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Abstract. The Algebra of Weyl symmetrised polynomials in powers of Hamiltonian
operators P and Q which satisfy canonical commutation relations is constructed.
This algebra is shown to encompass all recent infinite dimensional algebras acting
on two-dimensional phase space. In particular the Moyal bracket algebra and
the Poisson bracket algebra, of which the Moyal is the unique one parameter
deformation are shown to be different aspects of this infinite algebra. We propose
the introduction of a second deformation, by the replacement of the Heisenberg
algebra for P, Q with a g-deformed commutator, and construct algebras of
^-symmetrised Polynomials.

Introduction

In the first section of this article we present an account of some ideas, dating back
to the pioneering work of Hermann Weyl which generalise the algebra of functions
on a classical phase space to a space co-ordinatised by canonically quantised
operators. These ideas have surfaced from time to time in the literature [1,2,3]
and are now again very much alive in considerations of area preserving diffeo-
morphisms of two-dimensional manifolds, geometric quantisation and large N
limits of SU(N) [4,5,6]. The fundamental algebraic structure which we study is
the algebra of symmetrised, averaged polynomials in P and g, where P, Q satisfy
the canonical commutation relations of the Heisenberg algebra;

PQ-QP = H (1)

Here we take Aasa numerical constant, but bear in mind that for possible novel
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physical applications of the results of the later sections that λ should be accorded
the dimensions of Planck's constant h, i.e. the dimensions of action. We restrict
our considerations to a two-dimensional phase space; the generalization is straight-
forward.

In the second section we connect this algebra with the Moyal deformation of
the Poisson bracket, which is related to an associative, non-abelian product on
function space on a symplectic manifold. This construction is realised through a
non-canonical transformation of P, Q in terms of a two-dimensional manifold and

its tangent space. Two special limits are considered; one where λ — —, M integral,

and λ -> 0. In the former case the algebra is shown to reduce to a group bundle
with fiber U(M) over the torus; in the latter with the Poisson algebra of area
preserving transformations of two-dimensional manifolds. In sections three, four
and five these constructions are subjected to a further deformation; the Heisenberg
algebra (1) is replaced by the ̂ -deformation

PQ-qQP = ίλ (2)

and the analysis of sections one and two is repeated, this time including the
q deformation parameter. Representations of the ^-Heisenberg algebra are
analysed.

1. The Algebra of Weyl-Ordered Operators

Define Tjm as the fully symmetrised, averaged, sum of monomials of degree j in
P, and m in Q, i.e.

_PQ + QP
1 1,1 ~ 2 '

PQ + PQP + PQP + QP
T 3 , i = 4 e t c (3)

Note that 7}m depends implicitly upon /, and may be derived from the generating
function:

(aP + bQ)s=Σ( )ajbs-%s-j. (4)

Theorem. The commutator [ T i m , T M ] for j,m^l is given by the following ex-
pression:

(_1 ) s,'2r+Λ βklmlnl
s J(j + s-2r-\)\{k-s)\(m-s)\(n + s-2r-l)\
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Proof. Consider instead the commutator of the operators

1

α'b ~ ϊϊλ'

[Eatb,ECtd] = -jsin λ(ad-bc)Ea+Cfb+d.

This follows from the Baker-Campbell-Hausdorff formula:

exp (A + B) = exp B exp — 9 - — exp A

(6)

(7)

(8)

for operators A,B such that [A,[A,BJ] = [B,[A,BJ] = 0, by choice of

A = ^/2i(aP+bQ)9B = y/2i(cP + dQ). Now observe that the coefficient of aJbm

in exp λ/
/2(αP + bQ) is simply — : 7}m. Then by comparison of coefficients

of ajbmckdn on both sides of Eq. (7) the result follows. (The factorials in the
numerator of (5) arise from the normalisations of the left-hand side; those in the
denominator come from a combination of normalisation factors and binomial
coefficients in selecting the coefficient of aj~2r-1+sbm-sck-sdk-2r-1+s from the
expansion of exp ^/2(aP + bQ).) •

This is the algebra quoted by C. M. Bender and G. Dunne [7] in the particular
case where j,k,m,n^0. Equation (7) may be interpreted as an algebra of vertex

operators, and if a, beZ the two limits λ = —, M integral and λ -• 0 are particularly
M

interesting [4]. Consider the algebra (7) modulo the equivalence relation

, = 0, 0 g μ l 9 μ 2 g 2 π . (9)

Theorem. For every point (μι,μ2) of the torus there is a factor algebra which is
isomorphic to U(M).

Proof The algebra U(M) is generated by the operators Jah = ωabl2gahb, where
g, h satisfy the relations;

gM = hM=l,

where ωM=l
[ }

since a faithful representation of (8) is realised by the following matrices and their
products, which span the space of U(M):

(\

\

ω

ω h =

1

\±1

(11)

(The sign in the lower left element of h is taken as positive or negative, according
as M is odd or even to give a positive determinant.) The Lie algebra of the Jah is



490 I. M. Gelfand and D. B. Fairlie

found to be

Ua,b>Jc,d']= — sm^{ad-bc)Ja+Ctb + d. (12)

This is the factor algebra (9). •

2. Moyal Bracket

There is another formalism which reproduces the same results: There is a
deformation of the Poisson bracket algebra which involves the Moyal, or since
bracket; [1,2], defined for two C00 functions f(x,y),g(x,y) by

smλ{f,g}= Σ ( - ί 1 f ^ ( ^ ) ^

(13)

In fact the exponential bracket of Baker [1] of which the Moyal bracket is the
imaginary part is a more fundamental concept. It is similarly defined by

expiλ{/,0}= Σ ^Γ Σ V I ^ T ' W Γ ^ W Γ * - 1 ^ ) . (14)
p=0 V' k=0 \ K )

It is the unique non-associative product on the space of C00 functions of two
variables such that the infinitesimal deformation is Poisson [8]. This concept are
readily extended to a base space which is a IN dimensional symplectic manifold,
as indeed is done in Baker's original paper [1]. The Moyal bracket algebra
is given by

[Kf,Kg] = iKsinλ{ftg]9

where
Kf = y(x-iλdy,y + iλdx). (15)

The above construction of Kf is to be interpreted as the formal Taylor expansion
oϊ^f(x — iλdy,y + iλdx) in powers of the partial derivatives, which are assumed to
act on functions on the right; i.e.

Theorem. The algebras (7) and (25) are isomorphic.

Proof. Consider the following representation;

which preserves the commutation relations (1). Since the generating function may

be re-expressed in terms of the variables x, y, —-, — using the normal ordering rule as
dx oy
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ί
by comparison of coefficients of ajbs j on the right-hand side of (4) and (18) a
differential operator realisation of Tjm may be found. This is given by

TJ^TT—TΓ Σ Σ , KV- 1 ^ - U ^ , (19)

which is identical to the expression which is obtained for Kf by choosing
f{x9y) = 2-{j+m)/2xmyj in the construction of (16), i.e. Kχmyj = Tjtm. •

In a similar manner the substitution

f(x, y) = λ exp i(mx + jy\ g(x, y) = λ exp i(nx + ky)

yields the equation

lVj,m,VκJ=jSmλ(mk-nj)Vj+k,m+n, (20)

where now Vjm denotes Kexpi(mx+jy). This equation is isomorphic to (10). Thus
there are two equivalent ways to establish the Moyal bracket algebra; either take
the algebra of Weyl ordered polynomials in P, β, and extend this to the algebra
of functions /(P, Q) defined through a formal Weyl-ordered power series; or by
the association of differential operators with functions f(x, y) through the ordering
prescription of Eq. (15). As λ ->0 the algebra becomes the Poisson algebra

[Lf,Lg~\ = iL{ftβ}9 where Lf = fxdy - fydx. (21)

This algebra describes area preserving diffeomorphisms of two dimensional
surfaces; for the choice of exponentials for / [4] it is the torus, for powers the
plane [7], etc. It is important in investigations of Poisson Lie algebras, and
bi-algebras with Hamiltonian structure [3,9]. The algebra (20) admits a central
extension linear in the indices of the form (cj + c2m)δu+K0)δ{m+ni0) which is
compatible with the Jacobi identities.

We now repeat these investigations for the case where P, Q satisfy a quantum
deformation of the canonical commutations relations.

3. Representations of </-Heisenberg Algebra

Consider the algebra

PQ-qQP = ίλI. (22)

This algebra is a canonical form for the general quadratic relation between the
operators P, Q and /, the identity element, as squares and linear terms in P, Q may
be transformed away by forming new linear combinations. In general the
representations of (22) are infinite dimensional; however if qN = 1 for some integral
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N, they are of finite dimension. Let us consider the generic case first. Suppose we
define a ^-derivation through the equation

dx x(q — 1)

This satisfies the Leibniz rule

(23)

(24)

In fact, (23) may be deduced from (24) and —-x = 1 as well as the converse. I Then
dx J

(24) gives a representation of (22) in the form

P = iλ-*-; Q = x (25)

in analogy with the usual representation of the canonical commutation relations.
We now turn to the case where q is an Nth root of unity. Subdivide into two

cases according as λ = 0 and λ Φ 0. The case where λ = 0 has already been
considered in Eq. (11). Here we find two inequivalent finite dimensional representa-
tions when λ φ 0.

It is easy to see that when qN = 1, then PN = ocl, QN = βl (<x,β constants) are
ideals of (22) since;

IP, QN1 = QN ... qN~') = 0, (26)

and similarly for PN

9 so both must be proportional to the identity, or zero. Let us
consider two cases

Case (1). Let PN — QN = I. The representations may be constructed with the
aid of the auxiliary matrices gq,hq;

ί 1

0,=

• \ \

\aN

(27)

with

The matrix gq is similar to g in Sect. (1), except for the replacement of ω with
q. These matrices satisfy the algebra;

hqgq — qg^hq. (28)

Then P, β, are given by

β = 0α P9)
1 -q

The most general representation with Q diagonal is of this form. gq is unitary;
hq is unitary also if ataf = 1. It is straightforward to show using (28) that the
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commutation relations (12) are satisfied. The proof that PN is proportional to
the identity depends upon the following

Lemma

Trace {Pr} = 0 {r = 0,1 , . . . ,N-1} . (30)

Proof. Every term in the expansion of Pr is either of-diagonal, or is g(~r). Hence
it is traceless. The Cayley-Hamilton theorem for the representation of PN then
implies PN = α/ for some α. •

A representation dependent proof of this result is straightforward, and hinges upon
N

the subsidiary condition Π α * = l ^ the right-hand side is chosen as zero
ί = l

then at least one at vanishes, and we have a representation with QN = 1 PN = 0.
/ d Y

In fact the representation (25) is of this nature, since M^-p I = 0 on the space

spanned by the monomials x,x2, x 3 , . . . . If x is cyclotomic of order N, i.e. xN = 1,
then these operators are in the class QN = 1 PN = 0.

Case 2. Representations in the nilpotent case QN = PN = 0 may be expressed
in the suggestive form

P =

(31)

\

Here [r] denotes

(32)

We see that this representation is a g-analogue of the usual one for creation and
annihilation operators. Note that Q is the transpose of P, rather than the Hermitian
conjugate. Note also

gq = [P,Ql (33)

This representation has occurred frequently in the recent literature [10].

4. Weyl Symmetrization for ^-Heisenberg Algebra

There are to natural procedures for the association of an algebra of homogeneous
polynomials in P, Q subject to the g-Heisenberg commutation rule. The first is a
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direct extension of Weyl symmetrisation. Suppose first q is not a root of unity.
The operation which replaces this procedure for the algebra (10) is simply: Replace
Tjfm by the weighted average of all monomials of degree j in P, m in Q, the term

£ mr = YΠ

being weighted with a factor q~a, where

α = Σ Λ ( Σ ™ Λ (33)

r = l

In the limit as # - > ± l , this prescription ensures complete symmetrisation or
anti-symmetrisation respectively. Remarkably, the same generating function which
was employed in Sect. 2 admits a re-interpretation as a generating function for
the qTmj the quantum deformation of Tmj. Recall Eq. (4);

Let us suppose now that a, b are co-ordinates in a quantum plane as described by
Manin [11];

ab = q~1ba, (34)

and let us maintain the commutation

[aP,bQ~] = iλab. (35)

We also assume that a,b commute with P, Q. Then (34), (35) imply

PQ-qQP = iλ, (2)

and the generating function for the quantum deformation qTjm is

(aP + bQf = X ml^'_jγa
Jbs~jjj,-j- (36)

Here [5]! means [s][5— l] [10] and does not vanish for s positive as q is not
a root of unity.

The operators qTjm satisfy the deformed commutator

{km-jn)/2 j , j, _ (jn-km)/2 j 1 y

= m m Σ m " (2ίλ)2r+1

l j [2 -s] ! [s] ! [ ; + s - 2 r - l ] ! [ k - s ] ! [ m - s ] ! [ n + s - 2 r - l ] !

This is the quantum deformation of (5).
The crucial observation is that the operators aP and bQ satisfy (32). The only

difference in the derivation of (37) from that of (5) therefore lies in the fact that
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the parameters of P and Q satisfy (31) instead of commuting. This means that in
pulling out factors, of α, b from (36) for example, ^-binomial rather than binomial
expressions occur. This is the reason also for the appearance of the exponential
factors on the left of (37), and accounts for the replacement of the normalisation
factors j!,kl etc on the right of (5). These arguments have to be considered more
carefully in the case where q is an Nth root of unity N φ 1, as \ri\\ vanishes for
n^N. In this case there are finitely many distinct operators qTjtm, N2 of them,
in fact, if the finite representations of (22) are chosen. They close under ̂ -commuta-
tion as in (37), with the modification that any term on the right with index
j + k — 2r— 1, orm + ft — 2r— l^N can appear. This algebra is a ^-deformation
of t/(JV), with qN=l. On the other hand a commutator algebra can also be
constructed from the same operators P, Q which is isomorphic to U(N)9 since this
algebra may also be realised in terms of operators constructed as in Sect. 2 from

Jj,m = qjm/2giK> ° ^h ™^N (38)

This realisation does not lead to a description of the generators in terms of homo-
geneous polynomials in P,Q however. The relation between those two algebras
deserves further consideration.

5. The Derived Series

The second way to construct a polynomial algebra which also gives rise to homo-
geneous polynomials is to consider the derived series of repeated Lie brackets of
P, g, which is closed under the bracket operation. This set of polynomials, modulo
the equivalence relations;

2P = O (39)

generates an algebra which vanishes in the limit q-> 1.
Again there is a distinction between the case where q is a root of unity other

than once, and the generic case. In the former case the fact that there are finite
dimensional representations gives a finite algebra isomorphic to SU(N) when
P, Q are nilpotent, and U(N) otherwise. It possesses a subalgebra consisting of
N(N + l)/2 operators, represented here by upper triangular matrices, generated by
the closure of PQ — QP, P with PN = 1 under commutation.

6. The ^-Exponential

There exists the interesting possibility of a double quantisation, by imposing λ = -—

upon the commutation relations (22), in addition to the possibility of choosing q
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a root of unity. As a step towards the construction of a quantum version of the
Moyal bracket consider the ̂ -analogue exponential function;

exp̂ ) = £ ~ (40)

e x p , ( P ) x e x P l / , ( - P ) = l . (41)

Equation (41) is a special case of the following;

Theorem.

exp1A?( - aP) expq(bQ) expq(aP) = expq(- iabλ) expq(bQ) (42)

Proof. Since

\{aPγ

|_[n]! J [ n - 1 ] !

(Here P, β and a, b obey the commutation relations (22,34).)

[expg(αP), bβ] = Qxpq(aP)abiλ, (44)

i.e.
exPi/<?( ~ aP) bQ Qxpq(aP) = iabλ + bQ (45)

Denoting the left-hand and right-hand sides of this equation by L, R respectively,
j n DM

from ]Γ = Σ . This gives (42). •

Since b may be scaled, the limit b-+0 may be taken in (42). This yields (41).
Rearranging (42) we obtain

cxpq(bQ)Qxpq(aP) = Qxpq(aP)expq(-iabλ)expq(bQ). (46)

This is nothing but a relation of the form (10). Note also the commutation,

expq{-iabλ)expq(bQ) = txpq{-iabλ + bQ). (47)

The quantum analogue of the Baker-Campbell-Hausdorff identity (7), is
obtained as follows: introduce a second quantum plane parametrised by α, β with

otβ = ̂ -βa. (48)

The ot,β may be represented by a, b2 respectively. Then the identity is

e x P l / > P + βQ) = zxpιlq{βQ) x e x p i / ^ / „ ! _ J * e x P l / ί ( α P ) , (49)

exp,(αP + βQ) = exp^(αP) x ^ p J ~ ~ ) x exPί(j8β). (50)

Proof. Consider the differential operator

x exPl/,(αPx)
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= 0βexp1/β(j8βx) x e x pV(« 2>L(i + g)) x

Qx\ βocλx ( βaλx

? J x - ^ e x P ^

* x αPexP l / ( ?(αPx). (51)

By use of the commutation relations the factors and αP may be moved to
the left. The terms linear in x cancel leaving ^

= (αP + j5β)exPl/ί(j8βx) x e x P i / < « 2 > ( ^ Π j ^ ) X exp1Λz(αPx). (52)

But this is just the ^-difference equation for a g~ ^exponential, hence the relation
(49) follows, the arbitrary factor of integration being fixed by choice of x = 1. The
second relation is just the inverse of this. •

Remarks

There are many hints that the extention of ̂ -analysis to many variables requires
the notion of non-commuting co-ordinates, or at least is facilitated by their
introduction. In a generalisation of (17), for example, it is natural to replace the
derivatives in the representation of P, Q by their quantum analogue difference
operators and this necessitates that the corresponding independent variables x, y
be treated as non-commuting operators in order that the commutation relations
(22) should be fulfilled. Consider the quantum analogue difference operators
denoted by

dx ' dy

and defined by

f[-,y))-nχ,y)

( 5 2 )

w h e r e

These satisfy the Leibniz rules;
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^f(x, y)g(x, y) = (^f(x, y)\g(χ, qy) + f(qx, y)(^g{x,

4
| j/ = [n]/-1. (54)

Note the differentiation with respect to x is with the parameter - , whereas that with

respect to y is with parameter q. This is necessary in order that the following

equations are valid. Then, these Leibniz relations impose

d l d 1 ^ d l (55)
dx dy qdy dx

and at the same time, preserve the commutation relations (22) in the identification

"dv /' ^~ n * y ' '" *" '

Thus the considerations of classical function theory must be extended for functions

of more than one variable to functions on associative, but not necessarily com-

mutative algebras when g-analogoues of classical results are sought. There remain

many unanswered questions concerning the second deformation of the Moyal and

Poisson brackets. We hope to return to those questions at a later time.

Recent work on finite dimensional Lie algebras has included the N -> oo limit

of the Zamolodchikov WN algebras [11]. This admits an interpretation also in

terms of area preserving deformations [2,12] and a deformation which may be

cast in Moyal form [13,14].
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