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Abstract. Let (ωn)n^ί be a norm convergent sequence of normal states on a von
Neumann algebra si with ωw->ω. Let (kn)n ̂  t be a strongly convergent sequence of
self-adjoint elements of si with kn-+k. It is shown that the sequence (p)f)n^ι of
perturbed states converges in norm to of. A related result holds for C*-algebras. A
counter-example is provided to show that it is not sufficient to assume weak
convergence of (con)n^ί even when kn = k for all n. However, conditions are given
which, together with weak convergence, are sufficient. Relative entropy methods
are used, and a relative entropy inequality is proved.

1. Continuity of ωk in ω and in k

Given a faithful state ω on a von Neumann algebra si and a self-adjoint element
kεsi, Araki [1] defined, using perturbation theory and modular theory, a state
denoted by ωk. The motivation for this definition came from quantum statistical
mechanics. If ω represents the equilibrium state of a physical system, then ωk will
represent the equilibrium state of the perturbed system in which the energy of each
state σ has been increased by σ(k). Araki's definition has proved useful for the
analysis of stability properties for equilibrium states and in demonstrating the
invariance of such states under given symmetry groups.

In [7], I have used the equivalent, but more direct, definition, that of is the
unique state maximizing the function σi—•ente5/(σ|ω) — σ(k), where ent^(σ|ω) is the
relative entropy of σ with respect to ω. With this definition, it is possible to use
relative entropy techniques to give alternative - and, in my view, simpler - proofs
of the results in [1], Also, the definition and many of the results can be extended to
the case in which k is a lower-bounded self-adjoint operator affiliated with si. In
this paper, relative entropy techniques are used to prove a powerful continuity
result for ωk with k bounded. Background and full elucidation of the notation are
given in [7], I have used [7] wherever possible in this paper as a unified source of
results about ωk, but, of course, many of the results quoted were originally proved
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by Araki. [7] gives the detailed references. This paper focuses on von Neumann
algebra results, but there is an immediate extension to the C*-algebra case. This is
given as Theorem 1.9.

Notation, stf is a von Neumann algebra acting on a Hubert space Jf. It may be
assumed, by results explained in [7], that si has a faithful normal state and is in
standard form. ΣJ^sί) is the set of normal states on si. For ωeΣJ^sί) and
k = fc* e s/, s(ω) is the support projection of ω, and we set

c(ω9 k) = ent^(ωΛ|ω) — ω\k) = sup {ent^(σ|ω) — σ(k): σ e ΣJ^)}.

Note that, as in [7], ent^(σ|ω) is defined with the convention of [3] so that, for
example, ent^(jr)(σ|ω} = tr( — σlogσ-f σlogω)^0. Also following [3,7], ωk is
defined to be normalized. c(ω, k) is a difference of free energies [5] and is equivalent
to the function denoted by logωfc(l) in several recent papers (e.g. [10, 11]) which,
following [1, 2], use a non-normalized version of ωk.

For a given natural positive cone ^ , ξ(ω) will be the unique vector in & such
that ω(A) = (ξ(ω), Aξ(ω)) for all Aes/, J will denote the modular conjugation.

Theorem 1.1. Let (con)n>1 be a sequence of normal states on jtf with ωn —• ω and let

(K)n^i be a sequence of self-adjoint elements of stf with kn—>k. Then ωkn—>ωk,

ent^(ω^ωj^ent^(ωk |ω), and c(ωn,kn)

This result is a strengthening of [1, Proposition 4.1], reproved in [7,
Proposition A.I], which dealt with the case that ωn = ω for all n. The proof is along
the lines of [7, Propositions 3.15 and A.I], but is more difficult. There are two
strands. One, (Lemmas 1.6 and 1.7), involves what amounts to a compactness
property for {ωkn: n^ 1}, proved by a relative entropy inequality (Proposition 2.2)
which may be more widely useful. The other strand, to which we turn first, involves
the construction of a sequence ( ρ j ^ i such that eni^ρjωj — ρn(kn)^c(ω, k) (cf.
Proposition 3.5). In fact, we construct a double sequence (ρπ,m)π,m^i. First we
approximate ωk by (ωflm)m> 1? where the (am)m>1 are analytic approximations to k.
Then, for each m, we approximate ωΛrn by a sequence to which we can apply the
following lemma - proved by Araki in [2, Theorem 3.7 (2)].

Lemma 1.2. Let (σn)n^1 and (ω^n^iCΣ^stf) with σn—>σ and ωn—>ω. Suppose
that there exists l e R such that σn^Xωn for all n^l.

Then

Lemma 1.3. There exists (am)m^1C^ and (Tm)m^1Cs/f such that am = a%,

ω ^ J U ω \ enUω^|ω)-^enUω fe |ω), Tm^0, ωa-{A) = {ξ{ω\ TmAξ(ω)) for all

, andωam^\\Tm\\ω.

Proof. Assume first that ω is faithful. Take (am)m> x to be the sequence of analytic
approximations to k defined in the appendix to [7] and denoted there by (feπ)n ̂  x [7,

Eq. (A.2)]. From that appendix, am = α*, ωflw —• α/, and ent^(ωΛw|ω)^ent^(ωfe|ω).
That appendix also defines an operator Γjfeήej/ and c m eR such that ξ(ωarn)
= Γm{\i)e--c-ξ{ω). But ξ(ωa™) = Jξ(ωa™) = JΓm{\i)e--c-Jξ{ω\ so, for
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) = (ξ(ω),TmAξ(ω)\ where

That ω Λ w ^ | | T J | ω is then elementary.
If ω is not faithful, then we use the canonical reduction λ±: £0-+sίs(<ώ) defined by

λί(A) = s(ω)A\s(ω)#> to map the von Neumann algebra (s/, 2tf) to the von Neumann
algebra (stfs(ω) = s(ω)jtfs(ω\ s(ώ)3tf). Denote the inverse embedding by λ2. ω°λ2

defined by ω o λ2(s(ω)As(ω)) = ω(A) is then faithful. Applying the result just proved

gives (am)m^C^siω) and ( X J ^ C R such that αm = α*, (ωoλ2)
a™^(ωoλ

ent*HJ(ω ° λ2)
a-\ω o A 2 )^ent^ ( ω ) ((ω o λ2)^k)\ω o λ2), and (ω o λ2)

a™^Xmω o λ2. By
[7, Lemma 2.3F], λ2 defines an isomorphism ( σ κ σ o χ2) between {σ e ΣJ^stf): s(σ)

)} and Σ^s(ω)) satisfying

ent^(σ|ω) - σ(s(ω)ks{ω)) = ent^ s ( ω )(σ o λ2\ω o λ2) - (σ o λ2) {λ^k)).

Invoking [7, Theorem 3.1 A and C, and Lemma 2.3 D], yields ωk = ω

s{ω)ks{ω\
ωkoλ2 = (ωo λ2)

λί{k\ ent^ ((ω o λ2f
m \ ω o A2) = ent^(ωk | ω), and similarly,

(ω o λ2f
m = ω λ 2 ( α w ) o λ2 and ent^ s ( ω )((ω o λ2f

m\ω o A2) = ent^(ωA 2 ( α m ) |ω). Also

ωλ2(αm)_JL>ω* ^ u ^ ^ remains is to deduce the existence of Tm from ωλ2{am)

. This is standard (e.g. [12, Lemma 5.19]). •

Lemma 1.4. Forn,m^ί,defineρn,meΣJs/)byρΠ)m = ωnif (ξ(ωn)9 Tmξ(ωn))^\and,
otherwise, by

(ξ(ωn\TmAξ(ωn))

β - " * i l j - (ξ(ωnlTmξ(ωn)) '

Then ρ n j m ^2 | |T m | |ω n , and, as n-^oo, ρ π , m - ^ ω α

Proo/ Since ξ(ωπ)^U^(ω) (e.g. [3, Theorem 2.5.31(b)]) and since 1 =ω α " ( l ) = (£(ω),

Γm<ί(ω)), we have that, for each fixed m, ρ w m - ^ ω α m . That ρ n m g 2 | | T m | | ω π is
elementary and allows Lemma 1.2 to be applied to give ent j /(ρ l l fW |ω l l)
-^ent^ω β m |ω). Π

Set κ = H- sup ||fcw||.

Lemma 1.5. lim inf c(ωn, kn) ̂  c(ω, k).
n-*ao

Proof Suppose not. Then, by passing to a subsequence, we may assume that, for
some ε > 0, c(ωn, kn) < c(ω, k) — ε for all n.

Using Lemma 1.3, choose and fix M such that |ent^(ωΛ M |ω) — ent^(ω*|ω)| < ε/8
and | | ω f l M - ω Λ | | ( l + ||fc||)<ε/8.

Using Lemma 1.4, find N (depending on M) such that n^N
-ent^(ω α M |ω) |<ε/8, | |ρΛ > M-ωβ Λ*| |κ;<ε/16, and |ωαΛί(/cπ

Then n^iy=>|ent^(ρπ > M |ωπ)—ent^(ω k |ω)|<ε/4 and

\QnAK)~ω\k)\ ^ \ρn,M(kn)-ω^(kn)\ + \ωa"(kn)-ωa"(k)\ + \ω°"(k)-ωk(k)\ <ε/4.
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But, from the definition of c, for all n and m, c(ωn,kn)^Qnt^(ρnm\ωn) — ρnm(kn).

Thus n^N^c(ωn,kn)^ent^(ωk\ω)-ω\k)-ε/2 = c(ω,k)-ε/2. This is a con-
tradiction. •

Lemma 1.6. ωk

n

n(kn — fc)->0 as n->oo.

Proof. By the Peierls-Bogoliubov inequality - [7, Lemma 3.8] -

Set 4̂Π = (/cn — k)/2κ. Then Proposition 2.2 yields

A2

n)^ -(l + l/e-entJωk»\ωn))/logωn(A2

n)

= - (1 + ί/e + 2/c)/log(ω(,42) + (ωπ - ω) (A2

n)).

because kn-^>k while | ( ω π - ω ) ( ^ ) | ^ | |ωπ — ω||->0 because

Lemma 1.7. L^ί (&>«")«e/ ̂ ^ fl w*-cowi;βrgenί subnet of (cokn)n> i w/ί/z ω^α-^ω/r. T/zen

/ Choose ε > 0. 3α0 such that α > α0 =» |(ω" — ω^α) (fc)| < ε/2 (by w*-
convergence) and |ω^α(fcα — k)\<ε/2 (by Lemma 1.6).

Then α > α0 => |(ω;/(fc) - ω*-(fej| < ε. D

of Theorem l.ί. By Lemma 1.7, w* upper semicontinuity of ent [4, 9], and
Lemma 1.5

enljω"\ω)-ω"{h)^ lim sup (ent^(ωϊ α |ω α )
αe/

/c). (1.8)

It follows from the definition and uniqueness of ωk that ω" = ωk. Then, as the

subnet (ωkήaeI was arbitrary, ωkn—>ωk.
(1.8) and Lemma 1.5 yield c(ωπ, fcj-»c(ω, fc). Lemma 1.7 yields ωkn(kn)^ωk(k). It

follows that ent^(ωj5n |ωj-^ent^(ω f c |ω).

All that remains is to show that ωkn — > ωk. Suppose given δ > 0. Find ε > 0 such

that ]/5ε + 3ε/l 6 < (5. As in the proof of Lemma 1.5, we can find M and N such that

and

ent^(ρπ > M\ωn) - ρBf M(/cn) ̂  c(ω, fc) - ε/2.

Choose N^N such that n^N1=> \c(ωn,kn)-c(ω,fe)| <ε/2.
But, by [7, Eq. 3.4],

ρπ> M\ωk«)

so that n^N1 =
[8, Theorem 3.1] gives i l | ρ n , M - ω M | 2 ^ -ent^(ρ^M |ω^), so that

and ||ω^-ω fc | | <|/2ε + ε/16 + ε/8<(5. •
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Theorem 1.9. Let (ωn)n^ x be a sequence of states on a C*-algebra <& with ωn—>ω

and let (kn)n^1 be a sequence of self-adjoint elements of Ή with kn—>k. Then

ωk

n

n-^>ω\ ent#(ωj"|ωj^ent^(ωfc|ω), and c(ωn,kn)-+c(ω,k).

Proof. If σ is a state on ̂  then we denote by θ(σ) the unique normal extension of σ to
the universal enveloping algebra #•*. It was noted in [7] that, whether or not the
GNS vector representative of σ is separating, σk can be defined by θ(σk) = θ(σf and
that

) = ent<#**(θ(σ)\θ(ω))

(cf. [2, Sect. 5]). The result follows immediately. •

2. A Relative Entropy Inequality

Lemma 2.1. Let σ,ρeΣJsί) and (AnΈ= x Csi, with N finite or infinite, An^0 for
N

each n, and J] An = \. Then
n=l

entjσ\ρ)£- £ σ(An)log(σ(An)/ρ(An)).
n=l

Proof It is sufficient to prove this result for finite AT, since

- Σ σ(An)log(σ(An)/ρ(An))

Λ = l

(-σ(An)ϊog(σ(An)/ρ(Aπ)) +

and the right-hand side is a sum of negative terms.
For N finite and si = @){3tf) - the algebra of all bounded operators on some

Hubert space #? - the result is proved as Proposition 8.7 of [4]. This proof extends
without significant change to the present context. Indeed, if si is represented on a
Hubert space Jf, then, by a theorem of Naimark, one can construct a Hubert space
Jf containing 2tf, with ee J*(JΓ) the orthogonal projection onto ̂ f, and mutually
orthogonal projections (Pn)n=i C &(3f) such that An = ePn\m{e^y Then, let six be the
von Neumann algebra on C/f generated by (PX= λ\j{eAe: Aesi). To extend the
argument of [4, Proposition 8.7] it is only necessary to remark that (s/1)e = s/.

One should note that in this paper, as in [7], I an using Araki's version of ent -
which is defined only for algebras. This was denoted by ent5 in [4]. Nevertheless, I
still view the extension of relative entropy to non-algebras given in [4] as being of
possible fundamental physical significance [6, Eq. (5.6)]. •

Proposition 2.2. Let σ,ρeΣ^Λ/) and Aesi with l^A^O. Then

σ(A)£ -(1 + l/β-enUσ|ρ))/logρμ).

(This applies even if ρ(̂ 4) = 0, but it is vacuous when ent^(σ|ρ)= — oo.)

Proof. Set s = σ(A) and r = ρ(A).
Lemma 2.1 gives - s log(s/r) -(1 - s) log((l - s)/(l - r)) ̂  ent^(σ|ρ). But,

- ( l - s ) log(( l - s )/ ( l - r ) )gs- rg l and -s logs^l/e, so
s l o g r ^ e n t ^ φ ) - 1 - 1/e. D
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Comparing this with [13, Theorem IΠ.5.4] and with [7, Lemma 2.3C and
Proposition A.I], we see that it gives a precise measure of the weak compactness of
{ ) ^ α } for α > — oo.

3. Weak Convergence - A Counter-Example and A Sufficient Condition

In this section a counter-example (Example 3.2) is provided demonstrating that
Theorem 1.1 does not, in general, extend to the case in which ωn converges weakly
to ω, even if kn = k for all n. However, sufficient conditions (Proposition 3.5) are
given for the extension of Theorem 1.1. It is also shown that Lemma 1.2 does not
extend to cover weak convergence (Example 3.3) and that Theorem 1.1 does not, in
general, extend to the case in which kn converges σ-weakly to fc, even if ωn = ω for all
n (Example 3.4).

Let ^ = L°°([0,1])®^(<C2) acting on ^f = L2([0,1])®(C2. Aestf takes the

form /.

/=(/o),

τ =

,7=1,2 with j

(ί >•

2 with

faithful

), 1]), and

trace on ,

10, i]),

j

while
2

Σ 4-(

s/. Define τn = (

i,

takes
2 i

Σ J/ύί
7 = 1 0

(j/) by

the

v^ Λ i
) J ^ ii'

form

[x)dx.

) = l for xe

= 0 for xe

m = 0

m = 0

2m+l\
2n )

"2m + l
yx

Lemma 3.1. τn — • τ.

Proof. s(τn) = (t"j) and τM(̂ 4) = 2τ(s(τπ)^4) for Aes/, so it is sufficient to prove that
5(τn)~~> 2 σ~weakly. Indeed, it is sufficient to prove that tn

lί converges σ-weakly to t
in L°°([0,1]), where φc) = i for all jce[0,1].

Choose ε > 0 and /eL^EO, 1]).

3geC{[0, 1]) such that J |/(x)-g(x) |dx<e/2.

Then n^

IN such that \x - y\ ̂  1/2" => \g(x) - g(y)\ < ε.

- J g(x)dx <ε/2n for m = {
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and

S \(f-g)(t)\ + |g(ί)-

^ l ί \f(x)-g(x)\dx + ε/4+ } \g(x)-f(x)\dx<ε.}

Example 3.2. Set k = I JES/. τn was constructed precisely so that

s(τn)ks(τn) = 0. By [7, Theorem 3.1 C], τk

n = τs

n

MksM = τn. However, by [7,
Corollary 3.14], τk + τ. It follows that τk-»τk.

This example can easily be extended to produce a sequence (ρπ)π>i of faithful

states such that ρn-^τ but ρk+*τk. To do this, note that, as x+»0, (1— x)τn

+ xτ—>τn, and use Theorem 1.1 to choose xn such that \\ρk — τ*|| ^^\\τk — τ||,
where ρπ = (l — xn)τn + xnτ. Now weak convergence of ρk to τk would contradict the

fact that τk = τπ—>τ and the weak lower semicontinuity of the norm. •

Example 3.3. Let σn = \τn + \τ. Clearly, \τ ^ σn ^ 3/2τ and σπ —> τ. By monotonic-

ity of ent - or even by Lemma 2.1 -

enUσJτ) ^ - σw(s(τπ)) log(σπ(s(τπ))/τ(s(τw)))

-σn(l -s(τΛ))log(σ,,(l -5(τΛ))/τ(l -s(τn)))

= -3/41og3/2- i log i<0

so that ent^(σπ|τ)^>ent^(τ|τ) = O, and Lemma 1.2 does not extend. •

Example 3.4. Let P = ( J e stf and set an = Ps(τn)P. The proof of Lemma 3.1

shows that an converges σ-weakly to \P. By using [10, Theorem 4] to restrict to the
abelian subalgebra (PL°°([0,1])P)Θ((1 -P)L°°([0,1])(1 -P)) oϊst, it can be seen
that, for Λes/, τan(A) = τ(e-a"A)/τ(e-an) and τ*p{A) = τ{e-*pA)lτ{e-*p). But then

i 1 i 1 so that τα"-/>τiP. Π

Proposition 3.5. Let (ωα)α e / h^ α net of normal states on si with ωa—• ω e Σ

A) Let (ka)aeJ be a net of self-adjoint elements of si with ka - ^ k. If lim inf c(ωα, fcα)

ωk<x—>ωk and c(ωa,ka)^>c(ω,k).

B) Let h be an extended-valued lower-bounded operator affiliated with s/ in the

sense of [7, Definition 2.i2~\. If lim inf c(ωα, h)^.c(ω, h)> — oo then ωh

a—>ωh and
c(ωa,h)^c(ω,h).

Proof A) We use techniques already explained:
Let (ωk

β

β)βeJ be a w*-convergent subnet of (ωkήaeI with ωk

β

β-+ω". Then

\(ω"(k)-ωk*(kβ)\ ί |(ω"-α^)(fc)| + \ωk*(k- kβ)\

S \{ω" - cJy) (k)\ + || k - kβ || - 0 so that

entjω"\ω)-ω"(k)^ lim sup (ent^
βeJ
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Hence ω" = ωk and lim sup c(ωβ, kβ) = c(ω, k).
βeJ

The proof of B is similar, but uses [7, Lemma 2.3A] and the weak lower
semicontinuity of h [7, Definition 2.12]. •
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