
that these fermionic constructions can be used to calculate other hierarchies of
soliton equations then the ones found in [13] (see Sect. 8.3).

The Weyl group of sl,(C) is the symmetric group S,, consisting of all
permutations of n elements. Every permutation is conjugate to a product of disjoint
cycles, say c,c,---c,. Denoting the length of the cycle ¢; by n;, and choosing the
ordering such that n; <n, < --- < n,, we see that the conjugacy classes in S, and
hence the inequivalent Heisenberg subalgebras of sl, are parametrized by partitions
of n;

S
={ny,n,,...,n}; ny<n,<-n; Y m=n (1.8)
i=1

The conjugacy class of Heisenberg subalgebras corresponding to one cycle of
length nisin some way generic. The principal Heisenberg subalgebra is a representa-



70 F. ten Kroode and J. van de Leur

tive from this conjugacy class. In this case a fermionic construction of the level
one highest weight representations was given by the Kyoto school [see, e.g. [14]).
In order to motivate what is coming, we will give a slightly adjusted version here
in the spirit of the paper [15].

Let CI be the Clifford algebra on generators y(k), y*(k), ke Z with relations

YR, y*()} =65 {Y(k)Y()} =0={Y*k)y*()}- (1.9)

Define the so-called spin module V as the unique irreducible Cl-module, which
admits a vacuum vector |0), such that

Y(k)0>=0 Vk=0,

Y*k)|0>=0 Vk>0. (1.10)
This motivates the following normal ordering prescription
.. de ky*(j) ifj>0

Yk :“=‘{ vk A 111

VD= yrw o -

Next one introduces formal fermionic fields by

Y(2):= keZz k),
YHz)= ¥ YRz~ (1.12)

keZ
It can then be shown that the identity operator together with the homogeneous
components of
P—q

W@ W@~ oy ISP aSnPAg (1.13)
YD 2):

where w = e*™/" is a primitive root of unity, span a Lie algebra of operators on V
isomorphic to gi,(C).

Next one introduces the charge decomposition of the module V; this is done
by setting the charge of the vacuum |0) to be zero and by agreeing that the
fermions y(k)(y*(k)) raise (lower) the charge by one. One can then write

V=@ Vn (1.14)
meZ
V.. being the subspace of all vectors of charge m. The V,,’s are irreducible level
one highest weight modules over gl,(C). .

Notice that this is a pure fermionic approach to the representations of gl,(C).
There is also a well known bosonization procedure, which can be described as
follows; in (1.13) we have introduced the bosonic field a(z):=:y(z)y*(z):. Expanding

this field as a Laurent series, a(z) = Y a(k)z ¥, one readily finds
keZ

LCEDNTUAEOR (1.15)

With this expression one easily verifies the oscillator commutation relations (1.2).
One can then prove the following fundamental theorem.
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Theorem 1.1.
Y(z) = QZ““”“CXP(— > lZ"‘Ot(k )exp( ! "‘a(k)>
k<0k k>0k

x//*(z)=Q'lz‘“‘°’exp< Y %z“" a(k))exp( Y %z“"a(k)) (1.16)
K<0

K>0
where the operator Q:V — V is defined by

Q10> =y(1)|05,
QY(l) =y (k+1)Q,

Qy*(k)=y*(k + 1)Q. (1.17)
In particular, this operator raises the fermionic charge;
Q: V> Vs (1.18)

Inserting this result in the expression (1.13), one finds after some calculations for
P#q:
P—4q

(@ 2 (w'2): — T%ﬁ

P~ 9x0) ok gk 1 -t gk
= TTCXP< k;) k(w — o~ %a(k) )exp < Z E(a) - )oc(k)).
(1.19)

Note that Q and Q ~* have cancelled in this expression, whence everything can be
expressed in terms of oscillators. This is the reason that the modules V,, remain
irreducible when restricted to the action of the principal Heisenberg subalgebra.

How to generalize this construction to a more general partition n=
{ny,n,,...,n}? To answer this, we divide an n x n matrix in s blocks of size n; x n;.
The diagonal blocks correspond to Lie algebras gl,,(C) and the principal construc-
tion above tells us how to make vertex operators describing the action of the affine
algebra gl . So we just should take s copies of the construction above or, what is the
same thmg, we should work with s-component fermions y;(k), y¥(k), 1 i <s, keZ.
The problem is of course how to find vertex operators associated to the off diagonal
blocks.

In the case that every cycle has the same length, everything is rather
straightforward. As an example we sketch the homogeneous construction, cor-
responding to the partitionn = {1, 1,..., 1}. In this case we take the Clifford algebra
generated by the fermions y,(k), Y¥(k), 1 <i < n, keZ with relations

Wik, Yy (D} =00 {Yilk),¥;(D} =0={Yrk), Y1)} (1.20)

In fact we will see that these n-component fermions can be obtained by relabeling
the 1-component fermions, so that this Clifford algebra is really the same as the
one considered before. We-again consider the irreducible Cl-module generated by
a vacuum |0) satisfying

Yik)[0>=0 Vk=0Vi

v k)I0>=0 Vk>O0Vi (1.21)
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Normal ordering and fermionic fields are defined as in (1.11) and (1.12). The vertex
operators associated to the off diagonal blocks are given by :y/,(z)y¥(2):, 1 £i,j <n,
i #j.

The bosonization procedure is also analogous to the principal case; introduce
o(2) = Z o;(k)z " *:=:y(z)Y¥(z):. One can then prove the following theorem.

keZ

Theorem 1.2.
b= 0o exp( - 5 e ta Jerp( - 5, etaib )
k<0
0= 07 '~ exp( £ 1ot Jexn (3 1 ,®> (122

where the operators Q;:V —V are defined by

0:10> =yi(1)|0,
Qilk) =ik + 1)Q;,
Qipt(k) =Yk + 1)Q,
Q)= —y;(k)Q; ifi#],
Qi) = —yt(k)Q; ifi#]. (1.23)
These operators satisfy:
{0,,0;} =0 ifi#j. (1.24)

With this result one can find an expression for the vertex operators associated to
the off diagonal elements; for i #j we get:

N D= 007 2 “‘°"°~"°’“exp(kgo—,lgz"‘(a,-(k)—a.~(k))>

-exp (kz:o%z"‘(ocj(k) - ai(k))>. (1.25)

It is important to notice that the Q’s do not cancel in this formula, simply because
there are n different types of them. It is easy to see that the vacuum space Q(Ay)
of the sl,-module L(A,) is spanned by the vectors T7T T72...T™ ! Uy, MEZ;
T Q,Q,+1,1515n—1

We will complete this introduction by formulating the general result of this
paper.

Theorem 1.3. Let n={n,,n,,...,n,} be a partition of n, N’ the least common multiple
of the numbers ny,n,,...,n; and define

N N’<~1—+i>62Z vij
Nom S (1.26)

2N’ if N’<;ll—+ni>¢2l for a pair (i,j)

j

Let Cl be the Clifford algebra generated by the fermions y(k), Yy*(k), keZ with
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relations (1.9) and define multicomponent fermions Y (k), y¥(k), 1 £i<s, keZ by:
\//,(l + mn,—):= l//(nl +ny+--+n_; + I+ nm),
Yl +mn):=y*n,+n,+ - +n_, +14+nm) 1=1=n, meZ (1.27)
These fermions satisfy the relations:

Wk v} =00 (i), ¥;(0} = 0= (Y, ¥ 1D} (1.28)
In terms of these fermions the spin module V can also be defined as the unique
irreducible Cl-module generated by a vacuum |0 satisfying
Yi(k)I0>=0 Vk=<0Vi
Y¥K)I0)=0 Vk>O0Vi. (1.29)

Introduce formal fermionic and bosonic fields by

Yilz):= Z Y(k)zNmok,
keZ

Fe):= Y i)z~ Wk,
keZ

o(z) = Y, o(k)z = V=1 (@)¥(2): (1.30)

keZ

where normal ordering is defined as in (1.11). Then we have

'/,i(z) = QiZ(N/”i)(ai(O)"’ 1) exp < _ Z %z“""‘i"‘ai(k))exp < _ Z %Z-(N/m)k oci(k)>,

k<0 k>0

YHz)=Qr 1z~ VMmO exP( > e —(N’"""“i(k)>exp< ) L= Ofi(k)>, (1.31)
K<ok >0k

where the operators Q;:V — V are defined by (1.23).
The homogeneous components of the normal ordered products

WuF): 1=5ijSs (1.32)

together with the identity operator provide an irreducible level one representation of
the affine Lie algebra of infinite rank, A, on each charge sector V,,. Similarly, by
setting w:=e*™, one obtains an irreducible level one representation of the
subalgebra gl (C) = A, on V,, by the homogeneous components of
WNmdr=a .
WPz (w2): —5ijijzoﬁml #jh1SpsSn,1=q=<n; or i=j

I<p#q=n,
Wi2WE(): 1Z5iss (1.33)

and the identity operator.

The definition (1.30) of the bosonic and fermionic fields will be motivated in
Sect. 5 after a detailed study of a finite order automorphism associated to the
partition n and the corresponding twisted realization of the affine algebra gl,(C).
The expression (1.31) for the fermionic fields in terms of the bosonic oscillators
(k) and the operators Q; will be derived by exploiting the conformal symmetry
of these fields, i.e., their commutation relations with the Virasoro algebra.
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2. The Lie Algebra gi,(C)

2.1. Introduction. Let gl,(C) be the Lie algebra of all n x n matrices with complex
entries. The usual basis for this algebra is the collection {E;;}, <; j<. Where E;; is
the matrix with a 1 on the (i,j)® entry and zeros elsewhere. The commutation
relations for these basis elements are:

[Eij Eul = 03 Ey — 04 Ey;. (2.1.1)

In this paper we will work with partitions of an n x n matrix in blocks. To be
more precise: let n={n,,n,,...,n,} be a partition of n, i.e, n, <n, <---<n; and
S

Y n;=n. The associated partition of n x n matrices is then given schematically by:

i=1

DA S
my /B,y By, - By
nzI B'21 322 B2s , (212)
n,i le Bsz s+ By

where B;; is a block of size n; x n;. With this blockform in mind we rephrase the
commutation relations (2.1.1); the standard basis for the (i, j)™® block is the set of
matrices {E},}1 <p<m,12q2n; defined by:

E;‘,’q:= ni+omio b pny+oonj—1+qo (2.1.3)
and in terms of these elements we may write:
[EY,, EX] = 0,404, En — 640,E. (2.1.4)

Associated to each partition n we will define a Cartan subalgebra h, of gl,(C).
For the case n= {n} this is the well known “principal” Cartan subalgebra, while
forn={1,1,...,1} h,is the standard Cartan subalgebra h of gl,(C), i.c., the set of all
diagonal matrices. We will also study the root space decomposition of gl,(C) with
respect to these Cartan subalgebras. For each partition this will lead to the introduc-
tion of a basis {AY,}, < j<s1<psm,12q2n; Of gl,(C) consisting of eigenvectors for
the adjoint action of h,. It will turn out that the mapping y,:gl,(C) - ¢/,(C) given
by Y,(Ed,):= AY is an isomorphism of gl,(C), and hence the A ’s satisfy the same
commutation relations as the EJ’s:

[AY, A] = 6,0, AL — 6,0, Al. (2.1.5)

e’

We will see that this isomorphism maps the standard Cartan subalgebra into the
Cartan subalgebra h,.

Before considering the general case, we will first review the well known principal
case in Sect. 2.2. It is rather easy to generalize the results from this case to the
general case, which will be treated in Sect. 2.3.

2.2. The principal case. The following construction goes back to Kostant [16],
who introduced the so-called principal cyclic element in the context of an arbitrary
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semisimple Lie algebra g. For the case g = s1,(C) or rather the case gl,(C) =g @ CI,
which we are interested in, all formulas become particularly transparent (see also
[2,7]); let E be the principal cyclic element given by

n—-1
E = Enl + Z Ei.i+1' (2.2.1)
i=1

This element is clearly associated to the cyclic permutation ¢:{1,2,...n} »{1,2,...n}
given by:

_fi+l if 1gign—1
a(i):= { L i ien . 2.2.2)
We have:
E = Z Ei,d‘(i) (2.2.3)
i=1
and:
LE, Eij] =E,- 16),j — Ei,a(j)- (224

From this last formula it is easy to guess what the eigenvectors of ad E should be;

Lemma 2.2.1. Let w:= 2™/ be an n'® root of unity and define

Apyi= 1 Z oo~ 1E,, (2.2.5)
Nii=1
then
[E, A,,] = (0 — 0)A,,. (2.2.6)
More generally, we have
[EF, Ayl = (P — co"“)qu. (2.2.7)

Proof.

K —ql
la)" @~ " {0 o) Eit — 0uEx 0y}

[E, Z O)pkw_qlEk,:I=
ki=1 i

i,k

0=

M=

n
PO ME; — Y 0w YE,
iL,k=1

iLl=1

N

n
=o® Y oo TE;—
=

1 i,

PE——
lw" 0" YE, 44

e

i

n

=(’ -9 Y oo ?"E,.
kl=1

Here we have used that ¢(i) =i+ 1 plus a multiple of n. The second formula is
proved by replacing ¢ by T = ¢* in the calculation above. []

Of course the factor 1/n in the definition of the 4,’s seems a bit arbitrary at
first sight. In fact it is not, as we will explain now. Define the matrix § = (S;;) by:
1 .
S;ji=—Frw". (2.2.8)
n
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Then one immediately verifies:
Ape=SE,S". (229

The important point is that the matrix $ is unitary -

| L )
(SST)U = kzx o*w M =4,

i (2.2.10)
- meaning that the mapping y:g1,(C) - gl,(C) defined by y:E, ;- A4,,, is a similarity
transformation and hence an isomorphism of gl,(C). In particular this implies that
theset {A,,}; <, ,<nis a basis of gl,(C) whose elements satisfy the same commutation
relations as the E;/'s;

(4ij Al = 0 Au — 63 Ay (2.2.11)
One easily expresses the E;/’s in terms of the A;;’s:
1 & -
Ej=- 3 o %04y (2.2.12)
nir=1

The lemma shows that the linear span of all powers of the principal cyclic
element is a maximal commuting family of ad-diagonalizable elements. In other
words: the linear span of all powers of E is a Cartan subalgebra of gl (C); it is
called the principal Cartan subalgebra of gl,(C):

hpn‘nc:= é CE‘ (2213)
i=1

Moreover, formula (2.2.7) shows that the A,’s are root vectors with respect to this
principal Cartan subalgebra. Note that the 4,,’s commute with all elements of

h,.inc, and hence they must lie in A ;... To be more precise, we have:
Zprinc Zpri
Lemma 2.2.2.
1 & -
ppT Z ™ "PE".
ni=
Proof.
1 c k-1
App== 3, 0" VE,
ngi=1
1 c -p(l—k)
=; k12=:1 ¥ Eikva-n
12
=-Y o ?E. O
ni=

With this lemma it is easy to show that the isomorphism y maps the standard
n

Cartan subalgebra h:= <=—Dl CE;; to the principal Cartan subalgebra h;..;

‘ﬁ(_é CE“) = __é CAii = _é CE‘ = hprinc' (2.2.]4)

2.3. The General Case. Now let n={n,n,,...,n;} be an arbitrary partition of n
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and recall the associated partition of an nxn matrix in s*> blocks of size
n;xn; 1<, j<s (see (2.12)). Isolating the (i, i) diagonal block of gl,(C), we are
led to deﬁne the “i'* cyclic element” E; by:

ni—~1

Egp:=Ey .+ kZl Eiyer. (2.3.1)

Analogous to the principal Cartan subalgebra h,,;,. we define the Cartan subalgebra
h, associated to the partition n by:

- ,@1 CE,'. 232)

It is easy to generalize the results of the previous section to this case; we will
do this in the following lemma.

Lemma 2.3.1. Let w;:=e*™/" be an n{f root of unity and define

" 1 ni M B
A= Y. Y offo; EY, (2.33)
N e
then we have
= S,EuST1, 2.34)
where S,= [ S, and
R |
Soi=Y I, + Y ——=ME. 23.5
o J;i I kl 1 \/_a) ( )

Consequently, the set {AU}, < i<s1< p<ni1<q<n; IS @ basis for gl,(C), whose elements
satisfy the same commutation relations as the EY’s;

[AY, A4] = 5,8, A — 5,5, AY. (2.3.6)

pq’
The elements EY, of the standard basis for gl,(C) can be expressed in terms of the
Ai’s by

1 ng M

N

Moreover, the Ajj)’s are eigenvectors for the adjoint action of h,:
[E(l) s pq] = (5ilw?p - jlwfq)qu' (238)
Finally, the isomorphism , = Ad S, maps h into h,.

EY:= o ol 4. (23.7

Proof. A straightforward generalization of proofs from the previous section. []

3. Automorphisms of Finite Order

3.1. Introduction. In this section we will explain how to associate an automorphism
of finite order of gl,(C) to a partition n of n. The restriction of such an automorphism
to the standard Cartan subalgebra h of gl,(C) coincides with an element w, of the
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Weyl group W of gl,(C). In the introduction we have explained that the conjugacy
classes in W(gl,(C)) are parametrized by partitions of n and indeed, the assignment
n—w, induces a bijection between partitions of n and conjugacy classes in W.

Just as in Sect. 2 we will start with the case n={n}. The corresponding
automorphism is known as the principal automorphism, while the restriction of
this automorphism to the Cartan subalgebra h is called a Coxeter element of W.
The general case will be treated in Sect. 3.3. Finally, in Sect. 3.4, we will argue that
it is easier to conjugate these automorphisms by the automorphism y,.

3.2. The Principal Automorphism. In Sect. 2.2 we have noted that the principal
cyclic element is related to the cyclic permutation o: {1,2,...,n} > {1,2,...,n} (see
(2.2.2)). Let us define the mapping é:¢1,(C)— gl,(C) by:

6.(Elj):= Ed(l),a(j)‘ (3-2.1)

With the commutation relations (2.1.1) it is immediate that this ¢ is an automorphism
of g1,(C). Moreover, it has finite order: 6" = I, . Note that the orders of ¢ and
6 are the same. This ¢ is called the principal automorphism by Kostant [16]. The
restriction w = 6, is a Coxeter element of the Weyl group W of sl,(C) (see also [17]).

It is well known that é can be written as exp {27niadX }, where X = y/(H) and
H is the following element of the Cartan subalgebra hn sl,(C):

=Y (3.2.2)

In this formula we have introduced the so-called “dual fundamental weights” ¢; of

sl,(C) by
[tiEiiv1]1=<ut; ) E; ;1 =0E; ;4. (3.2.3)

Note that Xeh -

Lemma 3.2.1. | n
= '2; Z (n - 2i + I)Eii‘ (3.2.4)
i=1

Proof. Suppose that H —; Z ME;. The A’s are determined by the conditions

1
[H,E,.,,.H]:— ii+1 for 1<1<n—1 and Z A;=0. The first condition means:
i=1

Ai—Aip1=1 for 1<i<n—1 or equivalently: A;=1; —(i—1) for 1 £i < n. Imposing
the second condition, one finds A, =3(n—1) and hence 4;=3(n—2i+1) as
desired. []

With this lemma, the fact that y(E;)= A4; and Lemma 2.2.2 we can now

compute X;
1=l 1 .
X=- ———FE'. (3.2.5)
nis o—1

3.3. The General Case. Consider again an arbitrary partition n={n,n,,...,n}
of n. Analogous to (2.2.2) we define the cycle 6;:{1,2,...,n;} > {1,2,...,n;} by:
k+1 if 1<k<n—1
i(k):={ T

1 if k=n ’ (3.3.1)
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and the permutation 0,:{1,2,...,n} = {1,2,...,n} by
o ny+ny+-+m_+k=n+n+--+n_;+ok) 1=ksn. (33.2)
To this permutation we associate the automorphism ¢, defined by
&, (El)= ES .0 - (333)

Note that (¢,)¥' =1, ,, where N’ is the least common multiple of the numbers
NyNgy... Ny

Let us try again to write ¢, as ¢™“*s,

2, To do this we set

1 .
Hyi=5— 3, (m—2j+Ej, (3.3.4)
n; j=1

the analog of (3.2.4) placed on the (i, i)’ diagonal block, and X;:=y,(H). Our

first guess for X, would be of course: X,:= Z X =¥,(H,). This turns out to be
almost right;

Lemma 332. Let X,= Y X, then
S i=

1 1 "
2madX (Eu) =exp {21”(_2.; — ﬁ)}E:}i(k)Uj(l)' (335)
J
Proof.
eZniadXﬂ(E;"J;)
— 1 g2iadXy i Z w—kpwlq A”
N2 p=14q=1
— 1 '/ln{eZniadH Z Z w""’w’qE”}
nn; p=14=1
1 n . 1a 1 et m—2q+1) | LEY
= — ¥, pzl .,le i exp { 27i 2n-( n;—2p+ )—EI(",'— q+1) pa
in; i J

J

1 1 1 L .
2 — - wi—(k+ l)pw('l+ 1)qEU
{ <2n 2nj>} /ninjl/,ﬂ{pgl qgl ’ P‘l}

(1 1 ij
o0 265, 5y ) [ o O
i J

We see that 6, and e”**» coincide up to a “phase factor”. It is not too difficult

S

1 .
to remove this factor; set Y,:= 2—1 - Z 71 _(the first term is meant to make
i=1

Y,]1=0 and if we define X|:= X, + Y, we can write:
é,= @i (3.3.6)

However, for technical reasons one often prefers to exclude the diagonal part Y,

and works with the automorphism
6= ™™, (3.3.7)

n

n’ n

Y, traceless), then [X
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Note that
&N (E ) = (— )NV @m=mi) g (3.3.8)

so that it may happen that the order N of ¢, is 2N".

Lemma 3.3.2. Letn={n,n,,...,n,} be a partition of n, N' the least common multiple
of ny,ny,...,ng and N the order of the automorphism 6, defined in (3.3.7), then:

1 1
N if N’<—+—>62Z Vij

n; n;
N = - (3.3.9)
2N' if N’(n—+—>¢2Z for a pair (i, j)
i N
3.4. Rotation to h. Let t:gl,(C)— gl,(C) be an arbitrary automorphism of order N.
It is well known that such a t induces a Zy = Z/NZ gradation of the Lie algebra
gl,(C); we have:

g9l,(C) = D gl,(O);, (34.1)
jeZy
where the eigenspace gl,(C); is defined by
9l (O);:= {yegl(O)(y) = @’y}. (3.4.2)

Here we have introduced the N'* root of unity w:=e*"/N and the notation

J:= jmod N. Notice that (91O 91(O)5] < glu(C)y. -
In order to compute the elgenspaces gl,(C); it would be very convenient if t
were of the form 2" for some h in the standard Cartan subalgebra h; in that

case one would find:
i+rN
gl (O);= {yegl,,(C)I [hy]= ]—%y for some reZ}, (3.4.3)

and the eigenspaces can be constructed from the root space decomposition of
gl,(C) with respect to h.

The automorphism 4, which we have constructed in the previous section, is
of the form e>™*¥s, where X is an element of the principal Cartan subalgebra but
we can of course “rotate” everythmg to the standard Cartan subalgebra h by means
of conjugation with the automorphism y,. In this way we obtain the automorphism
1, defined by: )

£ o= ‘//'_‘—10 6oy = ezmad./z;‘(x,_,) — pliadHy (3.4.4)

n ¥n
Now the commutation relation

. Ik 1 1 .
Eil={ ———+-——+—|E}} 345
[Hn’ kl (n. n; + 2n; 2n; ) ( )

J

expresses that EJj is homogeneous in the gradation induced by t,; its degree is
given by
I k 1 1

degEli=N(— "4~ _
eg EY (,- P >modN. (3.4.6)
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4. The Affine Algebra gl,(C)

4.1. Introduction. In this section we will briefly review the realizations of the affine
algebra as algebras of loops twisted by the automorphisms 7, (see [7]). In any
such realization a Heisenberg subalgebra §, naturally emerges as the collection of
twisted loops in the Cartan subalgebra h,. We will also introduce so-called vertex
operators as generating series in a formal indeterminate z, whose coefficients
describe the action of the affine algebra in an integrable highest weight representation.
In Sect. 7 we will see that these operators are precisely the vertex operators one
encounters in physics.

4.2. Twisted Realizations of gl,(C) [7,18]. Let gl,(C):= (—De"‘”gl (O) be the loop

algebra associated to gl,(C). Using the automorphism £, gl,,(C) —gl,(C), one defines
the twisted realization L(gl,(C),%,) of gl(C) as the space

L(gl,(0), £,):= D #g1,(C); (4.2.1)

keZ
with commutation relations
[A*x, Hy]:= 2**[x, y]  Vxegl (O, yegh(O);: (422
It is well known [7, 18] that g7,,(C) and L(gl,(C), t,) are isomorphic; an isomorphism
is given by:
@,: 1k yrre Mgty v yegl (C);. 4.2.3)
E‘%l)S automorphism suggests to introduce the following spanning set of gl,(C) (see
y(k):= e~ Pt gi®kiN6y,  yegl (C), kelZ, 4.2.4)
where y; denotes the component of y, which is homogeneous of degree k in the
Zy gradation of gl,(C) induced by %, (see (3.4.1) and (3.4.2)).

The affine algebra g1,(0):=g1,(C) G—) Cc is defined as the one dimensional central
extension of gI,(C) with commutation relations

[X +ac,§ + Bcl:=[%, ] + pu(%, e, (4.2.5)
where the two cocycle u:g~l,,(C) X g7,,(C)—>C is given by:
¢ 9= 1 20 (dX(0)] .
wE, )= i g d0< (9)) (4.2.6)

Here we have introduced the notation (4|B) = trace (4B),V 4, Begl,(C).
The corresponding twisted realization L(gl,(C), t,) is defined as the vector space
L(gl,(C), t,) ® Cc with commutation relations

k
(A ye+ ac, A'zp+ Be] = 'Ly, 271 + N Oe+rolyelze. (4.2.7)

The isomorphism @,:L(gl,(C), ¢ )—»gl,,(C) can be extended to an isomorphism q)
between L(gl ©O),1 ) and gl,,(C)

B, (A yg + oc):= (k) + cc, 4.2.8)
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where the elements p(k)egl,(C) are defined by

P(k):= y(k) — oy o(H, | y)e. 4.2.9)

4.3. Heisenberg Subalgebras of g7,,((;). In this subsection we will consider Heisenberg
subalgebras of the affine algebra gl,(C). Let us start by recalling the definition of
such subalgebras;

Definition 4.3.1. A Heisenberg subalgebra (HSA) § of gl,(C) is a subalgebra of gl,(C)
with basis {p;,q;},.x and the central element ¢, whose elements satisfy the
commutation relations

[pig;1="6,c. @.3.1)

For any partition n of n we will construct an associated HSA §,, thus obtaining
a correspondence between conjugacy classes in the Weyl group W(gl,(C)) and
HSA’s.

Let o; be the matrix consisting of 1’s on the (i, i) diagonal block B;; (see (2.1.2))
and zeros elsewhere;

3

o= Z o 432)

k.l

According to (3.4.6), the homogeneous components of this matrix are precisely the
powers of the i'® cyclic element E); their degree is given by

N
degEy)t = - k modN. (4.3.3)
N
Therefore, the loops «,(j) introduced in Sect. 4.2 are only nonzero if j=—k for
some keZ. In that case we can write: i
N . .
ai<——k> = ¢~ WdHuglkmIO F k. 4.3.4)

If we write k =1+ mn,, 1 £1< n;, meZ this becomes

<n—(l+mn )) e R (4.3.5)

1

corresponding to a matrix with zero entries, except on its (i,i)® diagonal block.
For 1 £1<n;—1 this block becomes:

r pN n
0 0 1
"i_II : . e
&mo o . 0 1
o 0 0 (4.3.6)
| el 0 O_J

while the case [ = n; yields ™I, .
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With the definition (4.2.6) on easily computes the value of the two cocycle u

N N
on loops ai<;k) and ocj<-l>;

h;

N N k
ﬂ(a.-(rl—i k), ocj<n_j l)) = n_i6k+l,0(E(i)k|E(i)l)

= k8,64 10 4.3.7)

Using this formula, one easily proves the following lemma.

i

Lemma 4.3.2. Set §,:= P C—SB Cdi(nﬁk>®Cc, then 8, is a HSA.

kez—{0} i=1

Proof. Define for 1 <i<s,1 < j<n;,leZ, the elements

N .
Dny+--+ni—y +f+"l:= &'<_'—l—(‘] + nil))’

1 N .
Qny+--+ni—y +j+nl:= mdz< - Z(J + nil))'
Together with the central element ¢ these elements form a basis for §,. The
Heisenberg commutation relations (4.3.1) are immediately verified.

Remark 4.3.3. Note that (H,|«;) = tr H;) =0 and therefore

ot,.(-hf k) = ai<ﬂ k). 4.3.8)
n; n;

This is the reason that we have chosen to work with é, and not with é,
(cf. Sect. 3.3).

s

4.4. Vertex Operators. Recall from Sect. 2 the Cartan subalgebra h,:= P i CEy’
n N

and the root vectors AY,i# jv (i= Jj A p#q). From the discussion in Sect. 4.3 it
is clear now that the affine algebra gl,(C) is spanned by the loops
N e
o‘ti<——k)i =12,....,s, keZ Aj(k)i#jv(i=jAp#q), kel 4.4.1)
In the sequel we will be interested in representations p:gl,(C)— End V of the

affine algebra on a vector space V. In the construction of representations one uses
the following formal generating series:

iz)= Y. z"”"""‘p(o*zi(ﬂ k))
keZ n;

A @)=Y z7*p(Al(K)). 442

keZ
The parameter z in these series is just a formal parameter. If one can somehow
find explicit expressions for the operators d,(z) and A, (z), one can — in principle —
extract the coefficients of z™* and find the action of the affine algebra on the

representation space V.
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Notice that the formal power series d; (z) and A / (z) are not unrelated; recalling

(4.3.2) and Lemma 2.2.2, we write ;= Z E.’ =mnAjL ., and therefore we have

8(2) = m A%, (2). 4.4.3)

In fact we will only be interested in integrable highest weight representations

of the affine algebra, in which the central element c is represented by the identity

operator. So from now on we will take p(c)=1. We will see that in such

representations the representation space V can be realized as a (direct sum of)

polynomial ring(s) while the elements p; and g; of the HSA are represented by
elementary differentiation and multiplication operators;

0
p(p) =75 pla)=x: (4.4.4)

i
It then remains to construct the so-called vertex operators A / (2); inserting the
definitions (4.2.4) and (4.2.9), we write for these operators:

A= 3 2ol ) — (H, AL 49

keZ
The first term can be worked out as:

T, 27 ple Ve ()

keZ

1 LI . .
Z Z Z Z-kwfmwj—-qlp(el(k/N)oe—leadH! E:rld)
N: kezm=11=1

'5k,N((l/n;) = (m/m)+(1/2ni) = (1/2n,)) +rN
1 n M ir0 i
= ZN((1/2n5) = (1/2n0)) z z z z_N«l/"f’_('"/”")_’Na)f’"'w;"'p(e" EY), (4.4.6)
n,'nj rezm=11=1

while the central term is calculated as follows:

(H,|Ad) = 2 3700 Z (n; — 2k + D=9

. ot
n_iéijm if p#gq
= . (4.4.7)

In the following section we will construct a much simpler expression for the
operators A (2) in terms of “fermionic fields.”

5. Fermionic Fields

5.1. Introduction. In this section we will briefly review the Lie algebras gl(oo) and
its central extension A, = gl(o0) ® Cc (see, e.g., [13]). We will also discuss the

embeddings gI,(C) = gl(c0) and gl,(C) =» A,,, which, together with the wedge
representation of A, will enable us to find expressions for the vertex operators
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Al(z) in terms of normal ordered products of fermionic fields. Sections 5.2 and
5.3 have been taken from the paper [15].

5.2. Lie Algebras of Infinite Matrices. Let gl(co) be the Lie algebra of matrices
(9ij);, jez such that all but a finite number of entries g;; are zero. This Lie algebra
has a basis of matrices &;, i,jeZ, where &;; is the matrix with a one on the (i, j)™
entry and zeros elsewhere; any matrix Gegl(oo) can be written as a finite linear
combination of the &;’s.

We also introduce the vector space C® of infinite column vectors (v;);.z such that
all but a finite number of v;’s are zero. As a basis for this vector space we take the
collection {g;};cz, where ¢; is the vector with a one on the i entry and zeros
elsewhere. The Lie algebra gl(o0) clearly acts on the vector space C* by:

& i = Ok (5.2.1)

We will also need a completion gl(co) of the algebra gl(co) consisting of all
matrices of finite width around the main diagonal,

gl(0):= {

Note that the gl(oo)-action on C* can be extended to this completion. With this
completion we can formulate the following well known result.

Lemma 5.2.1. Let 1:gl,(C)— gl(c0) be the mapping defined by
l:eikoEinlzzéai+n(l-k),j+nl’ (523)

2 Zgijé‘}jlgij=0 if [i —j| > 0}. (5.2.2)

ije

then 1 is a Lie algebra homomorphism mapping gl,(C) injectively into gl(c0). Its image
is the collection of matrices (g;;)egl(c0) satisfying the periodicity condition

gi+nr,j+nr=gij Vi,j,reZ~ (5.2.4)

5.3. The Semi-Infinite Wedge Space. In this subsection we consider highest weight
representations for gl(oo0) and gl(o0). For this purpose we introduce the semi-infinite
wedge space A®C* as the vector space with a basis consisting of all semi-infinite
exterior products of the basis elements ¢; of C* of the form:

ig A&y A By A oo (5.3.1)

such that i, > i, > i, > --- and such that i;, ; =i, — 1 for > 0. On this space gl(o0)
acts as usual; denoting the action by 7, we can write:
T(A)(Eig N Ejy A Ey A ) =(Ag ) A Es) AEy A -
+ g0 A (Agg) A, A -
+&, AE A(Ag) A -+ VAegl(oo). (5.3.2)
We can distinguish the basis elements (5.3.1) by their behaviour at large [; we
will say that an element of the form (5.3.1) has charge k if iy = k — [ for all I > 0. For

instance the vector
Dpi=8 A By A &g A -+ (5.3.3)

has charge k. We will refer to v, as the k™ vacuum. The vector space of all vectors



86 F. ten Kroode and J. van de Leur

of charge k is denoted by A C* and we clearly have a decomposition of the full
semi-infinite wedge space in sectors of fixed charge;
A*C® =P APC™. (5.3.4)
keZ

The submodule APC® is an irreducible highest weight module for the algebra
gl(c0). We have for j > i

UE) (W) =i Ay Agg_a Ao+ 018 AE A, A+ -=0  (53.5)
and
&) (k) = (O, 6D Vi (5.3.6)
where the linear mapping 6,:P Cé;— C is defined by
ieZ
0 ifi>k
{0y, 8= {1 i<k (5.3.7)

In the sequel we will denote the restriction of the representation 7 to this module
by 1.

For every ieZ we define linear operators y(i) and y*(i) on the semi-infinite
wedge space by their action on basis vectors:

'//(i)(sio A 8i1 A 8i2 A ”'):= si A Sio A sil A 8i2 AN
00
@) (e, A &, A&y A -~-):=“Z:()(—)“(Si,ikeiO ANELAEL A A A, (53.8)

where the notation &, means that the vector ¢, is deleted. It is easy to verify the
anticommutation relations:

@YD} =0={*0.y*()}  {(YO¥*()} = by (5:39)

The importance of these operators lies in the fact that the action of the elements
&;; can be written as a product of these operators; one clearly has

©(&) = YW *(j)- (5.3.10)

It is not possible to extend the representation 7 to the completion gl(c0) by
linearity. Instead one replaces t by the assignment 7 defined by

n(8yy):=1(65) — 0;< 0o, &> 1. (5.3.11)

It can be proved that n can be extended to gl(co) by linearity; for the action of
the identity matrix in gl(c0) on the k'™ vacuum we find:

"(% ébii)(vk) =) {0, — 00, €5 )0y = k. (5.3.12)

ieZ

Of course 7 is not a representation of gl(co) any more;
[n(&;), &)1 = [(&;) ©(E)]
= 01(6y) — 6u7(&y)
= 6, (&) — 0ym(6y;) + 016 {00, 8 — 65
=1([}j, Bul) + 0403 b0, & — &;). (5.3.13)
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Because of the extra term 6,6;<0,,&; — &;;» in the right-hand side of (5.3.13), n
is called a projective representation of gl(c0), or, equivalently, a ¢ = 1 representation
of the central extension A := gl(c0) @ Cc of gl(c0) defined by the two cocycle

p:gl(o0) x gl(00) - C,
W&;js 6a):= 0364 < 0o, & — &> (5.3.14)

_ One can of course restrict the central extension of gl(co) to the subalgebras
gl,(C);
Lemma 5.3.1.

w(1(e™® A), 1(e"B)) = kdy 4, o(A|B) Vk, leZ, A, Begl,(C). (5.3.15)

The lemma means that the homomorphism gl(C) = gl(c0) can be extended to
a homomorphism #:gl,(C) = A .

In physics the procedure above is usually formulated in terms of a normal
ordering prescription on the fermionic creation and annihilation operators; one
writes:

(&) =Y OW*()): (5.3.16)
where the normal ordered product :y(i){y*(j): is defined by:
YaW*() ifi>0
—Y*(GwGe) ifi<o
5.4. Multicomponent Fermions. In Sects. 5.2 and 5.3 we have explained how to
embed the affine algebra gl,(C) in 4, and how to obtain representations of this
algebra in the semi-infinite wedge space. Up to now the block structure of gl,(C)
(see (2.1.2)) has played no role in our discussion. In this section we will incorporate
this block structure in the theory.

Letn = {ny,n,,...,n} be again a partition of n. Associated to the block structure
of an n x n matrix in gl,(C) one has of course a direct sum decomposition of C":

W)= YW*()) — 6,;<00, 6> = { (5.3.17)

C=C"aoC*"®---C". (54.1)

In view of this decomposition we relabel the basis vectors e; of C*; we define:
e):=en snyt-om+1 15iSs, 1Z1<n, (54.2)
Let C:= @™ C". The mapping e *e;i—e¢;, , gives an isomorphism between

keZ
-~ . - 'ko . . .
C" and C*. The image of the vector e™"e;(l) iS &, 4, +...n,_, +1+m SO it is natural

to relabel the basis vectors of C* as follows:
gl +n;k):=ey 1nytomj_y +14nke (5.4.3)

With this definition it is clear that we can write:

C* =P PCeyl)). (5.4.4)
i=1 jeZ
Similarly, the semi-infinite wedge space is spanned by wedges of the form:

&, (k) A g, (ka) A - (54.5)
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As an example we consider the expression for the k'™ vacuum v, =g, A g_; A -+
in terms of the relabeled basis vectors; for k=n, +n,+---+n,_, +l+nj we
find:

=&l +nj)Ael—1+nj)A gl +nj) A
gm_y+m_ A g (T+n_j)A

ei(ny +nyj)a - el +nj) A
ey +n(j—1D)A -  e(l+n(ji—1)A---. (5.4.6)
The next step is to introduce fermionic creation and annihilation operators for
the vectors ¢;(k) analogous to (5.3.8);
Yilk)(eio(ko) A &,(ky) A &;,(kg) A -++)
= gi(k) A &;5(ko) A &, (k1) A &;,(ko) A <o,
Y k) (e (ko) A &, (k1) A &iy(ky) A --+)

= io(*)j‘si,i,-‘sk,k,ﬁio(ko) A& (k) A gy (k) A -eeeee A éi,~(kj) AN (54.7)
i=

Clearly we have
ik +n )=y, +ny+ - +n_ +k+nl),
Yk +nl)y=y*n, +ny+ - +n_; +k+nl). (5.4.8)

With this identification one easily checks the anti-commutation relations of these
multicomponent fermions

Wik, y;(D} =0, {Yrk)yr)} =0, {ikhyF(D)}=6,0u.  (549)

One also verifies
Yik)(vo) =0 if k=0,
V¥k)(ve) =0 if k>0, (5.4.10)
whence
Yk r() if k>0
ol *(1) = Jj .
Wlopr ) {—w;‘(lw.-(k) ifk<0
5.5. Vertex Operators as Normal Ordered Products of Fermionic Fields. Here we
return to the expressmn (4.4.5) for the vertex operator A / (z). For the representatlon
p occurring in this formula we take mof. So we first embed the algebra gl (O) in

A, by the homomorphism 7 and then we represent it on the semi-infinite wedge
space by the representation 7. Using (5.2.3) and (4.4.5-7), we write:

(5.4.11)

N((l/2nj)—(1/2”i)) ni nj
A” (Z)+(H,,|A )_4_ Z z Z Z—N((’/”j)—(m/n-'))"Nwimej‘ql
n,-nj rseZm=11=1
'n(éanl+n2~-n.-1+m+n(s—r),n1+nz~~~nj_1+l+ns)~ (551)

Next we use the expression (5.3.16) and the definition (5.4.8) to rewrite this formula
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in terms of fermions;
Al (2) + (H,| AY)

ZN((1/2n)) = (1/2m:)) ninj
— Z Z—N((l/nj)—(M/ni))—er{"nwj—ql

=712
n,-nj rseZm=11=1

Wy +ny-m_y +m+nls—r)W*n, +ny--nj_y + 1+ ns):

ZN((1/2n) = (1/2n:)) ni nj
— 7z~ N(@/ny) = (m/n;))=rN

B J/min; r,sXE:Zm=ll=l
Wim+ ns — )W+ n;s):

ZN(1/2R,) = (1/2m)) oM
= (2cP) NI+ mils = 1) (6) = (NIm,) 0+ )
1

nn;

pm, . —ql
o™ w;

WYilm 4 ni(s —)WHI + n;s):, (5.5.2)

where w:= 2™/~ This formula shows that it is useful to introduce the following
formal “fermionic fields:”

Wie):= 3 2=y (),

keZ

Vz):= Z z~ NIk = (172D % k), (5.5.3)
keZ

One then has the following expression for the vertex operators in terms of normal
ordered products of these fields:

eim((p/ni) —(g/n)) WNm)p—a)

. 1 .
A,,Jq(z) = W:lf/i(wpz)lllf(qu)l — h:éij_l———a)(’—mm if pP#4q,
. einp((1/n) = (1/ny))
A (2) = ——:/i—::,b,-(w”z)w}‘(w"z): . (5.5.4)
nn;

Note that, because d,(z) = m; A", (z), we have:

8,(2) =y (¥ (): . (5.5.5)

Here we have absorbed factors z*/2") in the definition of the fermionic fields.
This is slightly different from our definition in the introduction. The only reason
for this is that the fields defined by (5.5.3) have nicer conformal transformation
properties. We will come back to this in Sect. 6.

5.6. Hermitian Structure and Normal Ordering. It is well known that the semi-
infinite wedge space can be equipped with an inner product, giving it the structure
of a pre-Hilbert space;

Theorem 5.6.1. There exists a unique positive definite Hermitian form (,): A*C® x
A®C*® - C such that

a) Y(i)' =y*@),
b) (vo,v0)=1. (5.6.1)
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Instead of (,) we will also use Dirac’s ‘bra-ket’ notation;
(v, w) = {v|w). (5.6.2)

Moreover, we will also write |k ) for the k™ vacuum v, in the sequel. Finally, we
will leave out the symbols © and n° 1 when a representation is understood.
With the inner product one formulates the following lemma:

Lemma 5.6.2.

a) éDL = c’t’pjia
+
n; n;
0 (@ X) =e X' VXegl,(C). (5.6.3)

Proof. Relation a) is immediate from the expression n(&;) = : /(i}y *(j): and (5.6.1).

. . N \. .
For b) one uses the following expression of d;| —k } in terms of fermions:

o‘ci<gk> = Z; WilnyFr + k), (5.6.4)

which can itself easily be derived from (5.5.5). Finally, c) following from a) and
(523). O

Next we use the Hermitian structure to define normal ordering for arbitrary
operators on the semi-infinite wedge space. For this we note that the definition
(5.3.17) can be written as:

YOY*():= YW *(j) — Y EY*()10). (5.6.5)

The notation (0| A|0):=(vy, Av,) in this formula is called the vacuum expectation
value of the operator A. Next we extend the normal ordering prescription to
arbitrary operators on the semi-infinite wedge space.

Definition 5.6.3. Let A and B be operators on A®°C®, then the normal ordered
product of these operators is defined by

:AB:£ AB—(0|AB|0>. (5.6.6)
Of course this definition is different from the usual one, because we subtract only
a c-number from the ordinary product and no operator structures. OQur motivation
for this definition is that it produces the right ordering prescription for a pair of
bosonic oscillators as we will show below.
Here and in the sequel we will need the following useful lemma:

N
Lemma 5.6.4. The operators d,.(—k): A®C®—> A®C® are for k>0 (bosonic)
annihilation operators, i.e.: i

N
&i<n—k>|m>=0 Vk>0, meZ. (5.6.7



Bosonic and Fermionic Realizations of the Affine Algebra gl, 91

Moreover, we have
4,0)|0)> =0. (5.6.8)
N
Proof. For k>0 the matrix oc,-(—k) is upper triangular, for k=0 it is
diagonal. [ n;

It is now easy to compute the vacuum expectation value of the product of two

oscillators;
N \./N _ [kOypo if k>0
<0|di<n—ik>ai<n_il>|0>—{0 if k<o’ (5.6.9)

Hence we find for the normal ordered product:

N ozi(nﬂk)ai(nﬁz) if k<0
apr)e()={ 0o -
l | &l<—l>&l<
n;

—k> if k>0

(5.6.10)

One immediately checks that this is equivalent to (cf. [19]):

N N &iek)cz,.(gz) if k<l
:&i(—k><ﬁi(n—l>-= N N‘ . (5.6.11)
ai(—z>&i<—k> if k>I
n; n;

i i

6. Conformal Symmetry

6.1. Introduction. In this section we will review some well known constructions
of the Virasoro algebra. First of all we will consider oscillator representations of
this algebra, i.e., representations in terms of sums of normal ordered products of
elements of the Heisenberg subalgebras §,. Then we will briefly describe the so-called
“Sugawara construction” of the Virasoro algebra, i.e., representations in terms of
sums of normal ordered products of elements of the full affine algebra.

Using the rather well known fact (see, e.g. [5]) that these two constructions of
the Virasoro algebra coincide in our case (which is a level one construction of a
highest weight representation of gl,(C)), we will be able to describe the conformal
transformation properties of the fermionic fields entirely in terms of oscillators.
Together with the commutation relations of these fields with oscillators, which
will be derived in Sect. 6.2, these properties will allow us to express the fields in
terms of oscillators and fermionic “translation operators;” this will be done in Sect. 7.

6.2. Oscillators on A®C®. The purpose of this subsection is to derive the

. . . N . .
commutation relations of the oscillators cZi(—k) with the fermionic fields.

i
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Lemma 6.2.1.
[&(g k)’ !l/j(Z)] =0,z (),

[@<§k>¢ﬂﬂ]=—5ﬁmeﬂn (6.2.1)

|13

. . N \. .
Proof. We use again the expression (5.6.4) for &i<; k> in terms of fermions;

i

[&i(gk>, Y j(l):l =— r;ﬂ) LW+ k), ()] + +;>o [ (r + k), ¥ (D]
= Z 5ij5r+k,t|/’i(")

reZ
=8l — k). (6.2.2)

With the definition (5.5.3) of the field ,(z) the first relation of (6.2.1) follows. The
second relation is proved by Hermitian conjugacy of the first. []

6.3. Oscillator Representations of the Virasoro Algebra. Recall that the Virasoro
algebra is the universal one dimensional central extension of the conformal algebra.
It has a basis consisting of elements d,, ke Z and a central element c,;,, which satisfy
the commutation relations

1
[di.d]=(k—Ddp s, + 12 6k+l,0(k3 — k)cyic- (6.3.1)

The following construction of the Virasoro algebra is standard in physics.

Lemma 6.3.1. Let {a;},_; be a collection of operators on a vector space V, such that
(a;,a;]1=id; ol and a,(v) = 0,YveV and i > 0. Define normal ordering by: a;a;:= a;a;
if i< jand :a;a;:= a;a; if i > j, then the assignment di— L, where the operators L,
are defined by |

L=< ta_;a;4: 6.3.2)

2 Jjel
is a representation of the Virasoro algebra with c,;;— 1. Moreover, we have:
[Lk9 ai] = - ia,-+k (633)

Proof. See, e.g., [19]). O

Translated to our situation, we get a c,;, = | representation of the Virasoro
algebra on the semi-infinite wedge space by:

| N N

L}‘":=—Z:&i<——j>o‘ci<—(j+k)): 1<i<s. (6.3.4)

2iz n; n;

Starting from these operators, we construct c,;, = n; representations of the Virasoro

algebra in the following manner; set T{:= 1/n,LY,, then these T{’s satisfy:
n2—1

N . 1 1
[T, TP]1=(k - DTY,, + Eniék +1,0(k> = k) + E5k+l,0k*1' (6.3.5)

n;

The extra term in the right-hand side of (6.3.5) is a two coboundary and hence we
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2

. . —1
define operators D{:= T® + — 5k o — I to obtain the commutation relations
1

in their standard form:

(D", D{"] = (k= DD, + 5k+,on(k — k). (6.3.6)

24

. ) . 1 n2-1
It is easily verified that %

=4|H |2, where H, is defined in (3.3.4). Hence,

D) = T + 45,0/ Hy 21 (6.3.7)

Since the operators D{? and D{’ commute for i # j, we can also construct a c,;, = n
representation by summation over i. Let us summarize the result in the following
theorem.

Theorem 6.3.2. Let the operators D, be defined by
1 s 1 N N
Di=5Y —:ai< = j>&i<—(j + nik)): +160lH,2L,  (638)
2 jez i=1h; n; n; n

then the assignment d, D, is a representation of the Virasoro algebra with c;,+—>nl.

Moreover, we have:
N
Al =i 6.3.9
[Dk,a;<ni J>:| n,d<n, (J+"k)> (6.3.9)

6.4. The Sugawara Construction of the Virasoro Algebra. Let {u,,}; <m<n2-1 be a
basis of sl,(C) and let {u™}, .,,<.2-; be the dual basis with respect to the trace

n+1

form on sl(C), and define u,, = u™ = I,,. The following lemma is known

as the Sugawara construction of the Virasoro algebra.

Lemma 6.4.1. Define the operators L,: A ®C® — A °C® by:

L= e~ WOy, )(e'Uthoym 6.4.1
= z 5 e ), (64.1)
The assignment d,— L, defines a representation of the Virasoro algebra with c,;,—>nl.
Moreover, we have:

[L,,e"x] = —le®**P°x  Vk IeZ, xegl,(C). (6.4.2)

Proof. We have Y [u,,,u™] =0, whence:
m=1

mni:l [e*u,, e7u™] = kb4 ;0 nzjl (1| u™). (6.4.3)
It is also clear that the operators e*’u,,, k >0 annihilate the vacuum [0). With
these remarks and the normal ordering definition 5.6.3 one easily finds:

. nZz: (€*u,)(e®um) if k<)

T (e ) )= "'”'21 (6.4.4)

Zl (€u,)(e™u™) if k> j
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The rest of the proof is standard; see, e.g., [19]. O

. N oo d
The lemma tells us that the Virasoro operators L, act as ie"‘"E on the affine

algebra. Now let us take an element %(J) of the affine algebra (see (4.2.9)). It is clear
then that:
- ) l
[Ly, 2()] = e*®ad H (x(1)) — Nx(l + Nk). (6.4.5)

In view of the right-hand side of this formula it is natural to consider the operator
L, —¢*H,. Since ¢*°H, = H,(Nk), we have:

[L,—e™H,,2()]= — %x(l + Nk) — u(H,(Nk), x(1))1. (6.4.6)

The value of the two cocycle u in the right-hand side of this formula is easily
computed with the help of (4.2.6); using the ad-invariance of the trace form,
we get:

l
H(H,(NK), x()) = — 7 01 i, o (H,,| x7) (6.4.7)
Recalling the definition (4.2.9) of £(I + Nk), we find:
(L, —e*H »2)]=— %f(l + Nk). 6.4.8)

We are now ready for the following lemma;
Lemma 6.4.2. Define the operator D,: A ®*C® - A°C* by
D=L, — e™H,+ 48,0l H, 1, (6.4.9)

then the assignment d,— D, is a representation of the Virasoro algebra with c,;—nl.
Moreover, we have:

[D, ()] = — %x(l + Nk). (6.4.10)

Proof. An easy exercise. []

6.5. The Difference D, — D,. In the representation theory of the Virasoro algebra
one often considers the difference A,:= D, — D,. It is well known that these 4,’s
satisfy again the commutation relations of the Virasoro algebra. The algebra
spanned by the A,’s is called a “coset Virasoro algebra” and one speaks of a coset
construction. This coset construction can be found in many papers; we mention
again our standard reference [19]. The key ingredient for the proof is the fact that
the operators A, commute with the elements of the HSA §, -

(GGG s

=0 see (6.3.9) and (6.4.10)
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- and hence also with the D;’s;
[A.,D;]1=0. (6.5.2)

The value of the central charge of the coset algebra is simply the difference
between the central charges of the Virasoro algebras spanned by the D,’s and the
D,’s respectively. As a matter of fact these central charges coincide, so that the A,’s
span a Virasoro algebra with c,;, =0, i.e, a conformal algebra. This numerical
coincidence occurs for any level one highest weight representation of an affine
algebra g, where ¢ is a direct sum of simply laced simple Lie algebras and abelian
Lie algebras.

Apart from the fact that any component AP C* of the semi-infinite wedge
space is a c,;, =0 representation of the Virasoro algebra, these components are
also unitary representations for this algebra containing a highest weight vector;

Lemma 6.5.1.
a) Al=4_,
b) Alk>=0 VI>0, (6.5.3)
¢) Aglk) = h(k)|k).

Proof. With the help of Lemma 5.6.2 one immediately proves D} =D_, and

l?,‘: =D_ i and a) follows. Relation b) is clear from the corresponding property of
D, and D,. To prove c), we use the definitions (6.3.8) and (6.4.9) to ‘write:

Aolky = (Do — Do)k

=< 1 Z umu'"—1 Z ;&i(o)z—Hﬂ>|k>. (6.5.4)

2n+2 m=1 2 i=1 R
The terms between parentheses clearly act diagonally on the k™ vacuum. [J

It is well known (see [20,21]) that the only representation of the Virasoro
algebra with these properties is the trivial one, i.e., d,—0 Yk, meaning that 4, =0.

Theorem 6.5.2. The oscillator and Sugawara constructions (see (6.3.8) and (6.4.9))
of the Virasoro algebra coincide,

D.,=D, Vk (6.5.5)

6.6. Conformal Transformation Properties of the Fermionic Fields. Here we will
derive useful expressions for the commutators [D,,y,(z)] and [D,,y¥(z)]. These
expressions can be considered as the conformal transformation properties of the
fermionic fields. R

Recall that the operators D, = D, act on the affine algebra by: [D,,x(l)] =

- %ﬁ(l + Nk). Using this relation and the definition (4.4.2) of the vertex operators,
one immediately derives the following relation:
i 1 d .
[D, A} (2)] =Nz”"<zE+ Nk)AI,fq(z). (6.6.1)

It turns out that the commutators [D,,;(z)] and [D,,¥¥(z)] are given by the
same relation with Nk replaced by {Nk;
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Theorem 6.6.1.
1 d 1
D, Yi(2)]=—2z z— + =Nk |y,

[ k> ‘/Il(z)] N Z <Z dZ + 2 )llll(z)’

1 P (6.6.2)
*¥(2)] = —z"| z— + — Nk Jy*(2).

[Dk’ l//l (Z)] N z <zdz + 2 >¢l (Z)
Proof. The theorem is proved in a somewhat indirect manner; first one introduces
operators Hj: A ®C® —» A°C® such that the relations (6.6.2) hold for H; instead
of D,. In order to motivate the definition of these operators, we remark that the
relations (6.6.2) can also be written in terms of their Fourier components;

nk+l)./,(l nik),

[0 hi01= 1 (1-
ke (6.6.3)
0wt = 1+ Jura e nby

L3

It is easily verified that these relations hold, if we substitute for D, the operator
A*C® > A *C® defined by

s k=
He=Y Y i<p+" ) WP + k). (6.6.4)

i=1 pez %

Let us compute the commutator [Hy, H;];

, k=1 nl—1
R (e ey
LpWt (p + nik):, (Vg + mil): . (6.6.5)

Inside the commutator we can leave out the normal ordering sign and hence we
find for the right hand side of (6.6.5):

2400 )

: qp+n kllf(P)!//,*(P + ni(k + l)) - 5pq+n l‘lll(q)lllt*(q + ni(k + l)))

- 1—
-y T ( s 1)(q+" )(6”+.,k~//(p)~//*(p+n(k+l))

=1 pgez

— O aena Wi @YF(g + ny(k + 1)): + 5q,p+n,-k5k+1,00(l’) + 5p,q+n.~15k+1,00(‘1))~
(6.6.6)

Here we have introduced the step function 6:Z— {0, 1} as follows; O(k):= 1 if k <0
and 0(k):= 0 if k > 0. The first two terms in the right-hand side of this formula yield
(k — DH, ., while the central terms become:

k— d—1 _ _
Ok+1,0 Z Y < i )(‘I"‘nl ) >5q,p+n.k(9(P)"6(Q))

i=1 l p.qeZ

nk—1)2
=5MOZ Z(G(p) 0(p+nk))< T)

i=1 l pel
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1 s 3k"'—nk
=§5k+l Z,

12 6k+l on(k® — k) + 6k+l,0k|H;_;|2' (6.6.7)

This means that the operators

-y ¥ ( k_l):'/’i(l’)'/’?‘(p+n,.k):+%6kolHQ|21 (6.6.8)

i=1 pez i 2

define a c,;, = n representation of the Virasoro algebra.

The next step is to compute the commutation relations of the H,’s with the
oscillators. Using the expression (5.6.4) of the oscillators in terms of fermions and
the definition (6.6.8) of the H,’s, one readily finds:

(N l
[H,‘,oz,(n—il)] —n—ia< (l+nk)> (6.6.9)

This implies again that the operators H, — D, define a c,;, = 0 representation of
the Virasoro algebra. Continuing in the same manner as in the previous section,
one proves that H, = D,, which proves the theorem. [J

The proof of the theorem yields the following corollary:

Corollary 6.6.2. The operators
c nk—1
=L X ( 2 )"/’i(”)‘/’?(l’“‘"ik)i+%5ko|Hg|21 (6.6.10)
i=1pez i

define a c,;, = n representation of the Virasoro algebra. This representation coincides
with the oscillator and Sugawara constructions (see (6.3.8) and (6.4.9)).

7. Vertex Operators

7.1. Introduction. In this section we will show that the fermionic fields ¥,(z) and
Y#(z) can be expressed in terms of so-called fermionic translation operators

. . N
0, APC®— AP C* and the bosonic oscillators &i<n— k). As a consequence the

vertex operators A% (z) can be written as a product

Q.07 xI'y, (7.1.1)

where I'J is a complicated expression in the bosonic oscillators.

From thls formula one easily reads off an alternative construction of the
irreducible gl,(C)-module A C®; it is the tensor product of the group algebra of
the group generated by the operators T;:= Q;Q;2}, 1 £i<s— 1 and an irreducible
representation of the Heisenberg algebra (a polynomial ring).
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7.2. Expressions for Y(z) and y¥(z). Recall the commutation relations (6.2.1):

[&i(gk) Wj(Z)] = 6,2 (2),
N k] %
[&i<; k), w;-*@] = =0,z NYK(e). (7.2.1)

These relations can be seen as formal eigenvalue equations for the adjoint action
of the HSA §,. They determine the formal eigenvectors ¥,(z) and yf(z) up to
operators that commute with the action of the HSA. It is easy to find solutions

for (7.2.1); define
E{")(z):=exp < -y lz"‘"”"""zﬁ(ﬂk)),
sok n

1 N
E{7(z):=exp < -y —z"”"“”‘o?,-(—k)). (7.2.2)
k<0 k n;
Then one easily checks that the product E,(z):= E{)(z)E{*)(z) satisfies the first
relation of (7.2.1) for all k #0. From this it is clear that we can write:

¥i(2) = Qi(2)Ei(2), (7.2.3)

where Q,(z):= E{7(z) " '¥,(z) E{*)(z) ! is a formal operator valued Laurent series,
which commutes with all oscillators except with the zero modes;

[&,(nﬁk), Qi(z)] = 6,6400i(2). (7.24)

j
Of course one has a similar expression for the Hermitian conjugate field;
Y¥(2) = QF)E (2T EM(2) 7 (7.2.5)

Next we consider the formal operator valued Laurent series Q;(z) and QF(z).
In the lemma below we will show that the z-dependence of these operators is
determined by the conformal transformation properties (6.6.2) of the fermionic
fields.

Lemma 7.2.1. We have:
0,(z) = ZNmIEO-10 g _ g NGO +11)

* —(N/n)(@(0)+1/2) %, —(N/n)(@10)—1/2) (7.2.6)
¥o)=z o QF =9z o >

where Q; and QF are Hermitian conjugate operators on A *C® independent of z.

Proof. We only prove the first relation; the second follows by Hermitian conjugacy
from the first. Consider the commutator [Dg,¥,(z)]. Using (6.6.2), the definition
(6.3.8) for D, and the expression (7.2.3) for y,(z), we find:

[% ¥ N :ai< - nﬁk>ai<gk>:, Q,.(z)Ei(z):I = zzid;Q,-(z)E,.(z). (7.2.7)

kez i i i
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Using the Heisenberg commutation relations one easily derives:

1N N \./N\ ~ i
{:5 k; —VZ &,( - n-‘k)a,<n—l k), E,(Z)] = de EE(Z). (728)

Substituting this relation in (7.2.7) and recalling that Q/(z) commutes with all
oscillators except with the zero modes, we find:

1N d
[5 (07, Qi(z)]=za 0.(2). (729)
Using (7.2.4), this can be rewritten as:
Y 60 -ho@ =220 (12.10)
n; dz

This differential equation is solved by the first relation of (7.2.6). []
With this lemma we can write:

i(z) = 2O BB a),

YH(z) =z “MEOHIP QX EC)(2) T E((2) 7Y,
and from these relations it is clear that the operators Q; and QF, which were defined
in the lemma as “integration constants,” change the total charge of the fermions
of type i by + 1 respectively — 1. In the case of the homogeneous HSA the operators
T;:=Q;0% 1 <i<n-—1 are called translation operators (see [3]), because they

are closely related to the translation subgroup of the affine Weyl group. For these
reasons we will call the Q,’s and Q*’s fermionic translation operators.

(7.2.11)

7.3. The Operators Q; and Q¥. In this subsection we will prove the following
theorem, which determines completely the action of the fermionic translation
operators on the semi-infinite wedge space.

Theorem 7.3.1. Let Q;,QF: A °C® —» A ©C® be the operators defined by (7.2.6), then
the following relations hold:
QVi2)=—yi(2Q; if i#}j,
QUID = —VI@Q: if i#],

Qu(2) = Yy (2)0,, (73.1)
Q¥ (2) = 2""Y¥(2) Qi
Q:10> =y(1)0),
QF10)> =y¥(0)[0). (7.3.2)
Moreover, these operators are unitary —
f=0! (7.3.3)

— and they satisfy the anticommutation relations:

{0.0;3=0={0F,0r} if i#j {Q.Qf} =25, (7.34)
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Note that the relations (7.3.1) can also be written as:
Quik)=—y;(k)Q;, if i#j,
Wx(k) = —y*(k)Q, if i+# ],
Q0= —yrlQ if i) 735
Qui(k) =Yk + 1)Q;,
Qi (k) =yFk +1)Q;
while the Hermitian conjugates of these relations read:

OFY(k)=—yk)QF if i#],

QFyr(k) = —yF(k)Qr if i#],

OFyik) =ik — 1)QF,

Oryi(k) =y ¥k —1)0F. (7.3.6)
Together with (7.3.2) this indeed determines the action of Q; and QF.

In the sequel we will make an extensive use of the calculus of formal variables
developed in [22]. In particular we will use the following formal power series:

1 k
—= 7.3.7
T k;)z , (7.3.7)
1
log(1 —z):=— ) —2K (7.3.8)
ok
1 k
expzi= Y —z¥ (7.3.9)
k=0 k!
oz):=Y 2~ (7.3.10)
keZ

With these definitions one clearly has the following formal identities:

1
(1—2):=1, (7.3.11)
exp(log(l—2)=1-z, (7.3.12)
P(2)0(z) = P(1)é(z) VPeC[z,z '] (7.3.13)

We start to prove a lemma.

Lemma 7.3.2. We have the following formal identities:
EfV@W)EM ()™ = (1= (/2" Wiy),

E{VWF(y)E(2) 7! =10 F),
) 1
E{7(2W(y)E @) = =)™ vily),
E{D@YFWET ()7 = (1= (/yy™WE(y), (7.3.14)
EQE0) ™ = 1 EOO) B

1= (y/z)Nm)
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E{7(EM(y)™ = (1 = (z/y"™)E{(y) " E{(2), (7.3.15)
i), ¥ @)} = o((y/z)"™). (7.3.16)
Proof. We have
1
EN@U)E @ ! = exp(—ad ) Ez""’"*”‘&(%k))w.-(y)
k>0

i

1
=exp ( -2 ;(y/Z)‘”/”"“> ¥iy)

= exp (log (1 — (y/2"™))Y(y)
= (1= /")) (7.3.17)

The second relation of (7.3.14) can be proved analogously. The third and fourth
ones can be derived from the first two by Hermitian conjugacy.

To prove (7.3.15), we remark that the products of exponentials in the oscillators
are all of the form e“e® while the commutator [4, B] is a multiple of the identity.
In that case one has:

eteB = el4-BlgBeA, (7.3.18)

So for the first relation of (7.3.15) we only have to make the following computa-

tion:
— Z 1 7~ Wmdkg, ﬁk , z 1 y~Wimlg, ﬁl = Z l(y/z)(N/n.)k
I n k>0k

k>ok n; 1<0 i
= —log(1 — (y/2"™),

and the result follows. The second relation of (7.3.15) is proved by inversion of the
first.

Finally, (7.3.16) is immediate from the anticommutation relations (5.4.9) and
the definition of the J-function. [

Let us solve Q; and Q¥ from (7.2.3) and (7.2.6);
0= Eg_)(z)' 1 W,'(Z)Egﬂ(z)— 1Z—(N/n,-)(&,-(0)+l/2),
* = BB @) a1, (7.3.19)
With these relations and the lemma we can prove the following lemma.
Lemma 7.3.3.
0r0:=0:9¢ (7.3.20)
Proof. With (7.3.19) we can write:
01 Q: = B W@ @O PE (5) () EF(y)y N0
= EC QU RE@EC () E () ey o,
Using the relations (7.3.14) and (7.3.15), this can be rewritten as:
0FQ; = (1 — (y/2)"™)E{(y) " ES @ F W) E(3) T EC (@) 2y VIO,
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Because of the factor (1 — (y/z)¥'™) in this expression and the relation
(1= (y/2"™)o((y/2)"™) =0

we can anticommute the fields y,(y) and ¥¥(z). We now use (7.3.14) and (7.3.15)
again and obtain:

070,= —(1—(y/2/"™) B )0) ™ B @ W GIEL ) B )/ V0
= E ) ) 0) W e
= E0) Y OEE0) OB @)l e
= E0) ) E) o) A By B ) of
=0.0f. O

We are now able to prove the relations (7.3.1) of the theorem. The first two
are easy; substitute the expressions (7.3.19) for Q; and QF and the result follows
immediately. The third one is proved by:

Qii(z) = Q201D  E(2)
= 7~ N NmEO-1 0 E ()0,
= z-NMy(2)Q;. (7.3.21)
Finally, for the fourth relation of (7.3.1) we need the lemma above;
QFvi(z) = QMO k()
= ZNm) NGO -1D0% ) F (7)
= 2N NGO -1 OX E (7)
= 2"y (2)QF. (7.3.22)

Note that these relations imply that the operator Q*Q; commutes with the fermionic
fields y(z) and y¥(z). Therefore, if we want to prove that the Q,’s are unitary
operators, we only have to show that Q*Q, stabilizes the vacuum |0 ).

We first prove the relations (7.3.2);
0.10> = E; ()7 W, @E} @)1z~ "m0+ )0y
=z WPME=(2)" 1,(2)[0). (7.3.23)

The right-hand side of this relation is a power series in z¥/™. Extracting the coefficient
of the constant term, we obtain:

:10> =y(1)]0). (7.3.24)

The second relation of (7.3.2) is proved analogously.
Now that we have proved (7.3.2), we calculate:

0FQ:10) = 0¥ i(1)I0) = ¥(0)QF (0D = ¥ F(0)|0) = [0).  (7.3.25)

This completes the proof of the unitarity of the fermionic translation operators.
The anticommutation relations (7.3.4) will be left to the reader.
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7.4. Vertex Operators for A, and g7 ©

Here we will study the normal ordered operator product :y ()Y ¥(v): in two formal
variables u and v. Note that the coefficients of u*v ", k, le Z and the identity operator
I span an algebra of operators isomorphic to A, Therefore, this operator product
can be called a vertex operator for 4. Of course our aim is to replace the formal
variables u and v by 0’z and 0’z respectlvely, to obtain the vertex operators for
g1,(C). The justification for this kind of manipulation will be given below.

With the formal variables u and v we can write

W)= i F(v) — <Oy} (v)|0), (7.4.1)
where the “contraction” {O0|y;(u)y¥(v)|0) is formally well defined;
Ning)(k +1/2 (/w1
Oy (Y F(v)10) =5 Z (/) NmIE*D) = 5 T o/ (74.2)
For the ordinary product y;(u)y¥(v) we write, using (7.3.15):
‘/’i(“)‘/’j (v)
= y MmO =120 B ) ECH (1) E{)(v) L ES (o)1 Q) tom ;)(60)—172)
1 ) (8:(0)— P o (N0~
= ”(v/u)N/n.' Y N/m)8i(0) 1/2)Qin lEs )(u)E; )(U) ‘Eﬁ“(u)E&*’(v) 1),—(N/n¢;0-1/2)

u(N/"l)(l 0ij)
_______N_/Q QJ 1 (N/n.)(ﬂ i(0)—1/2) —(1\’/'{,)(6i i(0)~ l/Z)E( )(u)E( )(U) 1 E(+)(u)E(+)(U) 1

1= 6;;(v/u)™™
(7.4.3)

With this calculation we have proved the following lemma:

Lemma74.1.

pNV/2n5 = (N/2n:) (N[ni) (1 = 8 j)

i) = 1= 0, (v/u)"/™

{QuQ; 1 uNmEOy GO B BT ) T ENDWESY(0) T — 60 ).
(7.4.4)

In order to obtain an expression for the vertex operators /T;fq(z) for g7,,(C) we
would like to replace the formal variables u and v in this formula by w?z and w?z
respectively. Of course this must be done with some care, because of the formal
power series (1 — &;;(v/w)*™) ™' =1+6;; Y (v/u)¥"* in the right-hand side. Note

K>0

however, that it is allowed to multiply both sides of (7.4.4) with the polynomial
(1 — 6;;(v/w¥™). This justifies the substitution urswPz, v>w% for the case
i#jv(i=jAp+#q). Using (5.5.4), we find after a short calculation:

Theorem 7.4.2. For i#j v (i=j A p # q) we have:
1 @PWNma(=3,)
1— 5,~j(wq_”)N/"‘

. wp(N/n;)&,-(O)—q(N/n 1;)4(0) Z(N/n;)&g(o)—(N/n (0)

N((1/2n5) + (1/2n1) - 815(1 -1
ZN((1/2n5)+(1/2n1) = bi5( /n:))Qin

B 0P2)E 0f) " E (072 E D (0) (743)
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7.5. Bosonic Realization of A®*C® and A C®. Recall from Sect. 4 that the HSA
8, has a basis {p;,q;}in{c} whose elements satisfy the commutation relations

[pi»q;1 = 0;;¢c. The p;’s correspond to oscillators &i(%k) with positive k. Hence
they annihilate the vacuum vector v,. With these remarks it is easy to see that the set
{4 - glrmvol ki€Zs o, meN} (7.5.1)
is independent. In other words: the linear mapping f:%(§,)-vo— C[x;,x,,...]
defined by
Sl abp-vo)= X xhy (1.52)
is an isomorphism between vector spaces. It is clear that on the polynomial ring

0 .
C[x;] the p;’s and g;’s are represented by a—— and x; respectively.

Next we consider the vectors vy, . . := Q% ---Q%-vy, k,eZ. This collection
contains all vacua v, keZ; one easily derlves that for k=n, +---n;_y +j+nl,
1<iZs, 1<j<n, leZ:

D= QPO QR QLT O, (753)
S
Notice that these vectors have different eigenvalues with respect to & C4;(0):
i=1

40)- vy, ..k, = ki, .k, (7.5.4)
For this reason the collection {v,, . |k;eZ} is independent. Let 2 be the linear
span of all v,, .. It has the following charge decomposition:

=@,

keZ

Q= @ C(Q% - Qk=-vy)

ki+ - ks=k

= @ C@s-Qkny) (7.5.5)
ki+-ks=0
Now consider the space %(ﬁ,,)!)k, which can be identified with the tensor product
0,®C[x;]. From the expressions (7.4.4) and (7.4.5) for the vertex operators we
see that this space is invariant under the actions of A, and gl,(C). It is also clear
that this space cannot contain any invariant subspaces Therefore it must coincide
with the k™ wedge space;

APC* =2, C[x;]. (7.5.6)
Similarly:
A?C® 22 C[x;]. (7.5.7)
The space £2, can also be described in a somewhat different manner. Define
for 1 £i<s—1 the operators T;:= Q;Q;3} and let T be the group generated by
these operators. A short calculatlon yields
T,T, T T = (), (7.5.8)

where a;;:=26;;—6;,,,;— 0;4+,, is the Cartan matrix for the Lie algebra sl (C).

i
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This relation expresses that T, is a central extension of the (co)root lattice of sl,(C)
by the two element group Z, =~ { +1} (cf. [3] for the homogeneous case). The
space £, can be identified with (a copy of) the group algebra C[T ]

8. Remarks

8.1. Restriction to sl,(C). In Sect. 7.5 we have seen that the gl,(C)-module APC®
. . . . N
is generated by the action of the creation operators, i.e., the elements &-(—k) for

k<0 and of the operators T;= Q Q0 on the k™ vacuum uv,. Restricted to
s1,(C) this module does not remain irreducible. This is caused by the fact that
not all elements of the HSA §, belong to sl,(C). If we want to describe the
sl,(C)-module L(Aymoan)» W€ have to throw out certain variables from the
polynomial ring C[x;].

Define Bi(l), leZ — {0} as follows:

p,.(ﬂk);:a,.(ﬁk) for k¢nZ,
n; n;

[3,-(Nk):=%6ci(Nk) -n_Lam(Nk) for 1Sis<s—1,
B(NK):= d,(NK) + &,(NK) + --- 8,(NK). 8.1.1)

Let £, be the intersection §nnsAl,,(C), then:

o dal el el

In terms of the variables x; (see Lemma 4.3.2) this means that we define new
variables y; by:

yn1+n2+-~-n.-_1+j+nl:= xn|+n2+~--ni_1+j+nl for J # n;

1 1
Yoy tnatomo +0'= T Xy dmg b omim g nl T T Xy g+ omi 4l for 1 g l é s—1
n; Ny
ynl _xn1+nl+xn1+nz+nl+ n+nl
8.1.3)

The sl,(C)-module L(A, .q,) is generated by the action of £, and the group Tﬂ on
the vacuum vector v,; we find:

L(Amoan) = CLT,1® CLy;; i #nl]. (8.1.4)

8.2. g-Dimension Formulas. Recall the operator D, (see (6.3.8)). Using (7.5.4), one
finds:

Do(Q‘i""lecs'Uo)={ |H,I> + <:1 : ﬁ)}Qk‘ -QFp,. (8.2.1)

Combining this with (6.3.9) and (7.5.6), we find the following explicit form of the
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“g-dimension” formulas from [5]:

q1/2|H,_‘I2 ql/z((kf/n,w (k2 /ng))
trace e o q”° = fitlat ok sk (8.2.2)
H H qJ/n,
i=1jz1
and
trace, 4" H (1 — ¢") trace = c= g™. (8:2.3)

8.3. Hierarchies of Soliton Equations. Kac and Peterson [15] have shown that the
KP-hierarchy of soliton equations can be defined in terms of the 1-component
Clifford algebra:

Y Yk ®@y*(k)t=0 (8.3.1)

keZ

or, equivalently:
d
FZ V@@ Y@ =0 832)

Here 7 is an element of AJC*, which, in the 1-component case, is realized as a
polynomial ring. Equations (8.3.1) and (8.3.2) describe the orbit of the group GL
through the vacuum vector v,.

It is clear that (8.3.1) can be rewritten in terms of s-component fermions;

Zl Vil @Ytk (8.3.3)
where we now think of t as a multicomponent polynomial, its components being
labeled by the (co)root lattice of siy(C). This equation is called the s-component
KP-hierarchy in [23]. It is 1nterest1ng to consider reductions of this hierarchy to
the SL -orbit. The case n=2, s=1 is well known; one finds the KdV-family of
p.d.e’s. In the case n=2, s=2 the 2-component KP-hierarchy reduces to the
so-called Toda-AKNS hierarchy (see [10, 13]).

Acknowledgements. We would like to thank Edy de Kerf for reading parts of the manuscript and
for making some valuable remarks. Johan van de Leur wishes to thank Victor Kac for many
illuminating and inspiring discussions in which he showed his great expertise.

Note. After completion of the manuscript we learned of a paper by Dodd [24], in which the
realizations of level one highest weight representations of s, (C) associated to different HSA’s are
studied from a somewhat different point of view.
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