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Abstract. We give an explicit description of all inequivalent Heisenberg subalgebras
of the affine Lie algebra gln(C) and the associated vertex operator constructions
of the level one integrable highest weight representations of this algebra. The
construction uses multicomponent fermionic fields and yields a correspondence
between bosons (elements of the Heisenberg subalgebra) and fermions.

1. Introduction

In 1978 Lepowsky and Wilson [1] gave the first explicit realization of the basic
representation L(Λ0) of the simplest affine Lie algebra sί2. Their construction was
soon generalized to the case of arbitrary simply-laced affine Lie algebras and to
the case of twisted affine Lie algebras (see [2]). In this so-called principal realization
of the basic representation an important role was played by a set of formal
generating operators, which resembled closely the vertex operators, known at that
time from the theories of dual models and strings in physics. Inspired by this
discovery, Frenkel and Kac [3], and independently Segal [4] gave a different
construction of the same module. The formal generating operators used in their
construction are precisely the vertex operators from physics.

So in the early 80's there already existed more than one realization of a level
one highest weight representation of a simply-laced affine Lie algebra. At that time
these constructions seemed totally disconnected. The link between distinguished
constructions was first made in [5] and, from a somewhat different point of view
in [6]. It turned out that each realization depends on the choice of a so-called
Heisenberg subalgebra, i.e., a subalgebra of the affine algebra with basis {pk,qk}keκ
and the canonical central element c, whose elements satisfy the well known
Heisenberg commutation relations:

I>*,4;] = V (1.1)
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One also encounters this algebra in a slightly different disguise, namely as a
collection of bosonic oscillators a(k\ keZ with commutations relations:

lΦ)Λm = kδk+hOc. (1.2)

The connection is made by leaving out the zero mode α(0) and defining for k > 0:
pk:=cc(k),qk:=l/ka(-k).

It is easy to construct a representation of a Heisenberg algebra; take the
polynomial ring C[xfc;fceN] and represent the pks and qks by:

p f cι->— qk\-^xk cf-*/. (1.3)
oxk

It is well known that any irreducible representation V in which c acts as the identity
and which contains a vacuum vector, i.e., a vector which is annihilated by all pfc's,
is isomorphic to this module. Under certain mild restrictions on the Heisenberg
subalgebra (see, e.g., [7]) it is possible to show that the integrable highest weight
representations of an affine Lie algebra are completely reducible with respect to
the action of the Heisenberg subalgebra. Restricting ourselves to the basic
representation L(/l0), we conclude that it can be written as a tensor product of an
irreducible module over the Heisenberg subalgebra and a so-called vacuum space
fl(Λ0), consisting of all vectors in L(Λ0) which are killed by the pk's;

Ω(Λ0):= {veL(Λ0)\pk(υ) = 0 V/c}. (1.4)

The choice of the Heisenberg subalgebra will be reflected in the structure of
the vacuum space Ω(Λ0). This can be illustrated with the simple example of the
affine algebra sl2- In this case there are essentially two inequivalent Heisenberg
subalgebras, namely the principal one used by Lepowsky and Wilson:

pk:=eiik'ir9e + emf qk'=^—τ(e~i(k'1)θe + e~ikθf) Vfc>0, (1.5)

and the homogeneous one used by Frenkel-Kac and Segal:

pk:=eikβh qk:=~e-'kβh Vfc>0, (1.6)

where we have used the standard basis {e,f,h} of s/2(Q. The difference between
the vacuum spaces for these two Heisenberg subalgebras is tremendous; one can
show by a character theoretical argument that in the principal case the vacuum
space contains only multiples of the highest weight vector vΛo, while in the
homogeneous case it has a basis {Tk-vAo}keZ, where T is some lift of the matrix

to the associated Kac-Moody group SL2. In particular, it is infinite dimensional!
The importance of the non-homogeneous realizations for physics was soon

realized. It turns out that the non-homogeneous Heisenberg subalgebras become
homogeneous if one works in a twisted realization of the affine algebra. Such a
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twisted realization is constructed by means of a finite order automorphism of the
underlying finite dimensional Lie algebra. These automorphisms can also be used
to construct so-called orbifold models in string theory (see, e.g., [8]).

Apart from their applications in string theory the different realizations of
representations also play an important role in the theory of integrable partial
differential equations (soliton equations). In such equations one often encounters
an infinite dimensional symmetry group, showing that the solutions of the equations
lie on (an) orbit(s) in some representation space of this group. Conversely, it is well
known (see [9]), that the orbit through the highest weight vector in a level one
highest weight representation of an affine Kac-Moody group can be described by
a family of integrable partial differential equations. The point is that these describing
equations can look different in different realizations of this representation, whence
one can associate different integrable systems to the same object, namely the ojΐ>it
of a Kac-Moody group. This was illustrated in [7,10] for the simple case of SL2;
the principal realization yields the KdV-family of p.d.e.'s, the homogeneous one
the so-called Toda-AKNS system.

These applications provide a strong motivation to consider more general cases
than the principal and homogeneous Heisenberg subalgebras and more general
affine algebras than sl2. To do this, one first has to classify all inequivalent
Heisenberg subalgebras of an affine Lie algebra g. In this context inequivalent
means of course: nonconjugate under the adjoint action of the associated
Kac-Moody group. One can show (see [5,11,12]) that the inequivalent Heisenberg
subalgebras, which come from a compact form g0 of g are parameterized by the
conjugacy classes in the Weyl group of the underlying finite dimensional Lie algebra
g. For the simply-laced Lie algebras the associated vertex operator constructions
were given in [5] and in a somewhat different manner in [6]. Kac and Wakimoto
[13] have used these constructions to calculate the hierarchies of p.d.e.'s describing
the group orbit through the highest weight vector in the principal and homogeneous
realizations.

In this paper we readdress the case sln(C) or rather gln(C). Because of the
particular simple structure of the Weyl group of sln(Q it is easy to describe all
inequivalent Heisenberg subalgebras. The associated vertex operator constructions
can be given in a very simple and explicit manner by using the language of
multicomponent free fermions from two dimensional quantum field theory. In a
forthcoming paper we will generalize this description to the algebras Dj,1*. We hope
that these fermionic constructions can be used to calculate other hierarchies of
soliton equations then the ones found in [13] (see Sect. 8.3).

The Weyl group of sln(Q is the symmetric group Sπ, consisting of all
permutations of n elements. Every permutation is conjugate to a product of disjoint
cycles, say cιc2'-cs. Denoting the length of the cycle ct by ni9 and choosing the
ordering such that nί ^ n2 ^ •• ̂  ns, we see that the conjugacy classes in Sn and
hence the inequivalent Heisenberg subalgebras of sln are parametrized by partitions
of n\

s

n = {nun2,...,ns}; nι^n1^'-ns\ £ n i = n. (1.8)

The conjugacy class of Heisenberg subalgebras corresponding to one cycle of
length n is in some way generic. The principal Heisenberg subalgebra is a representa-
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tive from this conjugacy class. In this case a fermionic construction of the level
one highest weight representations was given by the Kyoto school [see, e.g. [14]).
In order to motivate what is coming, we will give a slightly adjusted version here
in the spirit of the paper [15].

Let Cl be the Clifford algebra on generators φ{k\ φ*(k), keZ with relations

Φ*U)} = δkj {φ(k\ φ(j)} = 0 = {ψ*(k), φ*(j)}. (1.9)

Define the so-called spin module V as the unique irreducible C7-module, which
admits a vacuum vector |0>, such that

φ(k)\0) = 0 V/c^O,

φ*(k)\0} = 0 V/c>0. (1.10)

This motivates the following normal ordering prescription

Next one introduces formal fermionic fields by

I
ψ*(z):= Σ Ψ*(kKk- (1.12)Σ

fce
It can then be shown that the identity operator together with the homogeneous
components of

ω ~q

1 _ ω p q \<p,q^n,VΦq (1.13)

:φ(z)φ*(z):

where ω = e2πi/n is a primitive root of unity, span a Lie algebra of operators on V
isomorphic to gln(C).

Next one introduces the charge decomposition of the module V; this is done
by setting the charge of the vacuum |0> to be zero and by agreeing that the
fermions φ(k)(φ*(k)) raise (lower) the charge by one. One can then write

V=@Vm9 (1.14)
mεZ

Vm being the subspace of all vectors of charge m. The Km's are irreducible level
one highest weight modules over gln(Q.

Notice that this is a pure fermionic approach to the representations of glH{Q.
There is also a well known bosonization procedure, which can be described as
follows; in (1.13) we have introduced the bosonic field a(z):=:φ(z)φ*(z):. Expanding
this field as a Laurent series, α(z) = £ α(fc)z~*, one readily finds

fceZ

(1.15)Σ
iεZ

With this expression one easily verifies the oscillator commutation relations (1.2).
One can then prove the following fundamental theorem.
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Theorem 1.1.

where the operator Q:V->V is defined by

Q. (1.17)

In particular, this operator raises the fermionic charge;

Q'Vm^Vm+1, (1.18)

Inserting this result in the expression (1.13), one finds after some calculations for

ω ~q

(1.19)

Note that Q and Q~x have cancelled in this expression, whence everything can be
expressed in terms of oscillators. This is the reason that the modules Vm remain
irreducible when restricted to the action of the principal Heisenberg subalgebra.

How to generalize this construction to a more general partition n =
{nu n2,..., ns}? To answer this, we divide a n n x n matrix in s2 blocks of size nx x ny

The diagonal blocks correspond to Lie algebras gln.(Q and the principal construc-
tion above tells us how to make vertex operators describing the action of the affine
algebra glnr So we just should take s copies of the construction above or, what is the
same thing, we should work with s-component fermions ^(fc), ψf(k\ l^ί^s, keZ.
The problem is of course how to find vertex operators associated to the off diagonal
blocks.

In the case that every cycle has the same length, everything is rather
straightforward. As an example we sketch the homogeneous construction, cor-
responding to the partition n = {1,1,..., 1}. In this case we take the Clifford algebra
generated by the fermions φi(k), φf{k% 1 ̂  i: ̂  n, fceZ with relations

{ΨM ΨJ(/)} = δtjδu {ψM φj(i)} = o = {ψf(k\ φf(i)}. (1.20)

In fact we will see that these n-component fermions can be obtained by relabeling
the 1-component fermions, so that this Clifford algebra is really the same as the
one considered before. We-again consider the irreducible C/-module generated by
a vacuum |0> satisfying

ι/,.(fc)|0> = 0 Vfc^OVΐ,

φ*(k)\θ) = o vfc>ov;. (i.2i)



72 F. ten Kroode and J. van de Leur

Normal ordering and fermionic fields are defined as in (1.11) and (1.12). The vertex
operators associated to the off diagonal blocks are given by :φi(z)φf(z):, 1 ̂  ij ^ n,

The bosonization procedure is also analogous to the principal case; introduce
α f(z)= Σ (xi(k)z~k:=:φi(z)ψf(z):. One can then prove the following theorem.

fceZ

Theorem 1.2.

( Σ Q γ ~ k « i (

where the operators Qi'.V^V are defined by

QiΨj(k)=-ψj(k)Qi ifi#A

QiΨf(k)=-Ψί(k)Qi ifi#j. (1.23)

These operators satisfy:

{Q i,βJ} = 0 ifiVj. (1.24)

With this result one can find an expression for the vertex operators associated to
the off diagonal elements; for i φj we get:

:^(z)^(z):= Q&J V«°>-α'«»+1 exp

It is important to notice that the β's do not cancel in this formula, simply because
there are n different types of them. It is easy to see that the vacuum space Ω(Λk)
of the s/w-module L(Λk) is spanned by the vectors T?1 T T TT-V* 1 ^

We will complete this introduction by formulating the general result of this
paper.

Theorem 1.3. Let n = {nl9 n 2 , . . . , ns} be a partition ofn, N' the least common multiple
of the numbers n1,n2,-..9ns and define

N' if NΊ- + — ) G 2 Z Vij

2ΛT if N'l- + -U2Z for a pair (ij)

Let Cl be the Clifford algebra generated by the fermions φ(k\ ψ*(k), keZ with
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relations (1.9) and define multicomponentfermions φi{k\ φ*(k\ l^i^s, keZ by:

φi(l + mnf):= φ{n1 + n2 H — + ni-1+l + nm\

φf(l + mn^ φ*{nx + n2 + ••• + ni.ί + / + nm) 1 <; / ̂  ni9 meZ. (1.27)

These fermions satisfy the relations:

{ΦM Φf(i)} = V « ΨM hi1)} = ° = W(fc)> ΨW)} (i 2 8)
/n ί^rms o/ these fermions the spin module V can also be defined as the unique
irreducible Cl-module generated by a vacuum |0> satisfying

φi(k)\O} = O Vfc^OVi,

^*(fc)|0> = 0 Vfc>OVi. (1.29)

Introduce formal fermionic and bosonic fields by

fceZ

φ) = Σ α»-^:=:^(#f(z): (1.30)
fceZ

where normal ordering is defined as in (1.11). Then we have

- Lτz αΛ

Φ?(z) = e r ^ ' ^ ' ^ ^ e x p f Σ τZ~iN""]\(k) )exp( Σ γz~win)kφ)], (1.31)
\k<ok J \k>ok )

where the operators Qi'.V^V are defined by (L23).
The homogeneous components of the normal ordered products

:Mi# y >): lύUJSs (1.32)

together with the identity operator provide an irreducible level one representation of
the affine Lie algebra of infinite rank, A^, on each charge sector Vm. Similarly, by
setting ω:=e2πilN, one obtains an irreducible level one representation of the
subalgebra gln(Q aAoaonVmby the homogeneous components of

ω(Nlni)(p-q)

:φi{ωpz)φj{ωqz): - δijχ _ωiN/niHp-q)i Φh Iύp£ni9i£q£nj or i = j ,

l^pφq^ni9

:ψι(z)ψT(z): l^i^s (1.33)

and the identity operator.

The definition (1.30) of the bosonic and fermionic fields will be motivated in
Sect. 5 after a detailed study of a finite order automorphism associated to the
partition n and the corresponding twisted realization of the affine algebra gίn(C).
The expression (1.31) for the fermionic fields in terms of the bosonic oscillators
0Ci(k) and the operators Qt will be derived by exploiting the conformal symmetry
of these fields, i.e., their commutation relations with the Virasoro algebra.
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2. Π i e l i e Algebra gln(Q

2.1. Introduction. Let gln{Q be the Lie algebra of all nxn matrices with complex
entries. The usual basis for this algebra is the collection {EiJ}1^iJ^n9 where Ei} is
the matrix with a 1 on the (i,j)th entry and zeros elsewhere. The commutation
relations for these basis elements are:

ΓJfi E ~\:= δ E δ' E C2,1 1̂

In this paper we will work with partitions of an n x n matrix in blocks. To be
more precise: let n — {n l5 n2,..., ns} be a partition of n, i.e., nt ^ n2 ̂  ^ ns and

s

£ n. = n. The associated partition o f n x n matrices is then given schematically by:

" 2

( Z 1 2 )

where 5 0 is a block of size n{ x w;. With this blockform in mind we rephrase the
commutation relations (2.1.1); the standard basis for the (*J) th block is the set of
matrices { ^ } i i p ^ l , i g ^ I I J defined by:

Epq'-— Eni + ' m-i+ptrn + ' nj-i+qi (2.1.3)

and in terms of these elements we may write:

[ £ « , £ΪJ] = δjkδvE% - δuδpsE
k

ri- (2.1.4)

Associated to each partition n we will define a Cartan subalgebra hn of gln(Q.
For the case n = {n} this is the well known "principal" Cartan subalgebra, while
for n = {1,1,..., 1} hn is the standard Cartan subalgebra h of gln(Q, i.e., the set of all
diagonal matrices. We will also study the root space decomposition of gln(C) with
respect to these Cartan subalgebras. For each partition this will lead to the introduc-
tion of a basis {Λ^q}1^iJ^sΛ^p^nifl^q^n. of gln(Q consisting of eigenvectors for
the adjoint action of hr It will turn out that the mapping ψn:gln(C)^>gln(C) given
by φn(EiJq):= A^q is an isomorphism of gln(C), and hence the A^'s satisfy the same
commutation relations as the E^qs:

IA%, A»l = δjkδqrAl - δuδpsA%. (2.1.5)

We will see that this isomorphism maps the standard Cartan subalgebra into the
Cartan subalgebra hn.

Before considering the general case, we will first review the well known principal
case in Sect. 2.2. It is rather easy to generalize the results from this case to the
general case, which will be treated in Sect. 2.3.

2.2. The principal case. The following construction goes back to Kostant [16],
who introduced the so-called principal cyclic element in the context of an arbitrary
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semisimple Lie algebra g. For the case g = sln(Q or rather the case gln{Q = g@CI,
which we are interested in, all formulas become particularly transparent (see also
[2,7]); let E be the principal cyclic element given by

Ϊ = 1

This element is clearly associated to the cyclic permutation σ: {1,2,... ή] -• {1,2,... ή]
given by:

We have:

E=ΣEiMi) (2 2 3)
ί = l

and:

[ £ , £ y ] = £ , - 1 ( 0 J - £ l f α ϋ ) . (2.2.4)

From this last formula it is easy to guess what the eigenvectors of ad E should be;

Lemma 2.2.1. Let ω:= e2ni/n be an nth root of unity and define

Apr=- Σ ω ^ ω - 'fiw, (2.2.5)
W f c , Z = l

then

[ £ ^ M ] = ( ω " - ω V P ί (2-2.6)

More generally, we have

iE\AM-\ = {ωk"-ωk")Apq. (2.2.7)

Proof.

E>kΣχ ωpkω~qlEkl = i Σ_χ ω
pkω-ql{δkMi)Ea - δ u E k M i ) }

= Σ o)pσii)ω~qlEar- Σ ωpkω~qiEkMi)
i,l=l i,k=ί

ωpiω-qlEa-ωq Y ωpkω'qσ{i)

i,k± 1

ωpkω~qlEkl.

Here we have used that σ(i) = i + 1 plus a multiple of n. The second formula is
proved by replacing σ by τ = σk in the calculation above. •

Of course the factor 1/n in the definition of the A^'s seems a bit arbitrary at
first sight. In fact it is not, as we will explain now. Define the matrix S = (Sι7) by:

'". (2.2.8)
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Then one immediately verifies:

Apq = SEpqS\ (2.2.9)

The important point is that the matrix S is unitary -

(SS% t *-fc;' 5
n

(2.2.10)

- meaning that the mapping φ' gln(Q-+gln(Q defined by φ:Epq\-^Apq is a similarity
transformation and hence an isomorphism of gln(Q. In particular this implies that
the set {Λpq}1 ύpq ύn is a basis of gln{C) whose elements satisfy the same commutation
relations as the jζ/s;

ίAφAki] = δ3kAa-δiiAkJ. (2.2.11)

One easily expresses the Etfs in terms of the AJs:

Eυ = - Σ co~iko>ilAkl. (2.2.12)
lϊk,l=l

The lemma shows that the linear span of all powers of the principal cyclic
element is a maximal commuting family of ad-diagonalizable elements. In other
words: the linear span of all powers of E is a Cartan subalgebra of gln(Q; it is
called the principal Cartan subalgebra of gln(Q:

V i n C : = ® C F . (2.2.13)
ΐ = l

Moreover, formula (2.2.7) shows that the Apqs are root vectors with respect to this
principal Cartan subalgebra. Note that the Apps commute with all elements of
/?princ, and hence they must lie in Λprinc. To be more precise, we have:

Lemma 2.2.2.

n i = ι

Proof.

= -Yω~ipEi. •
n i = !

With this lemma it is easy to show that the isomorphism φ maps the standard
n

Cartan subalgebra h:= 0 CEU to the principal Cartan subalgebra /iprinc;

φ(@ CEa ) = 0 C>1(, = 0 C£' = hpriπc. (2.2.14)
\i=l / i=l i=l

2.3. The General Case. Now let n = {nun2,...,ns} be an arbitrary partition of n
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and recall the associated partition of an n x n matrix in s2 blocks of size
Hi x np l^i,j^s (see (2.12)). Isolating the (i, i)th diagonal block of gln(C), we are
led to define the "ι t h cyclic element" E(i) by:

p •— pu _μ V I?" n i n
E^^y—Cnul -t 2_j ^fc.ft+l {Z.J.I)

Analogous to the principal Cartan subalgebra hprinc we define the Cartan subalgebra
hn associated to the partition n by:

(2.3.2)

It is easy to generalize the results of the previous section to this case; we will
do this in the following lemma.

Lemma 2.3.1. Let ωy.= e2πi/nj be an nf root of unity and define

(2.3.3)
V n ί n i k = 1 / = 1

then we have

ΛPQ~~ ^n^PQ^n » \Δ.J.^)

where Sn= Y\ S(i) and

Ά 1— V / J_ V fnkιPu

(2.3.5)

Consequently, the set {Λ^q}lύiJ^sΛ ^p^niΛ ^q^nj

 I S a basis for gln(Q, whose elements
satisfy the same commutation relations as the E^s;

IA% Ak£ = δjkδqrA% - δnδpsA%. (2.3.6)

The elements E^q of the standard basis for gln(Q can be expressed in terms of the

4VS by

(2.3.7)
y/ΠiΠj fc=l / = 1

Moreover, the A^qs are eigenvectors for the adjoint action of hn:

Finally, the isomorphism φn = Ad5w maps h into hn.

Proof. A straightforward generalization of proofs from the previous section. Π

3. Automorphisms of Finite Order

3.1. Introduction. In this section we will explain how to associate an automorphism
of finite order of gln{Q to a partition n of n. The restriction of such an automorphism
to the standard Cartan subalgebra h of gln(Q coincides with an element wn of the
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Weyl group W oϊgln(Q. In the introduction we have explained that the conjugacy
classes in W(gln(Q) are parametrized by partitions of n and indeed, the assignment
n -• wn induces a bijection between partitions of n and conjugacy classes in W.

Just as in Sect. 2 we will start with the case n = {n}. The corresponding
automorphism is known as the principal automorphism, while the restriction of
this automorphism to the Cartan subalgebra h is called a Coxeter element of W.
The general case will be treated in Sect. 3.3. Finally, in Sect. 3.4, we will argue that
it is easier to conjugate these automorphisms by the automorphism φn.

3.2. The Principal Automorphism. In Sect. 2.2 we have noted that the principal
cyclic element is related to the cyclic permutation σ: {1,2,..., n} -» {1,2,..., n) (see
(2.2.2)). Let us define the mapping σ:gln(Q^gln(Q by:

*(£„):= ^ . . u , . (3.2.1)

With the commutation relations (2.1.1) it is immediate that this σ is an automorphism
of gln(C). Moreover, it has finite order: σn = Igtn{C). Note that the orders of σ and
σ are the same. This σ is called the principal automorphism by Kostant [16]. The
restriction w = σιh is a Coxeter element of the Weyl group W oϊsln(Q (see also [17]).

It is well known that σ can be written as exp {2πίadX}, where X = φ(H) and
H is the following element of the Cartan subalgebra h n sln(Q:

H = - Π χ ί ί . (3.2.2)
n j = i

In this formula we have introduced the so-called "dual fundamental weights" tt of
sln(Q by

Ltp Eu + Λ = <α ί f tj) Eu+ x = δtJEiti+1. (3.2.3)

Note that Xehprinc.

Lemma 3.2.1. . „
H = -Σ(n-2i+l)Eu. (3.2.4)

In i = i

1 n

Proof. Suppose that H = - V λιEu. The Λ̂ 's are determined by the conditions

[H,Eii + ι~\ =-Eii+1 for l^i^n—1 and £ λt = 0. The first condition means:
n i = i

λi — λi+ι = \ for 1 ̂ ϊ ^ n — 1 or equivalently: λ^λγ — (i— 1) for 1 :g i ̂  n. Imposing
the second condition, one finds λι=^(n— 1) and hence Aj = ^(n — 2ΐ + l) as
desired. Π

With this lemma, the fact that \j/(Eu) = Au and Lemma 2.2.2 we can now
compute X\

1 " - 1 1
X = - Σ —- Eι. (3.2.5)

3.3. The General Case. Consider again an arbitrary partition n = {nι,n2,...,ns}
of n. Analogous to (2.2.2) we define the cycle σ i : { l ,2, . . . ,n i }^{ l ,2, . . . ,n / } by:

... ffc+1 if l£k£nt-l / l i n

σi{k):=\i if * = „, ' ( 3 1 1 }
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and the permutation σπ:{l,2,...,n}-^{l,2,...,w} by

σn(n1 +n2 + — h ni-ί + /c):=n1 + n2 + —•" w i-i + σi(Ό 1 ύ^ύ^i- (3.3.2)

To this permutation we associate the automorphism σ'n defined by

* ; ( £ g ) : = £ « ( k ) i M I ) . (3.3.3)

Note that (<ίyN' = Igln(C), where iV' is the least common multiple of the numbers

Let us try again to write σ'n as e

2πιadXιϊ. To do this we set

the analog of (3.2.4) placed on the (i,ι)th diagonal block, and X(iy= Ψn(H(i)). Our
s

first guess for Xn would be of course: Xa:= J] Z^) =:^ 5(//J. This turns out to be
almost right; ί = 1

s

Lemma 3.3.2 Let Xa = £ Jf(i

| ^ ) J ^ (3.3.5)
Proo/.

p = l q = l

Σ Σ
/ΠiΠ:

We see that σ'„ and e

2κiadXn- coincide up to a "phase factor". It is not too difficult
s s 1

to remove this factor; set Yn:= — In— £ γ-IHi (the first term is meant to make
Yn traceless), then [Xn, YJ = 0 and if we define Xf

n:= Xn-\-Yn we can write:

ό>n = e2πiadx»- (3.3.6)

However, for technical reasons one often prefers to exclude the diagonal part Yn

and works with the automorphism
2 i r f * (3.3.7)
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Note that

so that it may happen that the order N of σn is 2N'.

Lemma 3.3.2. Let n = {nun2,..., ns} be a partition ofn, N' the least common multiple
of n1,n2,...,ns and N the order of the automorphism σn defined in (3.3.7), then:

N' if N'(- + -)e2Z Vί;
\n{ n. I

J (3.3.9)

IN' if NΊ- + - )φ2Z for a pair (i, j)

3.4. Rotation to h. Let τ g/^Q-»#/„(€!) be an arbitrary automorphism of order N.
It is well known that such a τ induces aZN = Z/NZ gradation of the Lie algebra
gln(Q; we have:

gin(Q=@gin(Qj, (3Ai)

where the eigenspace gln(Qj is defined by

gl.(Q7:= {yegln(Q\τ(y) = ω>y}. (3.4.2)

Here we have introduced the Nth root of unity ω:=e2πi/N and the notation

J:=jmod N. Notice that lgln(Qhgln(Qj]^gln(Qk+r

In order to compute the eigenspaces gln(Qj it would be very convenient if τ
were of the form e2πiadh for some h in the standard Cartan subalgebra h; in that
case one would find:

gln(Qj = lyegln(Q\ίKyl = J-^ψ*-y for some r e z j , (3.4.3)

and the eigenspaces can be constructed from the root space decomposition of
gln(Q with respect to h.

The automorphism σn, which we have constructed in the previous section, is
of the form e

2madxa9 where Xn is an element of the principal Cartan subalgebra but
we can of course "rotate" everything to the standard Cartan subalgebra h by means
of conjugation with the automorphism φn. In this way we obtain the automorphism
f5 defined by:

V = Φn lθtn_°Ψn_ = ^ # " ( ^ = e 2 ^ - . (3.4.4)

Now the commutation relation

( ^ ^ ) (3-4.5)

expresses that E[{ is homogeneous in the gradation induced by τ5; its degree is
given by

J (3.4.6)
ijJ
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4. The Affine Algebra gln(Q

4.1. Introduction. In this section we will briefly review the realizations of the affine
algebra as algebras of loops twisted by the automorphisms τn (see [7]). In any
such realization a Heisenberg subalgebra §„ naturally emerges as the collection of
twisted loops in the Cartan subalgebra hn. We will also introduce so-called vertex
operators as generating series in a formal indeterminate z, whose coefficients
describe the action of the affine algebra in an integrable highest weight representation.
In Sect. 7 we will see that these operators are precisely the vertex operators one
encounters in physics.

4.2. Twisted Realizations of glH(Q {7,181 Let gln(Q:= (&eikθgln(Q be the loop
keZ

algebra associated to gln(Q. Using the automorphism τn:gln(Q^>gln(C), one defines
the twisted realization L(gln(Q, τ j of gίn(Q as the space

L(gln(Q,τ\):=®λkgln(Q-k (4.2.1)
keZ

with commutation relations

lλ <x,λJy]:=λk+>lx,y] Vxeglπ(Qhyegln(QP (4.2.2)

It is well known [7,18] that gln{C) and L{gln{C\ τn) are isomorphic; an isomorphism
is given by:

Φn:λ
ky^e-iθadH»-ei{k/N)θy Vyegln(Q-k. (4.2.3)

This automorphism suggests to introduce the following spanning set of gίn(C) (see

[5]):

yegln(Q, feeZ, (4.2.4)

where yk denotes the component of y, which is homogeneous of degree k in the
ZN gradation of gln(Q inducedjby fa (see (3.4.1) and (3.4.2)).

The affine algebra gln(Q:= gln(Q® Cc is defined as the one dimensional central
extension of gln(Q with commutation relations

[x + αc, y + βc]:= [x, 3?] + μ(x, y)c, (4.2.5)

where the two cocycle μ:gln(C) x 0/π(C)->C is given by:

j)(θ)\ (4.2.6)

Here we have introduced the notation (A\B) = trace (AB),VA,Begln(Q.

The corresponding twisted realization L(gln(Q, τn) is defined as the vector space
^{QK((Q,in)®Cc with commutation relations

[λky-k + α U ' z r + /fc] = λk + ιlyhzτ-] +±-δk + U0{y-k\zT)c. (4.2.7)

The isomorphism Φn:L(gln(Q,τn)^>gϊn(Q can be extended to an isomorphism Φ^
between L(gln(Q, τ J a n d ^ ( Q : "

(4.2.8)
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where the elements y(k)εgϊn(Q are defined by

•δkt0(Hn\y)c. (4.2.9)

4.3. Heisenberg Subalgebras ofgln{C). In this subsection we will consider Heisenberg
subalgebras of the affine algebra gln(Q. Let us start by recalling the definition of
such subalgebras;

Definition 4.3.1. A Heisenberg subalgebra (HSA) s of gln(C) is a subalgebra of gln(C)
with basis {Pi,tf, }ieN and the central element c, whose elements satisfy the
commutation relations

ΊPt,qj'] = δtjC. (4.3.1)

For any partition n of n we will construct an associated HSA sn, thus obtaining
a correspondence between conjugacy classes in the Weyl group W(gln(Q) and
HSA's.

Let αf be the matrix consisting of Γs on the (i, i)th diagonal block Bu (see (2.1.2))
and zeros elsewhere;

<v= Σ £ « = Σ V (4 3 2)Σ
k,l=l

Σ
k=l

According to (3.4.6), the homogeneous components of this matrix are precisely the
powers of the *th cyclic element £ ( i ) ; their degree is given by

N

n,
deg E{i)

k = — k mod N. (4.3.3)

N
Therefore, the loops oc^j) introduced in Sect. 4.2 are only nonzero if j = — k for

some keZ. In that case we can write: '

(4.3.4)

(4.3.5)

corresponding to a matrix with zero entries, except on its (i, i)th diagonal block.
For 1 ̂  IS nt - 1 this block becomes:

If we write k = 14- mnh 1 ̂  / ̂  nh meZ this becomes

0 1

0 ••• 0

eiθ 0 - . O j

(4.3.6)

while the case / = n( yields eimβln..
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With the definition (4.2.6) on easily computes the value of the two cocycle μ

on loops α.ί — k I and α. ί —/ I;

= kδijδk+lt0. (4.3.7)

Using this formula, one easily proves the following lemma.

/N \
Lemma 4.3.2. Set sn:= 0 0 Cά£ — k Θ Cc, then §n is a HSA.

" fcεZ-{0}i=l \ni )

Proof. Define for 1 ̂  i^ s, 1 g j- ^ n ί 5 / G Z + the elements

Together with the central element c these elements form a basis for 55. The
Heisenberg commutation relations (4.3.1) are immediately verified.

Remark 4.3.3. Note that (#Jα f ) = tr H(i) = 0 and therefore

This is the reason that we have chosen to work with σn and not with σ'n
(cf. Sect. 3.3).

S Πi

4.4. Vertex Operators. Recall from Sect. 2 the Cartan subalgebra hn:= ffi 0 CE(i)

j

and the root vectors Aιjq, iφjv(i = j/\pΦ q). From the discussion in Sect. 4.3 it

is clear now that the affine algebra gln(Q is spanned by the loops

l,2,...,s, keZ AiJq{k)i*jv(i = JΛpΦq), keZ. (4.4.1)

In the sequel we will be interested in representations ρ:gΊn(C)^> End V of the
affine algebra on a vector space V. In the construction of representations one uses
the following formal generating series:

Σp(4
keZ \ \nί

Σ ' U Q ) . (4.4.2)
feeZ

The parameter z in these series is just a formal parameter. If one can somehow
find explicit expressions for the operators άt(z) and Λ^q(z\ one can - in principle -
extract the coefficients of z~k and find the action of the affine algebra on the
representation space V.
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Notice that the formal power series af(z) and A^q(z) are not unrelated; recalling

(4.3.2) and Lemma 2.2.2, we write αf = £ E{i)

j = n^. „., and therefore we have

6ίi(z) = niAmni(z). (4.4.3)

In fact we will only be interested in integrable highest weight representations
of the affine algebra, in which the central element c is represented by the identity
operator. So from now on we will take ρ(c) = I. We will see that in such
representations the representation space V can be realized as a (direct sum of)
polynomial ring(s) while the elements pt and qt of the HSA are represented by
elementary differentiation and multiplication operators;

p ( / ? i ) = έ ; piqi)=Xi- (4A4)

It then remains to construct the so-called vertex operators A^z); inserting the
definitions (4.2.4) and (4.2.9), we write for these operators:

Σ ^)~[Hn\A%)L (4.4.5)
keZ

The first term can be worked out as:

/ceZ

Σ Σ Σz~kωΓ<oiqlp(eiWN)βe-θ^EiJ,ι)
IceZ

' °k,N((I/ni)-(m/nl) + (l/2n1)-(l/2nJ)) + rN

= _L_ztf((l/2n,)-(l/2nx)) y y y z~N((l/nj)-(m/ni))-rN^m^ql^irθ£ij^ (4.4.6)

yjfliflj reZ m = 1 1=1

while the central term is calculated as follows:

(4.4.7)

. 0 if p = q

In the following section we will construct a much simpler expression for the
operators A^q(z) in terms of "fermionic fields."

5. Fermionic Fields

5.1. Introduction. In this section we will briefly review the Lie algebras gl(oo) and

its central extension Ao0=gl(co)®Cc (see, e.g., [13]). We will also discuss the

embeddings gίn(Q cz+gl(co) and gln(Q(=-^Aoo9 which, together with the wedge

representation of A^, will enable us to find expressions for the vertex operators
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^q in terms of normal ordered products of fermionic fields. Sections 5.2 and
5.3 have been taken from the paper [15].

5.2. Lie Algebras of Infinite Matrices. Let gl(oo) be the Lie algebra of matrices
(Qij)ijez s u c h Λat all but a finite number of entries gtj are zero. This Lie algebra
has a basis of matrices Sij9 iJeZ, where S^ is the matrix with a one on the (ίj)th

entry and zeros elsewhere; any matrix Gsgl(co) can be written as a finite linear
combination of the ^/s.

We also introduce the vector space C0 0 of infinite column vectors (ι?f)feZ such that
all but a finite number of t '̂s are zero. As a basis for this vector space we take the
collection {εJ ίeZ, where εf is the vector with a one on the ith entry and zeros
elsewhere. The Lie algebra gl(co) clearly acts on the vector space C0 0 by:

We will also need a completion gl(co) of the algebra 0/(00) consisting of all
matrices of finite width around the main diagonal;

^ M : = { Σ QiAMj = 0 if \i~j\ »0}. (5.2.2)

Note that the #/(oo)-action on C0 0 can be extended to this completion. With this
completion we can formulate the following well known result.

Lemma 5.2.1. Let ι:gln(Q->gl(co) be the mapping defined by

+nii-vj+ni, (5.2.3)

then i is a Lie algebra homomorphism mapping gln(Q injectively into gl(oo). Its image

is the collection of matrices (gij)egl(oo) satisfying the periodicity condition

Qi + nrJ + nr = Gij VίJ, rGZ. (5.2.4)

5.3. The Semi-Infinite Wedge Space. In this subsection we consider highest weight
representations for gl{oo) and gl{oo). For this purpose we introduce the semi-infinite
wedge space Λ^C 0 0 as the vector space with a basis consisting of all semi-infinite
exterior products of the basis elements εt of C0 0 of the form:

such that ί0 >i1>i2> -" and such that iι+1 = it — 1 for /» 0. On this space gl(oo)
acts as usual; denoting the action by τ, we can write:

τ ( i 4 ) ( ε ί o Λ εh Λ εh A •••) = (Aεio) A εh A εh A •••

+ ε i 0 Λ ( > 4 ε i l ) Λ ε i 2 Λ •••

+ ε ί 0 Λ 6 l l Λ ( . 4 6 l 2 ) Λ . • • + ..- Vi4eflf/(cx)). (5.3.2)

We can distinguish the basis elements (5.3.1) by their behaviour at large /; we
will say that an element of the form (5.3.1) has charge kiϊi^k — l for all /» 0. For
instance the vector

vk:=εkAεk_1 Λ ε f c _ 2 Λ ••• (5.3.3)

has charge k. We will refer to vk as the fcth vacuum. The vector space of all vectors
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of charge k is denoted by Λ^C0 0 and we clearly have a decomposition of the full
semi-infinite wedge space in sectors of fixed charge;

Λ α Γ = © Λ f c

M Γ . (5.3.4)
fceZ

The submodule Λ£°C°° is an irreducible highest weight module for the algebra
0/(00). We have for j > i:

τ(£ij)(vk) = δjkti Λ εk-ι A ε k _ 2 Λ ••• + ( 5 M _ ^ k A εf Λ &k_2 A ••• + ••• = 0 (5.3.5)

and

τ(4)(t>*) = < 0 * , 4 > * > (5.3.6)

where the linear mapping 0 k : 0 C % - > C is defined by
ieZ

In the sequel we will denote the restriction of the representation τ to this module
by τk.

For every ieZ we define linear operators φ(i) and ψ*(i) on the semi-infinite
wedge space by their action on basis vectors:

Λ εh Λ £i2

 Λ - ) : = fii Λ εio Λ εh A ε ί 2 Λ •••,

00

A βf, A εi2 A • • • ) : = ^ (-)kδUkεio A ε £ l Λ ε / 2 Λ ••• Λ έik A •••, ( 5 . 3 . 8 )
k = 0

where the notation έik means that the vector εik is deleted. It is easy to verify the
anticommutation relations:

WO, ΦU)} = 0 = {ψ*(ί), φ*U)}, {Φ(i\ Φ*U)} = δij (5-3.9)

The importance of these operators lies in the fact that the action of the elements
i u can be written as a product of these operators; one clearly has

) (5.3.10)

It is not possible to extend the representation τ to the completion gl(oo) by
linearity. Instead one replaces τ by the assignment π defined by

^ < θ o , 4 > / (5.3.11)

It can be proved that π can be extended to gl{co) by linearity; for the action of

the identity matrix in gl(oo) on the feth vacuum we find:

*(Σ *« V * ) = Σ < β * " θo>εn>vk = tok. (5.3.12)
\ieZ / ieZ

Of course π is not a representation of gl(oo) any more;

,) - δan(Ski)
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Because of the extra term δilδjk{θ0,S
>

ii — S>

jjy in the right-hand side of (5.3.13), π

is called a projective representation of gl(oo), or, equivalently, a c = 1 representation

of the central extension Λao:= gl(co)ξ&Cc of gl(co) defined by the two cocycle

μ:gl(co)

*„):= δuδ^θo, Su - Sn\ (5.3.14)

One can of course restrict the central extension of gl(oo) to the subalgebras

Lemma 5.3.1.

μ(ι(eikθAlι(eiιθB)) = kδk+lt0(A\B) V/c, /eZ, A9Begln(Q. (5.3.15)

The lemma means that the homomorphism ι:gln(Q <=-+gl(co) can be extended to
a homomorphism tgl^QcL^A^.

In physics the procedure above is usually formulated in terms of a normal
ordering prescription on the fermionic creation and annihilation operators; one
writes:

J (5.3.16)

where the normal ordered product :ψ(i)ψ*(j)\ is defined by:

J j > ° (53.17)

5.4. Multicomponent Fermions. In Sects. 5.2 and 5.3 we have explained how to
embed the affine algebra gln(Q in A^ and how to obtain representations of this
algebra in the semi-infinite wedge space. Up to now the block structure of -gln(Q
(see (2.1.2)) has played no role in our discussion. In this section we will incorporate
this block structure in the theory.

Let n = {«!, n 2 , . . . , ns} be again a partition of n. Associated to the block structure
of an n x n matrix in gln(Q one has of course a direct sum decomposition of C1:

C ι = C Π l ΘC Π 2 Θ CΠs. (5.4.1)

In view of this decomposition we relabel the basis vectors et of C ; we define:

e i ( l ) : = e n ι + n 2 + ...ni_ϊ + ι l £ i £ s 9 l Z l £ n t . (5.4.2)

Let C":= Q)eikθ(?. The mapping e~ikθej\-+εj+nk gives an isomorphism between
fceZ

C1 and C00. The image of the vector e~ikθej(l) is εnι+n2 + ...n._ι+ι+nk so it is natural
to relabel the basis vectors of C00 as follows:

j (5.4.3)

With this definition it is clear that we can write:

Coo = 0 0 C ε ί α ) . (5A4)

i = l jeZ

Similarly, the semi-infinite wedge space is spanned by wedges of the form:

<*,(*) Λ ε ί 2 ( * 2 ) Λ - . (5.4.5)
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As an example we consider the expression for the kth vacuum vk = εkAεk^ι A
in terms of the relabeled basis vectors; for k = n1+n2 + — ϊ - n i - 1 + l + nj we
find:

vk = εf(/ + nJ) A Si(l - 1 + nJ) A - - ε£(l + nj) A

fi.(w. + w.O" - 1)) Λ 6,(1 + n f(j - 1)) Λ «... (5.4.6)

The next step is to introduce fermionic creation and annihilation operators for
the vectors εf(fc) analogous to (5.3.8);

Φi(k)(εio(k0) A ε^kj A εi2(k2) A )

: = ε f(fc) Λ ε ί o ( f c 0 ) Λ ε^kj Λ ε ί 2 ( fc 2 ) Λ •••,

••= Σ i-)\tA*Mko)Λ εΰ(fci)Λ *M Λ Λ W Λ - (5 4 7)
7 = 0

Clearly we have

ψ*t(k + Λi/) = ^ * ( Π l + n2 + ... + ni-ι + fc + π/). (5.4.8)

With this identification one easily checks the anti-commutation relations of these
multicomponent fermions

{ΨM ψj(l)} = 0, {φf(kl φf(l)} = 0, {φM Φf(l)} = V«- ( 5 A 9 )

One also verifies

φi(k)(vo) = 0 if fc^O,

^f(k)(ϋo) = 0 if /c>0, (5.4.10)

whence

{ S ;:;:•
5.5. Vertex Operators as Normal Ordered Products of Fermionic Fields. Here we
return to the expression (4.4.5) for the vertex operator A%q(z). For the representation
p occurring in this formula we take π°ΐ. So we first embed the algebra gln(Q in
A^ by the homomorphism ΐ and then we represent it on the semi-infinite wedge
space by the representation π. Using (5.2.3) and (4.4.5-7), we write:

N((l/2nj)-(ί/2m)) m nj

A%(z)+(Hn\A%)= = — Σ Σ Σ z~ml/nj)~(mlni))~rN™r™iql

y/iϊiΠj r,seZ m = 1 Z = 1

'7l(ώnι + Λ 2 . . . Λ i _ j +m + n(s-r),n1 +ni ~nj- i +l + ns)' (5.5.1)

Next we use the expression (5.3.16) and the definition (5.4.8) to rewrite this formula
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in terms of fermions;

_JV((l/2π,)-(l/2ni)) m "J

f V V V
J r,seZm=ll=l

:φ(n1 + n2- ni_ι +
 m + n(s — r))Ψ*(ni + n2- nj_1 +l + ns):

z-m(l/nj)-{m/ni))-rNωpmω7ql
* m

r,seZ m = 1 l~l

y y y
r,seZm=ll=l

iψ.im + ni(s - r))φf(l + njs):, (5.5.2)

where ω:=e2πi/N. This formula shows that it is useful to introduce the following
formal "fermionic fields:"

ΨMΣψM
keZ

φf(z):= X z-{N/ni){k-{1/2))φf(k). (5.5.3)
ke,

One then has the following expression for the vertex operators in terms of normal
ordered products of these fields:

)-{q/nj)) I ω(N/ni){p-q)

f ϊ ι 1 — CO

:φi(ωpz)φf(ωpz):. (5.5.4)

Note that, because άfe) = nt^im(z\ we have:

ά l(z)=:^ ί(zVf(z):. (5.5.5)

Here we have absorbed factors z{Nj2ni) in the definition of the fermionic fields.
This is slightly different from our definition in the introduction. The only reason
for this is that the fields defined by (5.5.3) have nicer conformal transformation
properties. We will come back to this in Sect. 6.

5.6. Hermitian Structure and Normal Ordering. It is well known that the semi-
infinite wedge space can be equipped with an inner product, giving it the structure
of a pre-Hilbert space;

Theorem 5.6.1. There exists a unique positive definite Hermitian form (,): Λ^C0 0 x
Λ^C^-^C such that

a) φ(y = φ*(i),

b) (t>o,ι>o)=l. (5.6.1)
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Instead of (,) we will also use Dirac's 'bra-kef notation;

(i?,ω) = <i;|w>. (5.6.2)

Moreover, we will also write \k) for the fcth vacuum vk in the sequel. Finally, we
will leave out the symbols π and π° i when a representation is understood.

With the inner product one formulates the following lemma:

Lemma 5.6.2.

a) 4 - ^ ,

c) (eΛ9Xγ = e-ik9Xt VXegln(Q. (5.6.3)

Proof. Relation a) is immediate from the expression π(<£. ) = :φ(i)φ*(j): and (5.6.1).
(N \

For b) one uses the following expression of άΛ —k in terms of fermions:
\ni )

(5.6.4)

which can itself easily be derived from (5.5.5). Finally, c) following from a) and
(5.2.3). •

Next we use the Hermitian structure to define normal ordering for arbitrary
operators on the semi-infinite wedge space. For this we note that the definition
(5.3.17) can be written as:

:φ(i)φ*(j):=φ(ϊ)φ*(j)-<O\φ(i)φ*(j)\O}. (5.6.5)

The notation <0|y4|0>:= (vo,Aυo) in this formula is called the vacuum expectation
value of the operator A. Next we extend the normal ordering prescription to
arbitrary operators on the semi-infinite wedge space.

Definition 5.6.3. Let A and B be operators on Λ^C00, then the normal ordered
product of these operators is defined by

:AB: = AB-(0\AB\0). (5.6.6)

Of course this definition is different from the usual one, because we subtract only
a onumber from the ordinary product and no operator structures. Our motivation
for this definition is that it produces the right ordering prescription for a pair of
bosonic oscillators as we will show below.

Here and in the sequel we will need the following useful lemma:

Lemma5.6.4. The operators άtl — k J: Λ^C 0 0-* Λ^C00 are for k>0 (bosonic)
annihilation operators, i.e.: ^ n ' '

ά/^/cJ |m> = 0 Vfc>0, meZ. (5.6.7)
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Moreover, we have

άf(0)|0>=0. (5.6.8)

(N \
Proof. For fc>0 the matrix OLA—k\ is upper triangular, for /c = 0 it is
diagonal. • \ » /

It is now easy to compute the vacuum expectation value of the product of two
oscillators;

+/'° if ϊ < o ( 5 6 9)

Hence we find for the normal ordered product:

' - / ) if fc<0

(5.6.10)

A — / )&A —k) if

One immediately checks that this is equivalent to (cf. [19]):

- k ) ά Λ - I ) if k ^ l

(5.6.11)

6. Conformal Symmetry

6.1. Introduction. In this section we will review some well known constructions
of the Virasoro algebra. First of all we will consider oscillator representations of
this algebra, i.e., representations in terms of sums of normal ordered products of
elements of the Heisenberg subalgebras sn. Then we will briefly describe the so-called
"Sugawara construction" of the Virasoro algebra, i.e., representations in terms of
sums of normal ordered products of elements of the full affine algebra.

Using the rather well known fact (see, e.g. [5]) that these two constructions of
the Virasoro algebra coincide in our case (which is a level one construction of a
highest weight representation of gln(Q), we will be able to describe the conformal
transformation properties of the fermionic fields entirely in terms of oscillators.
Together with the commutation relations of these fields with oscillators, which
will be derived in Sect. 6.2, these properties will allow us to express the fields in
terms of oscillators and fermionic "translation operators;" this will be done in Sect. 7.

6.2. Oscillators on Λ^C00. The purpose of this subsection is to derive the
(N \

commutation relations of the oscillators &A—k) with the fermionic fields.
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Lemma 6.2.1.

/ ^ Λ φf(z)\ = - δijZ

mψf(z). (6.2.1)

(N \
Proof. We use again the expression (5.6.4) for &Λ — k) in terms of fermions;

r + k^O r + k>0

= Σ δiA+k,ιΨi(r)
reZ

^δtjφAl-k). (6.2.2)

With the definition (5.5.3) of the field ψ^z) the first relation of (6.2.1) follows. The
second relation is proved by Hermitian conjugacy of the first. •

6.3. Oscillator Representations of the Virasoro Algebra. Recall that the Virasoro
algebra is the universal one dimensional central extension of the conformal algebra.
It has a basis consisting of elements dk9 keZ and a central element cv i r, which satisfy
the commutation relations

[dk9dβ = (k - l)dk + ι + i ί k + / i 0 ( * 3 - fe)cvir. (6.3.1)

The following construction of the Virasoro algebra is standard in physics.

Lemma 6.3.1. Let {ai}ieZ be a collection of operators on a vector space V, such that
[α , af] = iδi+jfθl and a^v) = 0, Vve V and i» 0. Define normal ordering by. a^y.— ataj
if i g j and :ataf.= aflt ifi > j , then the assignment dk\-^Lk, where the operators Lk

are defined by

Lk' =~Σ:a-jaj+k: ( 6 3 2 )

is a representation of the Virasoro algebra with cviΓ\-+I. Moreover, we have:

[!*,«,] = -iα,+» (6.3.3)

Proof. See, e.g., [19]. Q

Translated to our situation, we get a cv i r = 1 representation of the Virasoro
algebra on the semi-infinite wedge space by:

Starting from these operators, we construct cv i r = nx representations of the Virasoro
algebra in the following manner; set T(

fc°:= 1/^1^, then these T(

fc°'s satisfy:

m\ jγi = (k- on°+ i + ̂ i A + ι.o(fc3 - *) + j2δk + ι.ok^^L (6.3.5)

The extra term in the right-hand side of (6.3.5) is a two coboundary and hence we
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define operators Dk

l):= Tf + — δkt0 — / to obtain the commutation relations
in their standard form: n*

', DjO] = {k- l)Dk

i]

+l -^ — δk+lf0ni(k3 - k). (6.3.6)

In2-l
It is easily verified that — — = ^\H(i)\

2, where H(i) is defined in (3.3.4). Hence,

Dk

i] = Tk

i] + ^δk01 H(i)\
2I. (6.3.7)

Since the operators Dk

ι) and D\j) commute for i Φ j , we can also construct a c v i r = n
representation by summation over i. Let us summarize the result in the following
theorem.

Theorem 6.3.2. Let the operators Dk be defined by

1 s 1 / N \ ίN \
Dk-=~Σ Σ -Ά\ j )<*i — O' + w. fc) Y+lδko\Hn\

2I, (6.3.8)
2; ΐ ί i=l^ V ni J \ni J

then the assignment dk\-+Dk is a representation of the Virasoro algebra with cwir\-+nl.
Moreover, we have:

(6.3.9)

6.4. The Sugawara Construction of the Virasoro Algebra. Let {um}1^m^n2-ί be a
basis of sln(C) and let {um}lύmύni-1 be the dual basis with respect to the trace

form on sln(C), and define un2 = u"2 = / /„. The following lemma is known

as the Sugawara construction of the Virasoro algebra.

Lemma 6.4.1. Define the operators Lk: Λ WC°° -• Λ ^ C 0 0 by:

1 "2

L:= V V :(e-ijθum)(ei(j+k)θum): (6.4.1)
zn -+- z jeZ m=ι

The assignment dkh^Lk defines a representation of the Virasoro algebra with cvϊx\-*nl.
Moreover, we have:

[Lk,e
ilθχ-]=-lei(k+l)θx Vfc,/eZ, xegln(C). (6.4.2)

n2

Proof We have £ [um, um~\ = 0, whence:
m = l

~ iμm\um). (6.4.3)Σ j, Σ
m=1 m = 1

eikθuIt is also clear that the operators eikθum,k^0 annihilate the vacuum |0>. With
these remarks and the normal ordering definition 5.6.3 one easily finds:

:{emum)(eliβum):=.
m = l

(eikθum)(e^θum) if k£j

Σ (e^uJie^u"1) if k>j
m=l

(6.4.4)
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The rest of the proof is standard; see, e.g., [19]. •

The lemma tells us that the Virasoro operators Lk act as ieikθ— on the affine
dθ

algebra. Now let us take an element x(l) of the affine algebra (see (4.2.9)). It is clear
then that:

lLk,xm = eikθadHu(x(l))--^x(l + Nk). (6.4.5)

In view of the right-hand side of this formula it is natural to consider the operator
Lk - emHn. Since eikβHa = HJiNk), we have:

[Lfc - eikβHn,x(l)~] = -^x(l + Nk) - μ(Hs(Nk),x(l))I. (6.4.6)

The value of the two cocycle μ in the right-hand side of this formula is easily
computed with the help of (4.2.6); using the ad-invariance of the trace form,
we get:

μ{HSNk\x{ϊ)) = ~δι+NM(Hn\xτ). (6.4.7)

Recalling the definition (4.2.9) of x{l + Nk), we find:

[Lk - eίkθHn, *(/)] = - -L*(l + Nk). (6.4.8)

We are now ready for the following lemma;

Lemma 6.4.2. Define the operator Dk: Λ T 0 0 -• Λ ^C 0 0 by

Dk:=Lk-eikθHn_ + ±δk0\HfI, (6.4.9)

then the assignment dkh->Dk is a representation of the Virasoro algebra with cyir\-+nl.
Moreover, we have:

lDk,x(l)l=-^*(l + Nk). (6.4.10)

Proof. An easy exercise. •

6.5. The Difference Dk — Dk. In the representation theory of the Virasoro algebra
one often considers the difference Δk:=Dk — Dk. It is well known that these Δks
satisfy again the commutation relations of the Virasoro algebra. The algebra
spanned by the Δks is called a "coset Virasoro algebra" and one speaks of a coset
construction. This coset construction can be found in many papers; we mention
again our standard reference [19]. The key ingredient for the proof is the fact that
the operators Δk commute with the elements of the HSA sn -

= 0 see (6.3.9) and (6.4.10)
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- and hence also with the D/s;

[4»D/l=0. (6.5.2)

The value of the central charge of the coset algebra is simply the difference
between the central charges of the Virasoro algebras spanned by the Dks and the
Dks respectively. As a matter of fact these central charges coincide, so that the Δks
span a Virasoro algebra with cyir = 0, i.e., a conformal algebra. This numerical
coincidence occurs for any level one highest weight representation of an affine
algebra g, where g is a direct sum of simply laced simple Lie algebras and abelian
Lie algebras.

Apart from the fact that any component Λ£°C°° of the semi-infinite wedge
space is a cvi r = 0 representation of the Virasoro algebra, these components are
also unitary representations for this algebra containing a highest weight vector;

Lemma 6.5.1.

a) Δ\ = Δ_h

b) Δι\k} = 0 V/>0, (6.5.3)

c) Δ0\k) = h(k)\k}.

Proof. With the help of Lemma 5.6.2 one immediately proves D{ = D-k and
Dl = D_k and a) follows. Relation b) is clear from the corresponding property of
Dt and Dz. To prove c), we use the definitions (6.3.8) and (6.4.9) to write:

( 6 5 4 )

The terms between parentheses clearly act diagonally on the kth vacuum. •

It is well known (see [20,21]) that the only representation of the Virasoro
algebra with these properties is the trivial one, i.e., dkh+0 Vfc, meaning that Δk = 0.

Theorem 6.5.2. The oscillator and Sugawara constructions (see (6.3.8) and (6.4.9))
of the Virasoro algebra coincide,

Dk = Dk Vfc. (6.5.5)

6.6. Conformal Transformation Properties of the Fermionic Fields. Here we will
derive useful expressions for the commutators [Dk9ψi(z)] and [Dk,ψf(z)]. These
expressions can be considered as the conformal transformation properties of the
fermionic fields.

Recall that the operators Dk = Dk act on the affine algebra by: [£>fc,x(')] =

x(l + Nk). Using this relation and the definition (4.4.2) of the vertex operators,

one immediately derives the following relation:

\%(z). (6.6.1)

It turns out that the commutators [Dk,φi(z)'] and [Dk,ψf(z)] are given by the
same relation with Nk replaced by \
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Theorem 6.6.1.

AT \ dz 2 J ''
(6.6.2)

Froo/. The theorem is proved in a somewhat indirect manner; first one introduces
operators H'k: Λ

 Λ Γ -• A ̂ C 0 0 such that the relations (6.6.2) hold for H'fc instead
of Dk. In order to motivate the definition of these operators, we remark that the
relations (6.6.2) can also be written in terms of their Fourier components;

(6.6.3)

It is easily verified that these relations hold, if we substitute for Dk the operator
H'k: Λ ^C 0 0 -* Λ " C 0 0 defined by

H'k = Σ Σ - f P + ^ ^ V I W N P + «.*:)•• (6 6 4)
ί=lpeZMΛ 2

Let us compute the commutator [HJ^J/J];

= ί Σ i
J= 1 p,qeZ ninj

q + rijl):~\. (6.6.5)

Inside the commutator we can leave out the normal ordering sign and hence we
find for the right hand side of (6.6.5):

Σ Σ i f p + ^ Y ^ ^
+ nι(k + 0) - δp.

iί n \ l J \ λ )

q + nt(k + /)): + δ9tP+Htllδk+lt0θ(p)

(6.6.6)

Here_we have introduced the step function 0:Z-> {0,1} as follows; θ(k):= 1 if k ^ 0
and 5(fe):= 0 if k> 0. The first two terms in the right-hand side of this formula yield
(k — l)H'k + ι, while the central terms become:

δt+i,o Σ K Σ
i = l H/ p,qeZ

-a*+i.o Σ 4
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1 s * nfk3-nik

^ * 3 -k) + δk+ι,ok\Hf. (6.6.7)

This means that the operators

rt^y \Ha\
2I (6.6.8)

define a cvir = n representation of the Virasoro algebra.
The next step is to compute the commutation relations of the Hks with the

oscillators. Using the expression (5.6.4) of the oscillators in terms of fermions and
the definition (6.6.8) of the Hks, one readily finds:

) ( 6 6 9 )

This implies again that the operators Hk - Dk define a cvir = 0 representation of
the Virasoro algebra. Continuing in the same manner as in the previous section,
one proves that Hk = Dk, which proves the theorem. •

The proof of the theorem yields the following corollary:

Corollary 6.6.2. The operators

"*••= Σ Σ Up + n^\φi(P)ΦnP + nik): + ̂ δk0\Hn\
2I (6.6.10)

define a cvir = n representation of the Virasoro algebra. This representation coincides
with the oscillator and Sugawara constructions (see (6.3.8) and (6.4.9)).

7. Vertex Operators

7.1. Introduction. In this section we will show that the fermionic fields φ^z) and
φf(z) can be expressed in terms of so-called fermionic translation operators

fN \
Q{. Λ^C0 0 -• Λ£°+1C°° and the bosonic oscillators άA — k I. As a consequence the

vertex operators AιJq(z) can be written as a product

QiQϊ'xΓ^ (7.1.1)

where ΓιJq is a complicated expression in the bosonic oscillators.
From this formula one easily reads off an alternative construction of the

irreducible ^ϊn(C)-module Λ£°C°°; it is the tensor product of the group algebra of
the group generated by the operators 7>= QiQ[+\ l^i^s-1 and an irreducible
representation of the Heisenberg algebra (a polynomial ring).
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7.2. Expressions for φ^z) and ψ*(z). Recall the commutation relations (6.2.1):

) \ = -^ Λ ψj(z)\ = - V W n i ) Vf (4 (7-2.1)

These relations can be seen as formal eigenvalue equations for the adjoint action
of the HSA sn. They determine the formal eigenvectors ψj(z) and ψf{z) up to
operators that commute with the action of the HSA. It is easy to find solutions
for (7.2.1); define

£j+>(z):=expf- Σ U^i^
\ too*

£}">(z):=expf- Σ V « ά / - f c ) \ (7.2.2)
\ fc<ofc \nt ))

Then one easily checks that the product Ei(z):= E\~)(z)E\+)(z) satisfies the first
relation of (7.2.1) for all k φ 0. From this it is clear that we can write:

φi(z) = Qi(z)Ei(zl (7.2.3)

where Qi{z)\=E\~)(z)~1φi(z)E\+\z)~1 is a formal operator valued Laurent series,
which commutes with all oscillators except with the zero modes;

«<Aoft(4 (7-2.4)

Of course one has a similar expression for the Hermitian conjugate field;

ψHz) = QΠz)E\-\zΓ1E\+\zΓ1. (7.2.5)

Next we consider the formal operator valued Laurent series Qι(z) and Qf(z).
In the lemma below we will show that the z-dependence of these operators is
determined by the conformal transformation properties (6.6.2) of the fermionic
fields.

Lemma 7.2.1. We have:

β (z\ _ JN/ni)(όίi(0)-i/2)Q _ Q (N/ni)(άti0)+l/2)

' Π 2 6)
Q*/zΛ_z-(iV/»ί)(άKO)+l/2)Q*_Q*z-(N/»i)(«ίi(O)-l/2) \ ' ' )

where Qt and Qf are Hermitian conjugate operators on Λ ̂ C 0 0 independent of z.

Proof. We only prove the first relation; the second follows by Hermitian conjugacy
from the first. Consider the commutator [Do, ψi(z)']. Using (6.6.2), the definition
(6.3.8) for Do and the expression (7.2.3) for ψt(z\ we find:

Σ H £ M £ * } • δ i ( z ) £ ί ( z ) ] = z έ β ί ( z ) £ (z) (7 17)) ] = z έ β ί ( z ) £ (z)
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Using the Heisenberg commutation relations one easily derives:

Substituting this relation in (7.2.7) and recalling that Q^z) commutes with all
oscillators except with the zero modes, we find:

Using (7.2.4), this can be rewritten as:

^ i)β,(z) = ^ 6 i ( 4 (7.2.10)

This differential equation is solved by the first relation of (7.2.6). •

With this lemma we can write:

-1,

and from these relations it is clear that the operators Qt and Qf, which were defined
in the lemma as "integration constants," change the total charge of the fermions
of type i by -h 1 respectively — 1. In the case of the homogeneous HSA the operators
Ti = βiβf+i 1 ̂  i = n - 1 a r e called translation operators (see [3]), because they
are closely related to the translation subgroup of the affine Weyl group. For these
reasons we will call the Qfs and Qf's fermionic translation operators.

7.3. The Operators Qt and Qf. In this subsection we will prove the following
theorem, which determines completely the action of the fermionic translation
operators on the semi-infinite wedge space.

Theorem 7.3.1. Let Qh Qf: Λ °° C00 -> Λ °° C00 be the operators defined by (7.2.6\ then
the following relations hold:

Ψλ^Qt i f

Qiψf(z)=-ψf(z)Qi if

(7.3.2)

Moreover, these operators are unitary -

β? = e Γ 1 (7.3.3)

- and they satisfy the anticommutation relations:

{Qi,Qj} = O = {Qf,Qf} if iΦj {QhQJ} = 2δiJ. (7.3.4)
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Note that the relations (7.3.1) can also be written as:

Qiφj(k)=-φj(k)Qi if iΦj,

Qiφf(k)=-φf(k)Qi if iΦj,

1)6,,

while the Hermitian conjugates of these relations read:

Q,fφj{k)=-φj(k)Qf if iΦj,

Qfφf(k)=-φf(k)Qf if iΦj,

Qfφi(k) = φi(k-l)Qf,

QtΦΐ(k) = φΠk-l)Qf. (7.3.6)

Together with (7.3.2) this indeed determines the action of g, and Qf.
In the sequel we will make an extensive use of the calculus of formal variables

developed in [22]. In particular we will use the following formal power series:

1 - = Σ **> ( 7 3 7 )
1-z k>0

l o g ( l - z ) : = - Σ 7**. (7 3 8)

:= Σ hz"' ( 7 3 9>
δ(z):= X z\ (7.3.10)

keZ

With these definitions one clearly has the following formal identities:

(l-z)-!-=l, (7.3.11)

1 — z

exp(log( l- 2 ))=l-z, (7.3.12)

P(z)δ(z) = P(l)δ(z) VPeCCz.z"1]. (7.3.13)

We start to prove a lemma.

Lemma 7.3.2. We have the following formal identities:

E\+Xz)ψi(y)E\+\zΓ1=(l-(y/zr"><)φi(y),

Φn)

E\-\z)φf(y)E\-\zyi = (1 - (z/yr"")φf(y), (7.3.14)

' O O - 1 E\-\)-iE\ + \)
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E\-\z)E\+\y)-' = (1 - {zly)Nin*)E\+\yΓιE\-\z), (7.3.15)

{φi(y),Φf(z)} = δ((y/z)N""). (7.3.16)

Proof. We have

z Γ 1 = e x p ( - a d £ ^ " W n i )

i)ψi(y). (7.3.17)

The second relation of (7.3.14) can be proved analogously. The third and fourth
ones can be derived from the first two by Hermitian conjugacy.

To prove (7.3.15), we remark that the products of exponentials in the oscillators
are all of the form eAeB while the commutator [A, B] is a multiple of the identity.
In that case one has:

eΛeB = eίA,BieBeA (73Λ&)

So for the first relation of (7.3.15) we only have to make the following computa-
tion:

Γ- Σ Iz-wwάl-k), Σ Vwn')'<*/-/)1= Σ Uy/zr1**
|_ fc>o/c \n f / « o ί \n f / J k>ok

=-log(l-(y/zn

and the result follows. The second relation of (7.3.15) is proved by inversion of the
first.

Finally, (7.3.16) is immediate from the anticommutation relations (5.4.9) and
the definition of the ^-function. •

Let us solve Qt and Qf from (7.2.3) and (7.2.6);

Qf = £}- )(z)^ ί (z)£|+)(z)z(Ar/"')(ί'(P)-1/2). (7.3.19)

With these relations and the lemma we can prove the following lemma.

Lemma 7.3.3.

QfQi = QiQ? (7.3.20)

Proof. With (7.3.19) we can write:

QfQi = E\-\z)ψf(z)E\ + \z)ziN/niM^^^ ly-iN

= E\-\z)ψnz)E\+\z)E\-\y)-iψ^^^^

Using the relations (7.3.14) and (7.3.15), this can be rewritten as:
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Because of the factor (1 — (y/z)N/tti) in this expression and the relation

we can anticommute the fields φ^y) and φ*(z). We now use (7.3.14) and (7.3.15)
again and obtain:

G?ft=-(i-(y/*)*^

We are now able to prove the relations (7.3.1) of the theorem. The first two
are easy; substitute the expressions (7.3.19) for Q/i and Qf and the result follows
immediately. The third one is proved by:

= z-w"'V,(z)e, . (7.3.21)
Finally, for the fourth relation of (7.3.1) we need the lemma above;

= z{N/n')φi(z)Qf. (7.3.22)

Note that these relations imply that the operator QfQt commutes with the fermionic
fields φi(z) and ψf(z). Therefore, if we want to prove that the Qi's are unitary
operators, we only have to show that β*β f stabilizes the vacuum |0>.

We first prove the relations (7.3.2);

(7.3.23)

The right-hand side of this relation is a power series in zN/rti. Extracting the coefficient
of the constant term, we obtain:

(7.3.24)

The second relation of (7.3.2) is proved analogously.
Now that we have proved (7.3.2), we calculate:

Q? βι|0> = QΐΦi(l)\θy = Φi(O)Qf\O> = ψi(O)ψr(O)\O> = |0>. (7.3.25)

This completes the proof of the unitarity of the fermionic translation operators.
The anticommutation relations (7.3.4) will be left to the reader.
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7.4. Vertex Operators for A^ and gln(C)

Here we will study the normal ordered operator product iψiiujψjiv): in two formal
variables u and υ. Note that the coefficients of ukv~\ fc, /eZ and the identity operator
/ span an algebra of operators isomorphic to A^. Therefore, this operator product
can be called a vertex operator for A^. Of course our aim is to replace the formal
variables u and υ by ωpz and ωqz respectively, to obtain the vertex operators for
gln(Q. The justification for this kind of manipulation will be given below.

With the formal variables u and v we can write

:φi(u)φj(v):= ψt(u)ψf(Ό)- <0|^(ιι)^*(ϋ)|0>, (7.4.1)

where the "contraction" <0|^£(u)^(t;)|0> is formally well defined;

(v/tΔN/2ni

V
For the ordinary product ψι(u)ιl/f(v) we write, using (7.3.15):

i o^yv/u)

UN/mHί-δij)

1 Oij[y/U)

(7.4.3)
With this calculation we have proved the following lemma:

Leirana7.4.1.
vN/2nju-(N/2m)u(N/ni)(l -δij)

- δtji}.

(7.4.4)

In order to obtain an expression for the vertex operators Allq(z) for gln{C) we
would like to replace the formal variables u and v in this formula by ωpz and ωqz
respectively. Of course this must be done with some care, because of the formal
power series (1 - d^v/uf^y * = 1 + δu £ (v/u)iN/ni)k in the right-hand side. Note

fc>0

however, that it is allowed to multiply both sides of (7.4.4) with the polynomial
(1 — Sij(v/u)Nlni). This justifies the substitution u\—>ωpz, v\-+ωqz for the case
i ^j v (* =j Λ V^ <?)• Using (5.5.4), we find after a short calculation:

Theorem 7.4.2. For i Φj v (i =j Λ pΦ q) we have:

1

(7.4.5)



104 F. ten Kroode and J. van de Leur

7.5. Bosonίc Realization of Λ^C0 0 and Λ^C0 0. Recall from Sect. 4 that the HSA
Sn has a basis {Pί^JfeN^I^} whose elements satisfy the commutation relations

[N \
IPhQjli = δijc- The p/s correspond to oscillators &A —k J with positive k. Hence

they annihilate the vacuum vector v0. With these remarks it is easy to see that the set

Z^meN} (7.5.1)

is independent. In other words: the linear mapping f'.<%(sn) v0-+C[x1,x2,•••]
defined by

f(<Aι-<fc-VoY-=Aι-& (7 5 2)

is an isomorphism between vector spaces. It is clear that on the polynomial ring

C[xJ the p^s and q/s are represented by -— and xt respectively.
uXi

Next we consider the vectors υku...Λs:= Q\x '-Q*S'VO, k(eZ. This collection
contains all vacua vk,keZ; one easily derives that for k = nx + •• w, -i +j + nl,

vk=±QViί+l)'''Q^il+l)QrnilQ^Ίl'''QnsslVo^ (7.5.3)
s

Notice that these vectors have different eigenvalues with respect to φ C ά , (0):
ι = 1

For this reason the collection {t?fclf#..ΛJfcieZ} is independent. Let 12 be the linear
span of all v k ι k s . It has the following charge decomposition:

JkeZ

® βί-^). (7.5.5)
kι+ ks = O

Now consider the space ^ί(^Ωk, which can be identified with the tensor product
i2fc®C[Xi]. From the expressions (7.4.4) and (7.4.5) for the vertex operators we
see that this space is invariant under the actions of A^ and gln(C). It is also clear
that this space cannot contain any invariant subspaces. Therefore it must coincide
with the kth wedge space;

(7.5.6)

Similarly:

(7.5.7)

The space Ωk can also be described in a somewhat different manner. Define
for 1 ̂  i: ̂  5 — 1 the operators Γ t:= QiQ[+\ and let fn be the group generated by
these operators. A short calculation yields

TJJ^Tj^i-r^ (7.5.8)

where aij:=2δij — δi+1J — δj+1 ti is the Cartan matrix for the Lie algebra sls(Q.
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This relation expresses that tn is a central extension of the (co)root lattice of sls(Q
by the two element group Z 2 = {± 1} (cf. [3] for the homogeneous case). The
space Ωk can be identified with (a copy of) the group algebra C[TJ

8. Remarks

8.1. Restriction to sln(Q. In Sect. 7.5 we have seen that the gln(C)-mod\i\e Λ^C0 0

fN \
is generated by the action of the creation operators, i.e., the elements &Λ —k I for

\ni /
k<0 and of the operators Γι = <2ίβ;+1i on the kth vacuum vk. Restricted to
sln(C) this module does not remain irreducible. This is caused by the fact that
not all elements of the HSA §„ belong to ίln(C). If we want to describe the
5?M(C)-module L(Λkmodn), we have to throw out certain variables from the
polynoprial ring C[xJ.

Define &(/), leZ- {0} as follows:

ni )' \ni )

βi(Nk):=-άi(Nk)--ί—όίi + 1(Nk) for l g ΐ g s - 1 ,
ni ni+ι

βs(Nk):= ά^Nk) + &2(Nk) + - όίs(Nk). (8.1.1)

Let £„ be the intersection snniln(Q, then:

)< ® C d ~ ϋ . (8.1.2)
fceZ-{O}i=l V^ /J lkeZ-nsZ \ΠS /J

In terms of the variables xf (see Lemma 4.3.2) this means that we define new
variables y{ by:

3 Ί i i + H 2 + • • • « ! • - i + J + π / * = - ^ Λ i + Π 2 + rii- ι + j + n l 1 ° Γ J T1 n i

1 1
3̂ /11 +«2 + —fiB — l +nl'= -^wi +Π2+ Wi- l +nl -^wi +/12+ * ni + nl *®* 1 = ^ = ^ 1

/I /I; _l_ j

y . γ _|_ y. |_ γ

w/ m+nl ' Π1+W2+Π/ ' w + n/

(8.1.3)
The s/w(C)-module L(/ifcmod«) is generated by the action of £„ and the group T5 on
the vacuum vector vk\ we find:

UΛkmΛH) s C [ J J ® C [ Λ ; * ̂  «']• (8.1.4)

8.2. q-Dimensίon Formulas. Recall the operator Do (see (6.3.8)). Using (7.5.4), one
finds:

' β ϊ ^ o (8.2.1)

Combining this with (6.3.9) and (7.5.6), we find the following explicit form of the
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"g-dimension" formulas from [5]:
l/2\Hn\

2 y gVΆίkj/n^+ iks/ns))

trace AoocaoqDo = ! — j — (8.2.2)

and

traceL(Λ )qDo = Π 0 ~~ ^f1)traceΛ«c«>^f^0. (8.2.3)

8.3. Hierarchies of Soliton Equations. Kac and Peterson [15] have shown that the
KP-hierarchy of soliton equations can be defined in terms of the 1-component
Clifford algebra:

or, equivalently:

ψ(k)τ®ψ*(k)τ = 0 (8.3.1)
fciZ

§ — ψ(z)τ®ψ*(z)τ = 0. (8.3.2)

Here τ is an element of Λ^C0 0, which, in the 1-component case, is realized SLS a
polynomial ring. Equations (8.3.1) and (8.3.2) describe the orbit of the group GL^
through the vacuum vector f0.

It is clear that (8.3.1) can be rewritten in terms of s-component fermions;

k)τ = °< ( 8 3 3 )

where we now think of τ as a multicomponent polynomial, its components being
labeled by the (co)root lattice of s/s(Q. This equation is called the s-component
KP-hierarchy in [23]. It is interesting to consider reductions of this hierarchy to
the 5Lw-orbit. The case n = 2, 5 = 1 is well, known; one finds the KdV-family of
p.d.e.'s. In the case n = 2, 5 = 2 the 2-component KP-hierarchy reduces to the
so-called Toda-AKNS hierarchy (see [10,13]).

Acknowledgements. We would like to thank Edy de Kerf for reading parts of the manuscript and
for making some valuable remarks. Johan van de Leur wishes to thank Victor Kac for many
illuminating and inspiring discussions in which he showed his great expertise.

Note. After completion of the manuscript we learned of a paper by Dodd [24], in which the
realizations of level one highest weight representations of sln(C) associated to different HSA's are
studied from a somewhat different point of view.
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