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Abstract. We interpret N = 2 superconformal field theories (SCFTs) formulated
by Kazama and Suzuki via Goddard-Kent-Olive (GKO) construction from a
viewpoint of the Lie algebra cohomology theory for the affine Lie algebra. We
determine the cohomology group completely in terms of a certain subset of the
affine Weyl group. We find that this subset describing the cohomology group can
be obtained from its classical counterpart by the action of the Dynkin diagram
automorphisms. Some algebra automorphisms of the N = 2 superconformal
algebra are also formulated. Utilizing the algebra automorphisms, we study the
field identification problem for the branching coefficient modules in the GKO-
construction. Also the structure of the Poincare polynomial defined for each N = 2
theory is revealed.

1. Introduction

Recent progress in two dimensional conformal field theories (CFTs) have revealed
rich structures contained in the non-perturbative descriptions of the field theory,
or presented us much variety allowed in the field theory. Among them, an important
class of the CFTs are the so-called the rational CFTs [Ve, MSI]. The common
property we note for the rational CFTs is that these theories can be constructed
via Goddard-Kent-Olive (GKO) [GKO] construction using a suitable affine Lie
algebra pair (g, f)) with g 21). In this formulation of the CFTs, it is known that a
suitable choice of cj and % realizes the CFT with higher symmetry.

Recently Kazama and Suzuki [KS] showed that the N = 2 superconformal
field theory (SCFT) [BFK] [DPZ] [Na] can be constructed through the GKO
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construction by the pair (g, ί)) such that the manifold G/H is the Kahler manifold,
where G and H are the finite dimensional Lie groups whose Lie algebras are 9
and ϊ), respectively. We note that such a situation is quite reminiscent of the Lie
algebra cohomology theory by Kostant [Kos]. In fact, Vafa et al. [LVW] have
discussed the super-GKO construction by Kazama-Suzuki from this point of view.

Here, one of the main purposes in this paper is to formulate precisely the N = 2
super-GKO construction in the context of the affine Lie algebra cohomology
theory. We will formulate the theory keeping a parallelism to the Lie algebra
cohomology theory by Kostant and its extension by Garland and Lepowski [GL],
and then we will make transparent what arises in our case of the affine Lie algebras.
One of the characteristic features which we should note for the affine Lie algebra
case is that the cohomology theory becomes semi-infinite due to the infinite
dimensional structure of the flag manifold. We will see that the semi-infinite
structure naturally follows from the viewpoint of the N = 2 SCFT.

Another interest on the N = 2 SCFT is in the following observations: Most of
the known CFTs are formulated by constructing representations for certain
conformal algebras. So it is difficult, in general, to write down a Lagrangian which
realizes a given CFT. However, owing to the non-renormalization theorem valid
for N = 2 supersymmetry, we can describe some class of N = 2 SCFT via the
Landau-Ginzburg effective Lagrangian [Zam, Mar, VW]. This occurs for the
N = 2 minimal SCFT (c < 3) classified completely in terms of an A-D-E type Lie
algebra [CIZ] [Kat]. It has been observed that for each N = 2 SCFT constructed
by A-D-E type modular invariants, there corresponds a Landau-Ginzburg
Lagrangian with the superpotential which is also classified via the same A-D-E
type Lie algebra in singularity theory [AGV]. Now our second purpose in this
article is to investigate the above correspondence between N = 2 SCFT and the
Landau-Ginzburg theory for the general N = 2 SCFT constructed via the
super-GKO construction. For this purpose, a certain Poincare polynomial will be
introduced according to ref. [LVW]. We will reveal the structure of the Poincare
polynomial and discuss the fixed point problem noted in ref. [LVW]. Apart from
the physical background mentioned above, our curiosity from a mathematical
viewpoint is in that the Poincare polynomial thus defined might have an important
geometrical meaning associated to the semi-infinite flag manifolds [FF].

The construction of this paper is as follows; first, in Sect. 2, we will present the
N = 2 super-GKO construction in the form which is suitable for our purposes. In
Sect. 3, we will interpret the N = 2 super-GKO construction from the viewpoint of
the Lie algebra cohomology theory. The main result there is summarized in
Theorem 3.8. Section 4 is devoted to formulate some algebra automorphisms.
These algebra automorphisms are used to reveal certain relations among the
branching coefficient modules. In Sect. 5, our second purpose mentioned above
will be investigated through the definition of the Poincare polynomial. Several
results obtained in Sects. 2-4 will be connected in this section. Summary and
discussions will be given in the final section.

2. N=2 Super-GKO Construction

In this section we introduce the N = 2 super-GKO construction formulated by
Kazama and Suzuki [KS] in the form which is suitable for our later arguments.
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To this aim, we must start with establishing our definitions and notations for the
(affϊne) Lie algebra.

Let g be a simple Lie algebra over C which has a root space decomposition as;

9 = t θ Σ g α , (2.1)
aeΔ

where t is a fixed Cartan subalgebra and A = A + U A _ is the root system. We take
the simple system for A as Π= {α(1),...,α(ί)} (/ = rankg) and normalize the
Cartan-Killing form (,):g x g->C by (0,0) = 2 with 0 being the maximal root.
Consider a parabolic subalgebra p £ g which contains the Borel subalgebra
b ΞΞ 1 0 £ gα. Such a parabolic subalgebra p has a representation as a Lie algebra

semi-direct sum with its reductive subalgebra ί) and its radical m + : p = ϊ)®m+.
The reductive part ί) of p has an orthogonal decomposition with respect to (,) into
its abelian part ί)0 and the simple parts ί)j (1 ̂  j ^ N) as

t) = 1)001)! θ θϊ)*. (2.2)

According to this decomposition of ϊ), the Cartan subalgebra t also decomposes as

t ^ t o Θ t i θ Θ V (2.3)

In addition, the root system of ί) has the following structure:

4ft) = 4ft1)U.. U4yc4 . (2.4)

As a consequence of our definition of ϊ) and m + , we have

g = ί ) 0 m + θ m _ , p = ί)©m+, (2.5)

[ί),m+]gm ± , [ m ± , m ± ] g m ± , (2.6)

where m ± = ^ g α with oceA(m±) = (A\A(1t)))nA±. The direct sum p = ϊ)®m+ is
α

the so-called the parabolic subalgebra of g.
Let {«/α

v>#α(l)}αe4,i<£<z t>e the Chevalley Z-form for g. Then for our later
calculations, it is convenient to take our basis of g as {JA)A^ = {Λ>#ΐ}αe4,i^^>

where J α = / ' Jα

v and fft 's are orthonormal basis of t R = £ ^^αo> deter-

mined so that for each i there exists some je{0, l,...,iV} such that HiSΪy We
denote the index set {1,...,/} for Het as / = / 0 U U/ J V with the definition
Ij=Ξ {ieI\Hietj}(0^ j^N). Then the basis of ^(O^i^N) can be taken as
{Ja}aej*.w^ ^ o = ô a n ( l ̂ i = {αG^(ί)i)} u hO- = z = ̂ ) Adopting these bases for
î(0 ̂  Ϊ'J^ iV), we naturally introduce a non-degenerate bilinear form (,) over

ί)t(0^i^N) by restricting the Cartan-Killing form of g. On the other hand, we
may define the normalized Cartan-Killings form (,)i:ί)i x ϊ)t^C by requiring
(0.5 0.). = 2 for the maximal root θt of each simple part ί)f(l ^ i ̂  AT). Then it is easy
to deduce the following relations between the two forms for 0 ̂  i, j ^N with a
convention (00,0O) = 2;

( " ' ) < = T F W " ' )
 for }) '̂eί *'

(^,Λ J .) ί ~μ,,A J )^ for Jaίe^;, Λ.eί),-. (2.8)
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Under this choice of the basis for g and 1̂ (0 ^ i ̂  N), the anti-C-linear, involutive
anti-automorphism σ such that σ(Ja) = J_α(αeZi), σ ^ ) = Ht defines the so-called
compact real form gu = {Xe§\σ(X)= — X}. In the following, we always assume
this real structure when we discuss the hermitian structure on g and ^-modules
(0 ̂  / ̂  N). In addition, we introduce a "metric" with respect to this basis by
gAB = (JA,JB)(A,Be<stf). This metric will be used to raise or lower the indices of
the basis {JA}Aej,.

Here we should describe about the definitions of the affine Lie algebras g and
ζ (or g and ζ) and their integrable representations. However, since it is rather
tiresome, we will give the detailed definitions in the last paragraph of this section.
Sophisticated readers are expected to read the last paragraph before proceeding
to the next.

Now we can go into the description of the N = 2 super-GKO construction.
The basic ingredients of the N = 2 super-GKO construction are the cj-integrable
module L(Λ) with highest weight ΛeP+tk of a fixed level k and the fermion Fock
space #g(e = 0 or \ according to the Ramond or the Neveu-Schwartz fermion,
respectively). As for the g-module, recall that the integrable g-module L(Λ) admits
the unique positive definite hermitian innerproduct {,} defined by{|Λ>, |/Ϊ>} = 1
for the highest vector \Λ}eL(Λ) and JA(ή) = σ(JA)(—ή) = JA( — ή). In the following,
we fix this hermitian structure.

We define the Fock space J% in the usual way utilizing the complex fermion
oscillators ιl/a(r),φa(r) = ιl/a(r) (αezl(m + ),αezl(m_),α= — α,reZ + ε) which satisfy
the anti-commutation relations as

{nr\Φβ(s)} = {ψMΨβ(s)} = 0. (2.9)

The Fock space J% is constructed from the vacuum vector |0> such that

ψ«(ή\0)=0 for r > 0 and α e 4 ( m + ) ,

ψ*(r)\0) = 0 for r ^ O and αeZi(m_). (2.10)

Again we can introduce the unique hermitian innerproduct {,} on J% by setting
ψ«(rγ = ψa(-ή and {\0\\0}} = 1.

Now we define the current operators JA(z) and the fermion operators ι̂ α(z) by
the formal Laurent series on a variable z;

JA(z)^ΣJA{n)z-"-\ (2.11)
neZ

ψ*(z)= X φα(r)z-r-112. (2.12)
reZ + ε

In order to tame the infinities associated with the infinite summations, we define
the following normal orderings;

(jA(m)JB(n) (m<n)

* JA(m)JB(n)t=U{JA(m)JB(n) + JB(n)JA(rn)} (m = n) (2.14)



Lie Algebra Cohomology and Superconformal Field Theories 455

The form of the operators JA(z) and φa(z) are quite useful in determining operator
algebras through the technique of the operator product expansion (OPE) [BPZ]
[GO].

In the following, we first construct the recurrent operators acting on J% (x) L(Λ).
Then utilizing these operators, we write down the operators which close among
themselves as the N = 2 SCA. We claim finally that the N = 2 SCA thus constructed
does in fact commute with the ζ-current operators.

Definition 2.1. (^-current operators): Using the structure constants fAB

c of q such
that [JA, JB~] = Σ fAB

cJc, we define the ί)Γcurrents (0 fg i S N)9 which act diagonally
c

on J%(χ)L(Λ), by

Jaί(z) = Jai(z) + Jί(z) (a^l (2.15)

with J £ ( z ) = - Σ faiβ

y:ψβ(z)UzY..
β,yeΔ(m+)

Definition 2.2. (Fermion current operators)

Wot(z)=:φ«(z)ψM (aeΔ(m+)), (2.16)

Jf(z)= Σ w «(4 (2-17)
<xeΔ(m + )

Using the dual Coxter numbers g* and hf for Q and ί)f(l ^ i ̂  N)9 respectively,
we can determine the following OPE relations (, with a convention h% = 0);

Proposition 2.3.

1) %i-current operators (0 ̂  ί ̂  AT) satisfy the following OPE;

w ) ~ ^ ^ ( 5 , + _ L ^ Σ /αj6;.j,(w)^, (2.18)

with the central charge /ct (0 ^ί^N) given by

2) Fermionic part of the %-current satisfies

Jf

ai(z)ψa(w)~ Σ ^ - ^ ( w ) , (2.20)
Z W) Z

Σ Λ,»^ί(w)ίw, (2.21)

and

As we can see above, the action of the current J{.(z) on the fermion Fock space
&z is essentially the adjoint action of ί) on m+:[r),m ± ] <=m±. The central
charge k{ is determined by the relation, which follows from

Σ fABCfDBc=-(θ,θ)g*(JA,J
D)
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and

Σ faϊΨ't^-iθiΛMttJ^J^ for k's(UigiV),

Σ faiβ

yfbjβy =-(9*-h? ^ p \{Jao J% (2.22)

Using the currents defined above, we can now write down the operators which
realize the N = 2 supersymmetry in j ^ ε ® L(Λ).

Definition 2.4. {T{z\G±{z\J{z)\

1 Σ Σ *Jai(z)Hz)t (2.23)

4/«(z)-^ Σ V : ^
l

*{z)Js(z)-\ Σ Λ/ ̂ s(z
Z

(2.26)

P 2 = ̂  Σ «• ( 2 2 7 )
αG/4(m + )

By expanding these operators T(z),G±(z\ J(z) on the variable z as T(z) =
r ) z ~ r ~ 3 / 2 a n d J(z) = YlJ{n)z~n~1, respectively, we

n r n

obtain a set of the operators T(n),G±(r) and J(ή) with rceZ,reZ + ε(ε = Oor 1/2).
Constructing these definitions of the operators, Kazama and Suzuki found that
these operators satisfy the algebra of the N = 2 SCA. Now we can state their
findings for the most general situations: g ϋ ί) i> t:

Theorem 2.5. (N = 2 super-GKO construction)

(i) The Virasoro operator T(n) (neZ), the super-current G*^) (reZ + ε) anJ ί/ie
u(l)-current J(n) (neZ) satisfy the following N = 2 superconformal algebra (SCA):

= ^(NS-type);

^(n3-n)δn + mί0, (2.28)

(π), J(m)] = - mJ(n + m), (2.29)

(2.30)
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[ J ( n ) , J ( m ) ] = | n δ n + m ; 0 , (2.31)

(2.32)

f(r2-i)δr+St0, (2.33)

( G » , G + ( 5 ) } = (G-(r),G-(s)} = 0. (2.34)

For ε = 0 (R-type);

^ ^ ^ (2.35)

{ fr(r-l)δr+s,0, (2.36)

αnrf tfte other (anti-)commutation relations remain the same as in the NS-cαse.
For both cases, the central charge is given by

= kT^(kdimm+-l2 Σ f«rf*') ( 1 3 7 )

(ii) The above operators of N = 2 SCA commute with the diagonal action of the $;

[T{ή)Ja{m)Λ = [G^r) , Jfl(m)] = LJ(n)Ja(m)'] = 0. (2.38)

To prove the above theorem, we must perform somewhat tedious OPE calculations
for the operators (2.15), (2.23)-(2.27). For the reader's convenience, we write down
a formula which becomes necessary for the calculations. Except for this formula
the OPE calculations are straightforward.

Lemma 2.6. The structure constant satisfies

Σ ///*/ = 9*9ιy —I /""A V + ΣΛ/«/, (2-39)
i,Λ £ Λ,β ^β

with oc,β,γ,λeΔ(m+\ β=—β. The index ί is that for the orthonormal basis
introduced in t.

Proof. First let us reserve the indices A,B,a,(x,β,γasA,Bejtf,aejtfo\J '\J stfN and
α,/?,ye4(m+). In our definition of the invariant, symmetric bilinear form (,) the
structure constant fABC has a cyclic symmetry as fABC = fBCA = fCAB- Using this
property and the Jacobi identity, we can calculate the left-hand side of (2.39) as

Σ//'/</=Σ/»α

a,i a,B

= - Σ
B,A

Noting that the first term of the second line is equal to the 2nd Casimir of the

= - Σ fBAJBAy + Σ fB"JBa
y + Σ

B,A B,a B,6L
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adjoint representation and the relation (2.6) for the other terms, we proceed further
as

(l.h.s) = g*(θ, % / + Σ f"βJaβγ + 2 Σ Λ / /

Combining this equality with the relation

V f
ZuJa
a,β

yfβ — ΨizLπ*ny V f yf*P
βJ λ~ ~~ 0 if υλ ~ 2^ J ocβ J λ

έ I β
a,β tβ

we obtain the desired result. •

The cohomological interpretation for the N = 2 super-GKO construction intro-
duced above is the main subject in the next section. Before closing this section, we
remark on one point that seems to have been overlooked so far in the literature.

Remark. At first sight, it might be seem peculiar that the N = 2 SCA changes its
form depending on whether we take the NS fermion or R fermion. In fact, in the
case of N = 1 SCA, the algebra (or the OPE) take the same form for both NS and R
fermion. We can attribute this peculiarity occurring in the N = 2 case to the
difference of the normal ordering we adopted in (2.13). That is, (2.13) implies, for
example, that :φ<x(O)φa(O):= ι/fα(0)^α(0) for αeZl(m+) whereas the conventional
normal ordering in the N = 1 SCFT says |{ιAα(0)*Aα(0) ~ ΨMΨ"Φ)} τ h e n t h e t w o

point functions for the R fermion are given by

for our case

(2.40)

for the conventional case.
z — w ~α

This difference of the normal ordering is the origin of the changes such as (2.35)
and (2.36). However our choice of the normal ordering (2.13) admits a certain
isomorphism between the Fock spaces of the NS-fermion and that for the
R-fermion. Owing to this isomorphism we can obtain the (anti-)commutation
relations (2.35) and (2.36) for the R-type SCA by simply shifting the argument
r, seZ of G+(r), G~(s) in (2.30) and (2.33) to G+(r + £), G~(s + {) and then regarding
these shifted operators as G+(r\ G~(s) (r, seZ + \) for R-type SCA. It will turn out
in Proposition 3.2 that our choice of the definition for the normal ordering (2.13)
is crucial for our cohomological interpretations.

• Description of the affine Kac-Moody algebras § and f):

Let us consider the affine Lie algebra g defined by g® C[ί, f " 1 ] © ^ . The

Cartan subalgebra of g is given by ί = t®Cc together with its dual t*®GΛ ( 0 ) .

Similarly we define the affine Lie algebra ^(0 ^ i ^ N) by ί)t ® C[ί, t ~ *] 0 Ccf. The

Cartan subalgebra and its dual are fixed by tf = tf © Cc, and tf © GΛ(0)i, respectively.

The integrable highest weight modules of g and ΐ) are parametrized by the

dominant integrable weights ΛeP+^k and <feP(ί))+ k = P^]ko®P{l]kί © ••• ®P^]kN,

-

V wz — w

Λ -
ί\l z +

Γz
-/ w
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respectively. Where the sets of the dominant integrable weights are defined by
P+k = {Λ + kΛ(0)\Λ is dominant integral on g and (Λ9θ) ^ k] for g, and P(+fki =
{ξi + kiΛ^ilξi is dominant integral on ί)f and (ξi9θ^ g fcj for $f(l ^ i ^ iV). As for
the abelian part ζ 0 , we can introduce the notion of the integral weight in the
following way: Consider a "root" lattice Qo = M n t g with M representing the long
root lattice of g. Then the set of the level k0 integral weights for ϊ)0 is defined by
P(

+%0

 Ξ {ίo + koΛ{O)O\ζoeQΪ} with β^ = {/et*|(/,α)eZ for Vαeβ 0}.
The affine Kac-Moody algebra g is defined by g = g © Cd as an extension of

g by adding the scaling element d which is essentially the Sugawara energy
momentum tensor [Sug]. The Cartan subalgebra of g and its dual are given by
t = t © Cc 0 Cd and t* = t* © CΛ0 © Cδ9 respectively. Over this extended algebra
g, we can introduce the invariant, symmetric, non-degenerate bilinear form (,) by
(JAW* JB(™)) = δn + m,o9AB> (c, d) = 1 and (c, c) = (d, d) = 0, where we have identified
the element JA ® tn with the current operator JA(n). Similarly we define the affine
Kac-Moody algebra ^ ( 0 ^ Ϊ'^iV) by 5f = ζ f©Cd t and its Cartan subalgebras by
t i Ξ t i φ C c φ C d ^ t f = tf ΘCyl^iΘCδ,.. As is the case for ί)<=g, there are two
possible Killing forms, the induced form (,) and the normalized form (,)t . When
we define the induced form through the inclusion map ζf ci_> g(0 ^ίf^N) defined

2
by (Jfl.frO, ci9 di)\-+(Ja.(n), c, d\ then the relations (2.7) and (2.8) extend to if

and 5f, respectively.
The simple system for the roots Δ of g can be taken as 77= {α(0), α ( 1 ) , . . . , α(/)}

with α ( 0 ) = δ — θ. As for the simple systems of ^(fyJXl ^ i ^ N)9 we take them as
n{ — {α(0)i, α ( 1 ) ί , . . . , α(/i)i} with α ( 0 ) i = 5f — θt. Then we denote the root lattice of g

~ ι i ι ~ li

by Q = J] Zα( i ) and β+ = ^ Z^ o α ( O . Similarly we denote for ξf as Qt = £ Zα(5) i
ί = 0 i = 0 s = 0

and β ί + = £

3. Lie Algebra Cohomology on ^ ε

In this section we define a chain complex on J% (x) L(/l) utilizing the super charges
G+(0) (or G + (—^)) as the cohomology operator. We will determine the elements
of the cohomology group completely in terms of the affine Weyl group. It will turn
out that this cohomology theory based on the N = 2 SCA is the affine Lie algebra
analogue of the classical Lie algebra cohomology theory. In our formulation, a
parallelism to the classical Lie algebra cohomology theory by Kostant [Kos] and
its extension by Garland-Lepowski [GL] will be pursued.

(3-1) Chain Complex and Laplacίan. We first note that the supercharges G±(0)
have a property

[ J / ( 0 ) , G ± ( 0 ) ] = ± G ± ( 0 ) , (3.1)

in addition to G+(0)2 = G~(0)2 = 0 and G~(0) = G+(0)\ Similar properties also
hold for G + ( - ^ ) and G"(i) = G+(-^)\ It can be easily deduced that these
properties define a chain complex on 3FE (g) L(Λ);

Definition 3.1. (Cε*(m+ ® C [ ί , r ^
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We denote as C*(m + ® C [ ί , ί " 1 ] , ! ^ ) ) the (semi-infmite) co-chain complex on
J%®L(/ί) whose coboundary operator is given by G + (0) for ε = 0 and G + ( — \)
for ε = 1/2. The degree * is determined by integer eigenvalues of the fermion number
operator Jf(0) for both cases.

It should be remarked that this co-chain complex is semi-infinite reflecting the
excitations with infinite fermion or anti-fermion numbers on the Fock space #"ε.
Our main subject is to determine the cohomology group Hf(m+ ® C[ί, t~ * ] , L(λ))
for the co-chain complex Cf(m+ ® C[ί, ί " 1 ] , ! ^ ) ) . Hereafter, we will restrict our
arguments to the co-chain complex Cf(m+ ® C[ί, ί " 1 ] , ! ^ ) ) for R-type SCA with
omitting the subscript ε. This restriction is allowed since we will see, in next section,
that there is an isomorphism between the co-chain complex for R-type SCA and
that for NS-type SCA.

For our purposes, we first note that the spaces //*(m+®C[ί,ί~ 1],L(Λ)) as
well as C*(m+ ®C[t,t~1'],L(Λ)) admit the diagonal fraction. This is because the
supercharge G+(0) commutes with the ^-currents Ja.(n) (Orgz^JV) as shown in
Theorem 2.5. Owing to this property and the complete reducibility for the integrable
modules, we may consider the decomposition C*(m+ ®C[ί , t~ ι \L(Λ)) with
respect to the irreducible integrable modules of ί) as

C*(m+®C[ί,r1],L(^))= Σ C*(rn+®Clt9Γ
1lL(Λ))ξ9 (3.2)

where P(ί))+ k means the set of the dominant integrable weights for ί) with the fixed
central charges k = (fc0,..., kN) given in Proposition 2.3.

On the other hand, let us consider the branching coefficient module Bχ ξ g tF0 ®
L(Λ) defined by

= O(Jeί),n > 0)Ja(0)v =

)}. (3.3)

The analysis given in a previous section tells us that the N = 2 SCA (2.28)-(2.36)
acts on this branching coefficient modules B^ ξ in #"0 ® L(Λ). Then we see that
there is an isomorphism (see ref. [TK] or Eq. (4.24) in the next section for detailed
constructions)

C * ( m + ® C [ ί , r 1 ] , L ( Λ ) ) e ^ J B Λ e ® L ί ) ( α (3.4)

as an N = 2 SCA ® ζ-module.
Now let us evaluate the Laplacian, which we read from the N = 2 SCA (2.37) as

(G + (0),G-(0)} = 2T(0)- J(0), (3.5)

on each branching coefficient module B^ξ. To this aim, we first decompose the
module Bλ ξ into the eigenspaces of the operator

N = T.(0) + 7>(0) - y x (0) - {Λ

2[^g

2^

which acts on the module Bλ^. The fact that this operator acts on the module Bλ^
follows from the following commutation relation;

IN, Jain)-] = [fή(0), JM\ = " nJa(n). (3.6)

Above we have used the notations Γ (0), 77(0) and TJO) for the Sugawara operators
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for g-curents, fermion currents and ί)-currents, respectively. Since lTf(0)—jJf(0)9

ψΛ( — r)] = π/fα( — r)(αeZl(m + )LJzl(m_), reZ), under the definition of the normal
ordering (2.14) for R-type fermion, the eigenvalues of the decomposition becomes
(non-negative) integers. Thus we have the desired decomposition as

Bλ,i= Σ BUtN. (3.7)

Note that the above decomposition is compatible with our calculation of the
cohomology since the operator we have used commutes with the Laplacian.

Proposition 3.2. The Laplacian acts as scalar on B^.N;

{G+(0),G-(0)}\Bλ = — ^ { | / ϊ + p | 2 - | £ ' + p|2}id., (3.8)
K -t- g

where ξ' = kλ0 + ξ — Nδ, p = g*Λ0 + - ^ ot and ξ means the classical part of ξ.

Proof. Recall that the Laplacian is given by 2T(0)- J(0) = 2N + ' Λ + 2 p ^
2 k + g*

27^(0) — - -JfP2(0). Then it is an easy consequence of our definitions that the

Laplacian acts on the space Bλ£N as (G+(0), G~(0)}\Bλ = 2< iV + ( ' + f -

1 2 ' ^ id. with Pi = - £ y. And we immediately obtain the results( 0) 0
(3.8). Π

(3-2) Elements of the Cohomology Group. As noted previously, the cohomology
group i/*(m+ (8) C[ί, r 1 ] , L{A)) for the cochain complex C*(m+ ® C[ί, ί~ 1], L(Λ))
becomes naturally a ζ-module. So we obtain a decomposition with respect to the
integrable irreducible ζ-modules, corresponding to (3.2), as

H * ( τ n + ® C [ ί , r 1 ] , L ( Λ ) ) = X H*(m+®C[_UΓι\L{λ)yξ. (3.9)

On the other hand, according to the Hodge theory, we can characterize the
cohomology elements as the zeros of the Laplacian:

0}. (3.10)

Because the cohomology operator G±(0) commutes with the Γj-currents, the
harmonic cocycles in (3.10), which constitutes the Fj-modules, can be represented
by the elements veB^ξ satisfying {G+(0), G~(0)}v = 0. On the other hand we know
from Proposition 3.2 that the Laplacian operator acts as a scalar when restricted
on the module Bλξ. Therefore we can completely characterize the harmonic
cocycles in C*(m+ ®C[ί, ί " 1 ] , ! ^ ) ) through the zeros of the right-hand side of
(3.8) in Proposition 3.2. This is our strategy for determining the cohomology
elements of # * ( m + ® C[ί, Γ1], L{Λ)).

To perform the above mentioned program, we must start with summarizing
some known properties of the affine Weyl group.
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The affine Weyl group W of $ is the subgroup of GL(ϊ*) generated by the simple
reflections {ro,rί,...9rι} with

rt(λ) = λ-(λ, oβ)α(ί) (oβ = — ? — α(i), λet*9 0 ^ i ^ /). (3.11)
lα(i)> α(i)/

Introduce the translation £αeGL(t*)(αet*) by

ίβμ) = λ + (A, (5)α - [(A, α) + ±(α, α)(λ, <5)]5, (λet*). (3.12)

If we define the translation group T = {ίJαeM}, then the affine Weyl group W
can be expressed as W= T\x W. (The long root lattice M coincides with the coroot

lattice defined by β v = £ Zα(^ since (θ,θ) = 2.)
i = 1 _ _

Now let us consider a subset ί^1 £ MK, which will play an important role in
the following arguments, by

Wί = {ώeW\ώ(Δ-)nΔ+^Ά(m)+}9 (3.13)

whereϋ(m)+ ={β + nδ\βeΔ(m + \ neZ^0} U {j8+^|j864(m_),neZ>0}.Foreach
ώeW, let ΦώΞώ(4_)n2ί+ and (Φώ}= X ΦG6+ W e denote the order of the

ψεφώ
subset Φώ as n(ώ) and the length of the element ώ as l(ώ). Then the following

relations are known to hold [IM, GL];

i) <Φώ> = p-ώβ, (3.14)

ii) (Φώ) = (Φdy o ώ = σ9 (3.15)

iii) n(ώ) = l(ώ), (3.16)

In addition to these properties, the following is also well-known and is an important
property;

iv) ri(Δ + \{«ii)}) = Δ + \{a{i)} (i = 0 , 1 , . . . , / ) . (3.17)

We shall study in detail the set W1 in the latter half of this section. In the following
we investigate the zeros of the Laplacian (3.8) following refs. [Kos, GL].

Lemma 3.3. Let Tχ^Λ — Q+ be the W-invariant subset of t* with ΛeP + . Then
for arbitrary fieT^ there exists ώeW such that ώμeP+.

Proof. For arbitrary μeT^, take an element ώeW so that in the expression
1 ι

ώμ = Λ— ]Γ Πjα^^ eZ^o) the sum £ ni is minimum. Then ώμeP+. This is
i = 0 i = 0

because if (ώμ, α^) < 0 for some j then r}ώμ = ώμ — (ώμ, α(j))α(j ) can be written as

A — Σ mj α^ ) with £ mi < ^ ni? which is a contradiction. Π
i = 0 i = 0 i = 0

Lemma 3.4. Lβί Λ l 5 Λ 2

e ^ + Consider μ l 5 μ 2 e t * W/ΪΪC/Z belong to the W-inυariant

subset T^i g Λί — Q+ and T^2 ^Λ2 — Q + , respectively. Then

\Λ1+λ2\^\μ1+μ2\. (3.18)

The equality holds if and only if there exists ώeW such that ώΛ-^ = μx and ώΛ2 = μ2-
Such ώ is determined uniquely if Λ1 or Λ2 is regular.
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Proof. Due to Lemma 3.3, we can determine τeW so that τ(μ1 + μ 2 )eP+. Because
the sets of weights Tχ. (i= 1,2) are ^-invariant, we have ψi = Λi — τμieQ+ for
u = 1,2. Then we can write the square of the left-hand side of (3.18) as

\Λ± +Λ2\
2 = \μx + μ2|

2 + | ^ + φ2\
2 + 2(fo + $Mi

Since £(#! + μ1)eP+, the desired inequality immediately follows. In addition the
equality for (3.18) holds if and onlyjf φ1 + ψ2 = 0. In this case we must have
λx =τμί and Λ2 = τμ2 since φuφ2

EQ + '
As for the uniqueness when ylx or Λ2 is regular, assume τ1,τ2e ^satisfy At = τίμi

and λi = τ2βi for i = 1,2. Then τ1 must bejsqal to τ 2 since τϊ1τ2Λi = Λ£ (/ = 1,2)
implies τϊ1τ2 = l for the regular element Λ t or Λ2. •

Lemma 3.5. T/ze swfosβί Γ^ £ t* which consists of the element of the form β — <Φ>
wΐί/ι Φ being a finite subset ofΔ+ is W-invariant.

Proof. Consider the action ri (i = 0,...,/) on β — (Φ)eT'β. If α ( ί ) ^Φ then rt

(p - <Φ>) = (rφ -β) + β- ViiΦ} =β-ri(Φ)- <Φ£i>. Owing to the property iv)
in (3.17), we see that both r{< Φ> and < Φr.> = α(ί) belongs to the set Δ+. If α ( ί )εΦ,
h < < { J > ) ( ) / \ { } { j{ ( J ( ) { ( 0 } ( 0 { ( j

Again owing to the property iv) in (3.17), see that r f<Φ\{α( i )} >ei ϊ + . Thus we obtain
r^β — {Φ))sTβ and conclude that Tβ is P^-invariant. Π

Lemma 3.6. Let ώeW, Φ^Δ+ such that | Φ\ < oo,

<Φ> = <Φώ> <^ Φ=Φώ (ώeW). (3.19)

/π Particular Φ= Φώ consists of real roots.

Proof. Let μ l 5 . . . ,μ m G2ί + be the distinct elements of Φ, and vί9..., V W G 4 + be those
of Φ&. (Then vk's are all real roots.) When n = 0, the result it is clear, so we assume
n>0. Since ώ ~ 1 Φ ώ g . 3 _ , there must exist some element μ f(l ̂ i^m) such that
ώ~ Vί G ^ - This means that μt = v7- for somej(l ^ j ^ n), and (ΦωXfVj} > = <Φ\{μf} >.
If n = 1, we accomplish the proof. When w > 1, we have ω~1(Φω\{vJ }) £ 2L and
so there must exist some element μΓ (i Φ Γ) such that ω ~ 1 μ Γ e 4 _ . This means that
μΓ = vy for s o m e / ( ^ ) and (Φω\{vj,vr}> = <<P\{^^}>- Repeated arguments
prove the result. Π

Now let us consider the weight space decomposition of #Ό (x) L(Λ) with respect
to the commuting operators (£^(0), c, — N)(l ^ i ̂  /), where the classical part Ht(0)
is that of the ζ-currents defined by (2.16). Then we deduce, from the definition of
the f)-current operators, that the set of weights, which we denote as D^, consist of
the elements such that ζ= - < Φ > + v with Φ g 4 ( m ) + and veP(Λ). Where we
have denoted as P(Λ) the set of weights contained in the integrable ^-module L(λ).
Needless to say, this subset P(Λ)et* is WMnvariant.

Proposition 3.7.
i) For arbitrary CeD^, there is an inequality;

\β + Λ\^\β + ζ\. (3.20)

ii) All the weights ζeD^ which satisfy the equality for (3.20) are expressed uniquely
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with some element ώeW1 as

ξώ = ώ{p + λ)-β. (3.21)

iii) The map ώ\-^ξώ defines a bίjection between the subset W1 and the set of weights

which satisfy the equality for (3.20).
iv) The multiplicity of the weight ξώeDχ is one.
v) The weight vector v(ξ&)e^0®L(Λ) (ώeW1) is the highest weight vector with
respect to the diagonal action ϊ).

Proof.
i),ii) Since ζeDλ can be written as ζ= — <Φ> + v with Φ g 3 ( m ) + and veP(Λ),
we can write p + ζ = / + v by defining f = p — (Φ)eT'β. Then from Lemma 3.4,
we obtain

\β + λ\2:\f + v\ = \β + ζ\. (3.22)

When the equality holds, there exists a unique element ώeW such that / = ώp,
v = ώλ (i.e., ζ = ξώ) owing to Lemma 3.4 and the fact that β is regular. Then the
first equality / = ώp, which means (Φ} = p — ώβ, implies Φ= Φώ due to Lemma 3.6.
Since Φ g 3(m) + , the element ώ belongs to the subset W1 g W.
iii) We easily see by definitions that, for arbitrary ώeW1, ξώ belongs to the weight
set Dλ. If ξώ = ξώ> (ώ.ώΈW1) then ώ = ώ' because p + λeP+ is regular. These
facts together with ii) tell us the bijectivity of the map.
iv) Assume that the weight ξώeDλ is written as

Φg/ί(m) + , (3.23)

then it follows that ώ(/M- Λ) = β - <Φ> + μ and \β + Λ\ = | p - < Φ > + μ|. Since
p — (Φ)eT'β and μeP(Λ), we can determine, according to Lemma 3.4, a unique
element σeW such that

σp, μ = σλ. (3.24)

This implies ξώ = ξd and, in turn, σ = ώ. Noting <Φ> = < φ . ) = <Φώ> and Lemma
3.6, we finally obtain Φ= Φώ. Thus we conclude that the multiplicity of the weight
vector ξώ is one.
v) Consider the weights of the vectors J^(n^ξ^a^s^{, n>0, 0 :g i ^ N) and
Ja{0)v(ξώ) (αe4(ί)) + ) with respect to the operators (Ht (0), c, — N). Then from the pro-
perty (3.6), we deduce that such vectors have weight ξ+=ξώ

Jrφ with φ ( 2 ί
Now note the following relations for ξ +

Since ω~1(3(ί)+))e3+ for ώeW1, the second term of the above equation is
non-negative. Therefore we have |p + / ϊ | < | p + ξ+|, which means that ξ + φDλ

owing to the property i). This proves the assertion. •

From the above proposition (and Proposition 3.2), we can conclude that
the harmonic cocycle veBλ^ representing the irreducible ζ-module
H*(m+ (x) C[ί, t ~x], L(Λ))ξ&rG in one to one correspondence with the subset W1 e W.
Explicitly, the correspondence of W1 to the highest weights of the irreducible
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ζ-modules representing the harmonic cocycles is given by the following mapping

oϊσeW1 to ξffeP(ί))+M:

^ ^ Nl (3.25)

where ξδ means the classical part of ξδ and the subscript i means the projection
to each component P(ί)f)+.

Due to the multiplicity one property iv), we can express uniquely the harmonic
cocycle \Λ,ξδ} for each σεW1 as an element of B^5\

lΛ&>= Π Ψφ(-r)\θy®rδ, (3.26)

with i^δeLδ{λ)(Λ) = {vGL(Λ)\H(O)v = (H,σ(Λ))v}. The degree of the harmonic
cocycle is easily determined from (3.26) by evaluating the eigenvalue for the fermion
number operator Jf(0).

Summarizing our results above, we obtain;

Theorem 3.8.
i) The mapping σ\-+H*(m+ O C ^ ί " 1 ] , L(λ))y is a bijection of W1 onto the set
of all irreducible components o / i i * ( m + φ C C M " 1 ] , L{Λ)) as the ^-module. And
the multiplicity ofH*(m+ ® C ^ ί " 1 ] , lift))ξa is one.
ii) The highest weight vector (3.26) has a meaning as a representative harmonic
cocycle in H*(m+ (x) C[ί, t~*], U,Λ))ξff.
iii) The degree of the cocycle \Λ,ξδ} is given by the fermion number T(σ);

{ (3.27)

with

Δ^ = {yeΔ+ \γ=±β + mδ, βeΔ + , meZ}.

Remark. The harmonic cocycle for NS-type SCA can be obtained from (3.26) by
simply shifting the argument of the fermion operator: φφ( — r) to ψφ( — r + ^) for
φeΔ(m±)9 respectively. This fact follows from the isomorphisms (4.7) which we
will formulate in the next section. Thus there is no essential difference between the
two.

Theorem 3.8 is the analogue of the Theorem 5.14 in ref. [Kos] obtained for
the classical Lie algebra pairs Q and ί). The extensions of Kostant's theory to the
case of g and a classical I) have been done in refs. [GL, Kum]. In this context, our
arguments are for pairs of the affine Lie algebras g and %. Thougji our arguments
for the (affine) Lie algebra cohomology theory for the pair g and $ is quite parallel
to Kostant's theory, we realize, in the latter half of his section, that a characteristic
feature appears in determining the subset W1 <= W for our case of the affine Lie
algebras.

The modified length function T(ώ) for W9 which we have naturally introduced
in iii) above as the fermion number, has been introduced by Feigin and Frenkel
[FF1, FF2] in their recent work on the BGG (Bernstein-Gelfand-Gelfand) resolu-
tion [BGG] for the affine Lie algebra. We present here the explicit expression of
the function I for the element ώ = tγωeW:

ί (3.28)
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This formula should be constructed to the usual length function /;

i(tγω)= Σ 1 ( ^ ) 1 + Σ I i - ( A ? ) ) I . (3-29)
<xeΔ + c\ A+ βecoΔ- nΛ +

The results by Kostant for the classical Lie algebras can be recovered by taking
the"classical limit", i.e. G + (0)-»β, G~(0)-+β* and ί(σ)-W(σ) with

Q= \
<xeΔ(n\ +) ^ α, β,yeZi(m + )

and β* = Q\ The operators β and β* give the Fock space representation for the
cohomology operators defined, in the ref. [Kos], on Λm* ® Vλ where Vλ is a
g-module with the highest weight λ. It is a simple exercise for readers to calculate
the Laplacian for the operator β.

(3-3) The Subset W1. In the remaining part of this section, we give a characteriza-
tion of the subset W1 of the affine Weyl group W.

Let us first note that the following three conditions for the element ώeW1 are
equivalent;

(3.31)

2) dΓ1tf(ί>) + ) ^ + , (3.32)

3) ώ(Δ_)nΔ(ϊ))+=φ. (3.33)

Now define a subgroup T>eW by

Ά Ά , (3.34)

where Wx represents the Weyl group of I). Then we can easily see from (3.33) that
the subset W1 admits the action of T>, i.e.,

f).W
1 = W\ (3.35)

Here our main assertion may be stated as;

Proposition 3.9. The subset W1 decomposes uniquely as

W1 = ^-W\ (3.36)

where W represents the classical counterpart of W'.

To prove this assertion, we first note the conditions for ώ = tyωeW to belong

to the Wι can be written as
a) (y, φ) = 0 or 1 for arbitrary φeΔ(l)) +

b) ω~1(φ)eΔ+ for φeΔ(ί))+ such that (y, φ) = 0,
c) ω~1(φ)eΔ_ for φeΔ(fy+ such that (y,φ)= 1.

Similarly for σ = ty>σeW to belong to f) we must have
a)' (y/

jφ) = 0 or 1 for arbitrary φeΔ(ί)) +

b)' σ~1(φ)G^(ί))+ for φe4(I))+ such that (/,φ) = 0,
c)' σ~1(φ)eZl(r;)_ for φeΔ(fy+ such that (/,φ)= 1.

We can see the existence of the elements σeΊ) satisfying a)'-cy, by noting that;

Lemma 3.10. For any elements y'eM satisfying the condition a)' above, there exists
a unique element σeW1 as a solution for b)' and c)'.

Proof Define ΔQjf+={φeΔ(b)+\(y'9φ) = 0} and Δ(ψ+ = {φeΔ(ί))+\(y\φ)=l}. Then



Lie Algebra Cohomology and Superconformal Field Theories 467

we see that both Δ(ί))°+ and Λ(I))i are closed under the dot addition + defined in
Δ by addition in case the sum again lies in A and otherwise zero operation. Let
Δ(b)y. = Δ(ί))% U ( —4(ί))+), then the conditions b)' and c)' can be summarized as

σ-\Δ(\))r) = Δ(^+. (3.37)

Since Δ(ί))y is closed under 4- operation and Δ(ί)) = Δ(ί))r U (—Δ(\))r), there exists
a unique element σe W1 satisfying (3.37), (see e.g. ref. [Kos], Proposition 5.10). •

Noting the equality of the conditions a) for W1 and a)' for ϊ), we can conclude
that for arbitrary ώ = tyωeWι there exist a unique element σ = τγσef) and then

(3.38)

This completes our proof for Proposition 3.9.
Now we study the lattice elements yeM which satisfies the condition a). To

this aim, we define the coroot lattice of ί) by Q(fy v = Q0ΘQi Θ ®QN ^ 6 v (= Λf),
u 2

including the lattice Qo = β v n t j for ί)θ9 with β f

v = £ Z- x ^ ( l ^ i ̂  iV).
s=l (α(s)pα(s)i)

It is convenient to use the notation of Q v rather than M in the following arguments.

Proposition 3.11. There is a bijectίon between the set of the lattice elements yeQv

o satisfying the condition a) and the cosetQv/β(ϊ))v.

To show this property we prepare the following lemma;

Lemma 3.12.
1) We can take a representative element γx of the class [y]eβ v /β(ί)) v so that its
length \y11 is minimum and (γl9φ) ^ 0 for VφeΔ(l))+.
2) Such 7 ie[y] is determined uniquely m o d β 0 and satisfies (y l 5φ) = 0 or 1 for

Proof
1) Among the elements 7i'se[y] with minimum length lyj, we are allowed to
consider the action of the Weyl group Wu since \yx\ = [r^y^l and ^ ( y j = y1 —
(7i 5 φ v )φ = 7i ~{yuψ)ψy e [ y ] f° r Vr^eW^i. Therefore we can make any element
γίe[y], which gives the minimum oϊ\yί |, to satisfy (yl9φ) ^ 0 for "iφeΔ{\))+ through
the action of Wλ.
2) Assume there exists φGΔ(ί))+ such that (γl9 φ) ̂  2, then we have

This implies \y± — <p v |<l7i l for yγ — φye[_y] and a contradiction. As for the
uniqueness, assume that we have obtained two representatives y1,y2^ίyl through
the argument 1) above. Then we have yx — y 2

G δ0)) v a n ( l (?i — yi>Φ) = Q o r ± 1
for VφeΔfo). Taking an element ω1eW1 so that (ω1(yί - y2), φ) ̂  0 for Vφe4(ϊ))+,
we can express the above conditions as (ω1(y1 — y2\ φ) = 0 or 1 for Vφezl(I))+ with
ω i (7 i — 72)e6(Wv Now recall that the closure of the fundamental cell for each
t)f(l ^ i ̂  JV)js defined by D°{ΐ) = {xetfR|0^(α,x)^ 1 for any aeΔ(bd+}' Then it is
known that D ^ n β f e ) 7 = {0} (see Corollary 1.20 in ref. [IM]). From this fact we
must have ω1(yί - 72)Gβ0, i.e., yx = y2 m o d β 0 . Π
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In this way we can find a lattice element yeQ v mod Qo satisfiying the condition
a) in each class [7]eg v/β(ί)) v . On the other hand, we realize that there exists only
one such element yeQv m o d β 0 for each class of β v /β(ί)) v applying the same
argument for the uniqueness of yγ in 2) of the above lemma. Thus we complete
the proof of Proposition 3.11.

We define the quotient group D by

£ = T0\f>, (3.39)

with respect to the normal subgroup To = {tλ\(λ, φ) = 0, φeΔ(ί)) + ,λeM}. In follow-
ing sections, it will become clear that the group T) can be constructed via the
diagram automorphisms of the extended Dynkin diagrams for each ϊ)f's (i= 1 N).

Remark. In practical calculations, the following characterization of yeM satis-
fying the condition a) is useful. To describe this, let us define the lattice

k 2Λ li

Qt = Σ Z 7 ^ — = £ Ze(s)i with the fundamental weights Λ(s)i{l ^sS-h) with
s = l ( α ( s ) ί > α ( s ) i ) s = l

respect to the simple system Π{. Then we can easily prove the following:

The set Γt = {yeQt\(y,φ) = 0 or 1 for \/φeΔ^+}(l^i^N)
consists of 0 and the basis vector e{s)i with m{s)i = 1 in the expression

Qi~ Σ m(ί)iα(ί)i
ί = l

N

Now note that the inclusion relation M a QQ © Σ Qt- Then we convince
i=l

ourselves that we must find (modg 0 ) the solutions yeM for the condition a) in
the set Γ= {v0 + v, + ••• + V^VQEQ^V^Γ^I ^ i g JV)}

4. Algebra Automorphisms of the N =2 SCA

Owing to the orthogonal decomposition formulated in Sect. 2 and the complete
reducibility for the integrable modules, we have the following isomorphism;

The purpose of this section is to construct the algebra automorphisms for the
N = 2 SCA and utilize them to reveal the structures of the multiplicities of N = 2
SCA-module which occur in the branching coefficients, Bχ}ξ. This problem of
the multiplicities is known, by physicist [Gep], as the field identification problem.
We first approach this by formulating an automorphism known as the spectral
flow. Later we relate our results to the modular transformation property of the
GKO branching coefficients.

Other automorphisms we will formulate are the spectral flow which connect # o
to # Ί / 2 and the charge conjugation automorphism. The former automorphism
completes our calculations of the cohomology group which we have done only
for the R-type SCA in the previous section. The latter automorphism will prove
to be useful in revealing a certain duality property of the Poincare polynomials
which we will define in Sect. 5.
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(4-1) Spectral Flow. To formulate the automorphism, we first supplement the
properties of the affine Weyl group to those given in Sect. 3.

Consider the affine Weyl group W a GL(t*) and Wx = Wify^ x ••• x W(ί)N) c
GL(tf© ©tj5) for § and rjί, respectively. Precisely the affine Weyl group
W (̂t)i)(l ^ί^N) is defined by the simple reflections rf with respect to αO)ίe77£

defined with the normalized Cartan-Killing form (,)f and is expressed as
T(t) [X W(ί)ι). Where T(ί)(l ^i^N) represents the translation group associated with
the long root lattice M£ of each ί)t and tf acts on λeϊf as

tf(λ) = λ + (λ9 δ^yt - l(λ, γ)t + | α δMy, y)J5,. (4.2)

When we regard t f φ φtj j as the subspace oft* under the inclusion t f φ

( if) Ω \ \

19 ι Λ(0),δ 1, we have a relation
taθi,θi)/2)γW = tγW*)) a n d , thus, the affine Weyl group W{\)t) can be identified, as a
subgroup of W, with Tt tx W(ί)f), where Tt = [tyeT\yeQ? g β v } . It is convenient
to use this identification of W{fo^(\ ^i^N) when we regard the W(ί)i) as a subgroup
of W.

Next let us consider the action of the Weyl group Won an integrable g-module
(L(Λ),π). It is known (see ref. [Kac] Sect. 12.8) that the affine Weyl group W
has a (projective) realization Wπ on the module L(Λ) by the correspondence;
rh'"rin

e^h^rh "'rΓnG^π w ^ h
rf = exv(JlaJ0))exp(-J:j0))exp(JlaJ0)% (4.3)
rS = exp(J β (- l ) )exp(-J . β ( l ) )exp(J β (- l ) ) , (4.4)

where Jα

v (n) = -—- JJn). This means that, for i = 1,..., /, we have rf Ja{n)(rf)"λ =
V (α, α)

Jr.(α)(n) and, for tyeT,

qHJrήit*)-1 = Ha{ή) - c<y, Ha)δnt0, (4.6)

iJT(fi)(i;)-x = T(n) - Hy(n) - ^y9 y)δn,0. (4.7)

Therefore if L(A) = ^ Lλ(yi) is the weight space decomposition, then ωπe Wπ acts
λeP{Λ)

as ωπ(Lλ(yϊ)) = Lω{λ)(Λ). In this way, the affine Weyl group acts on the module L(Λ).
In the following arguments, we will use several lattice in t*. We define the dual

lattices Qλ and Pλ( = M) for Q and P, respectively, by

P 1 = {λet*\(λ,Λ)eZ,ΛeP}. (4.8)

Recall that the root lattices of ^(1 ^ i ̂  N) and Qo are defined as the sublattices
of Q. Then each root lattice g f(0 ^i^N) is naturally endowed with the induced
form previously defined in Sect. 2. With this inner product on Q^O ̂  i ̂  JV), we
define the dual lattices Qf;

iί (4.9)
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Now let us extend the affine Weyl group W of g to a slightly larger group
Wo = T1 ix W with T 1 = {tλ\λeQλJ following Kac-Wakimoto [KW]. Then it is
known that this extended group Wo splits into the semi-direct product as

W0=W+-W, (4.10)

where the subgroup WQ g Wo is defined by

(Δ + ) = Δ + }. (4.11)

This property (4.10) can be deduced as follows: We easily verify that the extended
group acts on the set of all cells in t£. On the other hand, we know that the affine
Weyl group W acts simply and transitively on the set of all cells. Therefore we can
find for arbitrary ώe Wo a unique element σe W so that the product ώσ~ι = p acts
trivially on the cells, i.e., peWo .

The following commutative diagram indicates that there is an isomorphism of
the groups between WQ and Qλ/M (^ center of G):

W= W

ΐ ΐ

T ΐ ΐ ^ (4.12)
0-+M-+Q1-+Q±/M->0.

ΐ ΐ
0 0

In the following, we study the extension of the action Wπ of the affine Weyl
group on g-module to that of the extended group Wo. Then the sum of g-modules
Lk = Σ ^(^) naturally arises.

Proposition 4.1. (Spectral flow I). Define following automorphisms of the Clifford
algebra and the affine Lie algebra g for each yeQ1',
i) for the Clifford algebra, let

{ (7, α)), aeΔ(m + ) U 4(m_). (4.13)

ii) For § let

t°d(Ja(n)) = Ja(n-(y,a)), {aeΔ) (4.14)

t?(HM) = Ha(n) - c(γ,Ha)δn,0, (4.15)

t;ά(d) = d + Hγ(Q) + C-(y,y), ff(c) = c, (4.16)

withyeQ1 and d= - Γfl(0).
Then the actions σy and ί̂ d are implementable on the modules £Ft and Lk, that

is, there exists a linear isomorphism <7 :̂J%-> J% and ty:Lk—>Lk s.t.

σ^\r){σirι=σ{(rίr)\ (4.17)

tyX(tyy
ι=tf(X\ XGQ. (4.18)

These actions σf

y and t define the projective representations ofγeQ1.
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We do not go into the detailed proof but only explain how to construct the
linear isomorphisms σf

y and tr

Table 1. Diagram automorphisms WQ

A,
B,

c,
D,
E6

EΊ

Ea,F4,G2

l,p,...,β'
Up
UP

UPι,Pι-uPι
UP,P2

Up
1

;p = tειωmωπ

;p = tειωΠlωπ

;p = tειωΠlωπ

^ = tε.ωΠlωπ.ωπ (i = 1, / - 1, /)

;p = tείωΠtωπ

;p = tε,ωΠlωπ

The elements of the diagram automorphisms WQ are listed. ωπrepresents the
longest element of the Weyl group W and ωπ. is defined by ωπ.(Π\{cc(i)}) =
—({/7\{α(i)}). For example the p for Λt generate the Z / + 1 symmetry,
pr{p~γ = ri + lmodl + 1, and in this case ωΠιωπ coincides with the cyclic
permutation.

The former isomorphism σf

y is easily constructed on the Fock space as the
operation of changing the vacuum vector. As for the latter isomorphism tv let us
study the group action of Wo on the module Lk.

Owing to the property (4.10), we can find for arbitrary ώeW0 a unique element
σeW s.t. ώσ~1 = ρeW^. Then the element ώ = tyω(= ρσ)eWo defines the algebra
automorphism of § by ώ a d = tf ω a d ( = p a d σ a d ) . We know that the action <τad is
implementable on g-module L{Λ) since σeW. As for the action ρaά{ρeWo ), on the
other hand, we must formulate in a different way: First let^us note that p a d gAut§
acts on the Cartan subalgebra t and induces a map Δ+ -+Δ±. Then it follows that
this map induces a permutation p:α ( i )->α ( p ( i ) ) on the set^of simple roots 77. This
permutation, in turn, defines a linear map on P+ by p:Λ(i)-+Λ(p{i)){0^i^l) with
λ{i) representing the simple weight. Thus we realize that^ we can implement the
action p a d on the module Lk by defining p*^^) Js{ns)\Λ}eL{Λ)^pad(Ji(ni))'''
p*d(Js(ns))\p(Λ)yeL(p(Λ)).

Since the action p:α ( ί ) -^α ( p ( ί ) ) , preserves the form of the extended Cartan matrix,
we deduce WQ a Aut/7. In fact, it is known (Proposition 1.3 in ref. [KW]) that
the group WQ is the only normal subgroup of Aut77and Aut77= WQ \K AutΠ.
We listed in Table 1 the elements of WQ which have been obtained in refs. [IM,
Has].

From the above considerations, we see that the action ty

d{yeQλ) on g is
implemented projectively on the module Lk by the successive action of the diagram
automorphism ρπ and the Weyl group ώπ, which are determined uniquely so that
ty = ώpv in the following way;

(4.19)

Now we can proceed to our relative case, (cj => ζ);

Proposition 4.2. (Spectral flow II). Consider the diagonal action σy = σf

y + ίad with
yeQ1, then
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i) σy acts trivially on the N = 2 SCA;

σy(J(n)) = J(n), σy{G±{r)) = G±{r), σy(T(n))= T(n), (4.20)

ii) σy acts on the ί)rcurrents (1 ^ fί N, αεzl(I);)) as

«Ko> (4.21)

σ,fl) = I + Hγι(0) + 'j{^ψyi^ψyi ) *,„, σ,(C|) = C;,

and for the abehan part ί)0 as

σy(Hβ(n)) = H a(n) - co(yo, a)5π > 0,
( 4 2 2 )

σ y (J 0 ) = J o + Hyo(0) + y (y0, yo)<5,i,o> σy(co) = ̂ o.

where 70? ?7i means the projected components of y and dt = — T .̂(O), c{ =

(θ,A)

iii) The action σγ on Γ)t (0 ̂  i ̂  N) defines the algebra automorphism for each ί)t

and implementable on the ̂ -modules Lk.= £ ^.(ξ), (O^i^N) by a linear
isomorphism σy.(0 ^ ί ̂  N). (̂W+.k*

These automorphisms i), ii) follow from direct evaluations of the action py on
each operator. The linear isomorphism σy. can be constructed on Lk.(l ^ i ̂  N) in
the same way as (4.19) for g;

σym>) = ϊ%i,θi)i2)yMi>l (4-23)

where t^θuθi)l2)y. belongs to the extended group T^ = {tflyeQ^} of T(i) with the
definition Q(o = {λetf\(λ,αX eZ for VαeβJ. Thus the corresponding diagram
automorphism should be read from the action of t§θitθ.y2)yi Hereafter we shall
denote this diagram automorphism simply as p^.(l ^i^N). As for the abelian
part, we can implement the action σyo on the infinite sum Σ L^iζ) by
a shift of weight ξ0 to tyo{ξ0). ξ o e Q k + k o Λ O

Now we can utilize these results in order to investigate the relations among
the branching coefficients in (4.1). To do this, we first recall that the isomorphism
(4.1) is given by a linear map Ψ\Bf:ξ®Lh{ξ)^^ε®L{λ) defined [TK] by

Jai(-n1)--'Jaj(-nj)v. (4.24)

From now on we fix this isomorphism Ψ. Then we can construct the following
commuting diagram of isomorphisms;
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(4.25)

where we defined abbreviations as t) = t^® f^ θ l ) / 2 ) y i ® •• ® t«e*,eN)/2)yN

 a n d

p\β = (tjξolp\\(ξ1),..^p)»N(ξN)). The element ω? in the diagram is determined
from the element ώ1eWί which satisfies t\ = ώ1ρ\. The commutativity of the
diagram entails the following isomorphism for the branching coefficient modules;

Proposition 4.3. (Field identification relation). For each yeQ1, there is an isomorphism
of N = 2 SCA-module;

γN = 2. D(«) . D(«) (λ ^C\

*y 'BΛ,ξ^Bp%Λ),p\(ξy ( 4 2 6 )

where tN

y=
2 = {ώ\)-1σr

Since we know that σγ and ώ\ commute with the N = 2 SCA, the isomorphism

(4.26) tells us the equality among the character formulas for N = 2 SCA-modules;

ch{Bfξ) = chiB^^). This is the reason why we identify the primary fields [BPZ]

which represent the N = 2 SC A-module Bfξ and B^^φ. A rather trivial,
but important, field identification follows from the action σyo with yoeQo. This
action entails the following isomorphism;

(4.27)

Note that in this expression we have succeeded in separating the infinite summation
in (4.1) into the infinite multiplicities of N = 2 SCA-modules.

(4-2) Modular Transformation Properties. Let us give an interpretation for the field
identification relation (4.26) from a viewpoint of the modular transformation
properties of the characters. Here we define the character for the N = 2 SCA as
the branching coefficients which arise when we evaluate the relation (4.1) in terms
of the affine characters defined over P+ modC<5 [KW] and the product of the
theta functions for 3F [Fr,Has].

Let us recall [KP,KW] that the characters for g-modules; ch'(L(Λ)) (ΛeP+tk)9

transform among themselves under the modular transformations, S and T, as

ch'(L(Λ))\s = Σ Sa;j'Ch'(L(Λ')), (4.28)

ch'(L(Λ))|τ = e2πiSλch'(L(Λ)l (4.29)

where S^ = — — — — — ττiΓ9 a n ( ^ ^ e u n i t a r y matrix S^( = S ^ ) is given by

SM = fl ̂  I IP/Ml - 1/2(fc + g*T m Σ d e t ω e - w * ^ ^ ^ . (4.30)
ωeW

To apply this property to ^-modules, we must deal with the infinite multiplicities
associated with the abelian part ί)0 [TK]. Before going into this subject, let us
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first discuss about the fermionic part. As for the character of the J^ε, it is known
that there are four possible types; c h ^ * ) , where the minus sign means the
insertion of the operator (— 1)J/(O) into the trace for the characters while the plus
sign does not. These four possibilities are connected to the characters of the
level 1 representations of so(2m)(m = dimm + ) as ch(#'^ s) = ch/(L(/i0)) + ch/(L(/i1))5

ch(#"^)-ch /(L(Λm))±ch /(L(/ίm_ 1)). Thus we see that ch(J^r) close among
themselves under the modular transformation, which we denote as f{ε

ε'
a)

b) for the
^-transformation and as tψa) for the T-transformation with ε, ε' = 0 or 1/2 and
a9b=±.

We can now express the decomposition (4.1) in terms of the characters as

ch(^±ych'(L(Λ))= Σ chίB^^ch'ίLKoJί ch'ίL^JJ .ch'ίlί^)), (4.31)

with

where η is the Dedekind ^/-function and e(λ)(h) = eα/l>(Λ,et*, het). When we recall
the relation (4.27) and note that σγoJf(0)(σγo)~1 = Jf(0) -2(p2, y0) and 2(p2, yo)e2Z,
we deduce that the infinite multiplicities of N = 2 SCA-module are summarized
into the theta function;

Ξ Σ bf?χ(Uξ))> (4.32)
ξeP(t)

where

(J

In this form we can apply the results (4.28-30).
Due to the considerations above, we can derive the modular transformation

properties of bff as;

°λ,ξ I S " L

(ε,b)

bff I τ = exp {2πi(t^ + S(5)λ - S(I))f)} b%f, (4.33)

Now we can verify;

Proposition 4.4. The transformation matrices satisfy the following relations;

%M = f('t:»sλ.λ'Sΐ? for S transf,

= exp{2πi{tfa) + S(Q)λ-S(fy)} for T transf. (4.34)

To prove this statement, we note that the S-matrix has a property (Eq. (2.2.13)
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in ref. [ K W ] also see ref. [Gep]);

s e2*A'>*sλiλ>, (4.35)

for a diagram automorphism σ = tεσweWo,σweW. Then the equalities immediately
follow from the following relations;

Λ'-ξ'eQ, p»(β) = β, p\(β1) = Pu (4.37)

where

P I = Λ Σ α + Σ Λ M « » i
Z αeJ(ί))+ i

Proposition 4.4 ensures the compatibility of the field identification relation
(4.26) with the modular transformation properties (4.33).

(4-3) R<->NS Spectral Flow. Here we will formulate an isomorphism among the
branching coefficient modules with different fermionic boundary conditions. This
isomorphism is the origin of the space-time supersymmetry in the compactified
string theory and plays an important role in physics [BDFM].

Now let us define an automorphism of the Clifford algebra σ{(seZ/2) by

σ{(ψ*(r)) = ψ*(r + 5), σ{(φ*(r)) = φ*(r - s) (4.38)

for all αe/l(m+),αeZl(m_). σ{ act trivially on the ^-currents. Then the following
action of σ{ on the N = 2 SCA and ^-currents follows from simple calculations;

Proposition 4.5. (R<->NS spectral flow). The actions of σ{(seZ/2) defines the
following automorphisms;

i) N = 2 SCA;

σ{(T(ή)R) = T(n)s + {s}J(n)s + ^ {5}2^,0, (4.39)

σ{(GHr)κ) = GHr± 4 , σ{(J(n)R) = J(n)s + °f {s}δn^

σ{(T(n)NS) = T(n)s+1/2 + [5] J(n)s+1/2 + ^ [ 5 ] 2 ^ , 0 , (4.40)

σ{(G±(r)NS) = G±(r± s)s+1/2, σ{(J(n)NS) = J(n)s + 1/2 + ^ ls]δΛtθ9

ii) ^-currents;

σί(Un)R) = JM)s, tf(Λ(*W = Λ(*W, (4.41)

σ{(Hγ(n)R) = Hy(n)s - (2p2i y){s}δn,0, (4.42)

σ{(Hγ(n)NS) = Hγ(n)s+1/2 - (2p2,γ)Ls]δn t Ό, (4.43)

where the subscripts s and s+1/2 indicates the types of the operators, R or NS,
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according to their value Z or Z + \, respectively, and [s] and {s} are integers
determined from the relation s - l < [ s ] ^ 5 ^ { s } < s + l .

Here we note that the actions i) are different from the conventional one (e.g.
(1.16) in ref. [LVW]) in that the parameter of the flow appears as an integer in
the right-hand side of i). This is, again, the reflection of the different choice of the
normal ordering prescription as noted in the final remark in Sect. 2.

We can easily implement these automorphisms on # Ό © ^ I / 2 a s follows;

Proposition 4.6. There exist isomorphisms σ{(seZ/2) on J^o 0 «^Ί/2 which implement
the action σ{. They are defined by

</φ+l) r(s-{s})σ{_(s)|0>R for s Z - l

(4.44)

s)-ψ"(-s + {s}-l)σ{.{s]\0)R for s>0,

Π ψx(s+τ)-ψa(s-ίs-]-±)σ{-ls]\O)NS for s g - 1
4 ( m + ) (4.45)

Π ^(-s+έ) ^(-s + M-i)aΐ-Mlo>Ns far s>o,
zl(m_)

where σl1/2\0>R = 10>NS and σ{/2|0>NS = 10>R.

Since the action on ζ-currents coincides with that of the translation, which acts
only on the abelian part ί)0, we deduce the isomorphism;

- / . D(0) r>(ε) - / . D ( 1 / 2 ) ^ p(ε') (AAfλ

with ε = 0 or 1/2 (ε' = 1/2 or 0) according to seZ or Z + \, respectively. In particular,
if we substitute s= — 1/2, then we obtain

/ 8 $ f (4.47)
Since σ-L 1 / 2 defines the co-chain map; σ L i / 2 ^ ± (0) R — G ± ( + 2)Ns^-1/2 = 0> between
C ^ m + O C C ^ ί " 1 ] , ^ ) ^ and C*(m+ ® C ^ ί " 1 ] , ^ ) ) ^ , we obtain the follow-
ing isomorphism of the harmonic forms:

σ^ 1 / 2 :H*(m + (χ)C[ί ,r 1 ] ,L(/i)) R ->H*(m + (χ)C[ί ,r 1 ] ,L(Λ)) N S . (4.48)
1 / 2 :

This isomorphism is the one which we have promised to show in previous section.

(4-4) Charge Conjugation. In this subsection, we formulate, for later use, a
somewhat different symmetry: the charge conjugation automorphism.

Definition 4.7. (Charge conjugation). We define the charge conjugation auto-
morphisms, #, for the Clifford algebra and the affine Lie algebra g by

<$(ψ*(r)) = -φ~a(ή (αε4(m+) U 4(m_)) (4.49)

and
%(J*(n))=-J-«(nl V(Ha(n)) = H.a(n) (αe4), (4.50)

respectively.
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Then the following results follow from simple calculations;

Proposition 4.8. The charge conjugation automorphisms (4.49) and (4.50) are
implementable on the Fock space J*ε and ̂ -modules Lk by

(4.51)
(|0> for 6 = 4

and

Vπ(\Λ}) = ωΐong\Λc), ΛeP+Λ, (4.52)

with Λc = — ωlong(Λ\ respectively. Where ω l o n g in (4.52) is the longest element of the
classical Weyl group of g.

The following results are also consequences of the straightforward calculations
using the formula (2.39);

Proposition 4.7. The charge conjugation operations (4.49), (4.50) act on the ^-current
algebra and the N — 2 SCA as an algebra automorphism in following way.

i) for ̂ -currents

nJβ(n))=-J-β(n), V(Hβ(n)) = H-β(n) (βeΔ(lj)\ (4.53)

ii) for N = 2 SCA (ε = 0)

± (4.54)

n)) = T(n) - J(n) + Cfδn,0, (4.55)

(4.56)

iii) forN = 2 SCA (ε = 1/2)

^(G±(r))^G±(r\ %(T(ή))=T(n\

V(J(n))=-J(n). (4.57)

We easily see that the algebra automorphism (4.53) is implemented as (4.52)
on the extended ζ-module I^ = Σ Lki. In this case we must use the longest element

ωfong °f e a c h W0)i)(l ^ i = N). This fact implies that there exists an isomorphismn g

^ π = Π (G*n β )" 1($π:Bf^B%ξc, ξc = (- ξ09ξ
c

u...,ξ%\ (4.58)

which implements the automorphisms (4.54)-(4.56), (4.57).

5. Poincare Polynomial for TV = 2 SCFT

In previous sections, we have studied in detail the N = 2 super-GKO construction
and its cohomological interpretations. In this section the results obtained there
will be unified from a viewpoint of the N = 2 SCFTs and the Poincare polynomials
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associated with them. The meaning of the Poincare polynomial, especially its
geometrical meaning, still remains to be clarified in future investigations.

(5-1) Poincare Polynomial and Its Physical Background. The N = 2 SCFT may be
stated, as one definition, as the modular invariant partition functions constructed
from the characters fc f'fCO for the branching coefficient modules B\*. It is
known that there are many types of the modular invariants [CIZ, Kat]. Though
such a variety may always exist for the N = 2 SCFT, we restrict our arguments,
for simplicity, to the diagonal modular invariant only;

-y Σ l^;|WI2> (5.1)
^ (ε,a);ΛeP+ k

ξP(\) lkQ

with Jf representing a constant which we read from the multiplicity of the vacuum
(the module with both the conformal dimension and the charge being equal to
zero) among the branching coefficient modules. As formulated in Proposition 4.3
in previous section, the multiplicity of the branching coefficients as TV = 2 SCA-
module follows from the action of yeQ1 on Lk. When the action yeQ1 has a fixed
point, the definition of the N = 2 SCFT by (5.1) becomes troublesome because the
fractional coefficient appears in the partition function. For the time being, we
restrict ourselves to the case that there does not appear such fixed points. We will
return to this problem later in this subsection.

The characteristic feature of the N = 2 SCFT is that some class of the theory
defined by (5.1) admits a description by Landau-Ginzburg (L-G) effective
Lagrangian [VW] [Mar]. This observation is based on the fact that the set of the
relevant operators contained in the L-G theory and the. primary fields that are
labeled by the weights representing the cohomology elements in (5.1) coincides
with each other in their charges and conformal dimensions (in fact the charge is
two times the conformal dimension for the cohomology elements). The primary
fields in this correspondence are named as the chiral primary fields in ref. [LVW].
One of our interests here is to investigate, from the physical point of view, how
large classes of the N = 2 SCFT admit such a L-G description [LVW].

To this aim we define a certain Poincare polynomial associated with each N = 2
SCFT. This Poincare polynomial might have also mathematical importance since
it will turn out that it is defined in deep relation with the Poincare polynomial of
the semi-infinite flag manifolds.

Let us recall that the L-G theory with N = 2 supersymmetry has the following
features which follows from the non-renormalization theorem: i) The theory at
critical point is described essentially by the super-potential W(ΦU..., Φπ), where
Φt(\ ^i^n) represents the chiral superfield. ii) The super-potential must have the
quasihomogeneous property such that W(λωiΦl9...,λ

ωnΦn)==λdW(Φu...,Φn) in
order to realize the theory at critical point, iii) The set of the relevant operators in the
L-G theory is expected as the ring J,

[dW/dΦdW/dΦj [ ' }

If the order of the ring J is finite dimensional, we can define the Poincare polynomial
for a given L-G theory by

Pj(t) = TΐjtQ, (5.3)
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with the charge operator g:J-> J defined by β(Φ,) = ω^Φ^l ^ i ^ n).
Generally, a formal power series /e ϊR c C[x l 5 . . . , x J is called as non-degenerate

near 0 if there exists a natural number m such that SDΪ ID U Z> SOΪm, where 9PΪ represents
the maximal ideal of a local ring C[x1?...,xn~\ and U = {df/dxl9..., df/dxn). Just
the same way as J in (5.2), the local algebra of / is defined by Rf = C[xu..., x j /
(df/dxl9..., df/dxn). Then the following property is known:

Theorem 5.1. (K /. Arnold [AGV], Theorem on p. 199,1). Let f be a nondegenerate
quasίhomogeneous polynomial such that f(λωιxί9..., λωnxn) = λdf(xί,. ..,xn)
(λeC*;ωhdeZ>0). Then we have

n ί\ _ td-ωΛ

Σ ^ ' Π J (54)Σ ^ = Π n tJ> (5-4)

where μt is the number of basis monomials in Rf with quasidegree ί/d.

In this theorem, the non-degenerate property of / ensures that the number of
the basis monomials in Rf in finite.

From the above theorem, we see that every Poincare polynomial Pj(t) can be
cast into the product form as (5.4) for the N = 2 L-G theory with non-degenerate
quasihomogeneous superpotential W(Φl9...,Φn).

Keeping this background for the L-G theory in mind, we proceed to

Definition 5.2. (Poincare polynomial). We define for each N = 2 SCFT a Poincare
polynomial by

P ( ί ) = Σ t e C ί ) . (5-5)

where J is a quotient

J = P + tkxW1/^, (5.6)

with the equivalence relation, ~, defined by the field identification (4.26), that
is, (Λ,ώ)~(Λ',ώr) if there exist yeQ1 such that tγ=2:B^ξ&^B^ξ&ι. The charge
Q(χ) is determined as an eigenvalue of the charge operator J(6) for \λ9ξff}e

ψ^ + T(σ), (5.7)

and does not depend on the ε.

Owing to the correspondence between the chiral primary fields and the
cohomology elements, the Poincare polynomial defined above should be identified
with (5.3) in the L-G theory. Then from Theorem 5.1, the Poincare polynomial
(5.5) must be written in the product form as (5.4). This is a very non-trivial property
and should be tested for each choice of (g, I)). This will be done for specific models
in the latter half of this section. In the following, we study the general structure
of the Poincare polynomials utilizing the results obtained in the previous sections.

Before closing this subsection, we must mention about the invalidity of the
definition (5.1) when the action yeQ1 on Lk has fixed points as remarked at the
beginning. There are some conjectures that in this case the N = 2 SCA extends to
some larger algebra with higher symmetry [MS2, SY]. However, how we should
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understand this phenomenon is still unsolved and is an important problem to
reveal the coset conformal field theories. So we define the Poincare polynomial
(5.5) also for the case with fixed points. Though physical meanings of our definition
(5.5) might depend on the resolution of the fixed point problem, it would still be
meaningful to reveal the general structures of the Poincare polynomial (5.5).

(5-2) General Structure of the Poincare Polynomial. According to the results
(Theorem 3.8) on H*(m+ (g) C[ί, t~1], L(Λ)\ we can write the cohomology elements
bijectively in terms of the subset W1 of the affine Weyl group for §. This subset
W1 is revealed, in previous section, to have the structure (3.36),

W1 = f) W\ (5.8)

Now we show that

Proposition 5.3. For each p( = ω~ίtγ)eT)9 there exists an isomorphism

?Γ2:%-%, (5.9)

That is, we have (Λ, ώ) ~ (Λ, pώ) for VώeW1.

To see this property, compare the definition of T> in (3.34) with the definition

fin (4.10). Then we easily deduce that the group f) is the Dynkin diagram
automorphisms for ^(1 ^i^N) which are contained in the affine Weyl group W.
Then we can verify that the following relations, mod Cδ, hold;

for each element p = ω~1tγeΊS. On the other hand we know that pef) <= W acts
on the g-module L(Λ). Thus we see that there is the field identification isomorphism

Combining the above result to the structure of the subset W1 in (5.8), we obtain
the following equivalence relation for σeW1.

(Λ,σf)~(Λ,σ), σ'ef)σ. (5.11)

This property tells us that the Poincare polynomial (5.5) is determined, in
fact, from the finite set P + ̂ xW1 rather than the infinite set P + fkxW1 =
P + ,k x ^ o ' ^ ' Wι (see (3.39)). We shall see later, using some examples, that a further
reduction of the set P+ k x W1 follows from the isomorphisms tγ=2(yeQλ,yφM).
These isomorphisms are related to the diagram automorphisms of g as we have
shown below (4.9) that Qλ/M ̂  W^.

Next we show

Proposition 5.4. The Poincare polynomial (5.5) has a certain duality property;

(5.12)

To formulate this property, we first note that the Poincare polynomial can be
written as

(5.13)
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where 01 = £ CIΛ9 ζδ > <= &* ® Lk. Then we can verify that the charge conjugation
ΛΛ,σ)ef

operator ^π acts on the space of the harmonic cocycles and that the operators c€11

and ty^2 commute with each other on the space of the harmonic cocycles. From
these facts, we realize that ^ π acts on the vector space 0t. Utilizing this property
we have

P(ή = T r ^ V ( 0 ) ( f T 1 = TrΛf(Cv/3)-J(0), (5.14)

for the R-type SCA. The same property also holds for the NS-type SCA since there
exists the R<-»NS isomorphism σ Lί/2:Bψ^Bχ-,

The equality (5.12) can be read as a duality relation when we note the following
inequality for the charges (5.7):

Ogβω^y. X^S, (5.15)

where cv is the central charge in (2.39). The above inequality follows from noting

the positive definite operators Γ(0) ^ 0, {G+(-1), G~(l)} = 2Γ(0) - 3J(0) + — ^ 0

and the relation {G+(0), G"(0)} = 2T(0) - J(0) = 0 on the space St. (These properties
do not depend on the types of the SCA, i.e., R or NS.)

(5-3) Grassmannίan Model and etc. Here we present some calculations of the
Poincare polynomial using specific models. Then the 3) in (3.39) will become explicit
and the quotient«/ will become clear.

Let us, first, restrict our argument to the model of Grassmannian, the simplest
representative of the hermitian symmetric spaces;

For this model, the subset W1 of the classical Weyl group W (the symmetric group
S n + m ) is well-known [Kos] . So we have only to reveal the structure of the
quotient J>.

Let ε ! , . . . , ε Π + m be the orthonormal bases for the fundamental representation
of SU(n + m). We take the set of the positive roots as A + = {ε̂  — ε̂ l 1 ̂  i <j ^ n + m}
and the simple roots as α ( ί ) = εf — εi+19 (1 ̂  i ^ n + m — 1) and α ( 0 ) = δ — (ε1— εn+m).
As for the subgroups SU(n) and SU(m)9 we take A%] = {ef - Sj\ 1 ^ z < ^ w}, zl(+} =
{εfl — ε b | n + 1 ^ α < b ^ n + m} and the simple roots 77(Π) = {α ( 0 ) j l =δί— (εί — εn)9

«(i).i = ε * ~ ε ί + i ( ! ^i^n~ !)}> a n d JT ( m ) = ία(0),2 = δ 2 - ( ε n + 1 - ε M + m ) , α ( f l )>2 = εa-
εa + 1(n+ l^a^m + n— 1)}, respectively. The root for τn + is A(m+) = {εf — ε α | l ^
i S n, n + 1 ^ α ̂  n + m}. The subset ί y 1 consists of the elements σ e S n + m such that

σ ~ 1 ( l ) < σ - 1 ( 2 ) < < σ " 1 ( 4 σ~\n + 1) < σ~\n + 2) < ••• < ( j - 1 ( n + m).

(5.17)

The order | FK11 is given by (n + m)l/n\m\.
According to the general theory, the diagram automorphisms are generated by

P(n+m) = tεiωcyc., ρ(n) = tεiω<$c., p(m) = tεn+ιω^l for SΌ(n + m\ SU{n) and SU{m),
respectively, where ω c y c . = ( l , 2 , . . . , n + w ) , ω^?c. = ( l ,2 , . . . ,n) and ω ^
n + 2, . . . , n + m). The diagram automorphisms p(n) and p(TO) satisfy ^^(zϊ
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and p{m)(A{™]) = Δ^ since they simply induce the permutations for the simple roots.
Though each p{n) and p{m) is not the element of the Weyl group W individually,
we can make a combination σD = p(n)p(m)

1 which belongs to the Weyl group.
Then taking the conditions (3.34) and a)'-c)' below (3.36) for £) into account, we
convince ourselves that, in this model, the elements of the group D can be
taken as

(5.18)

where d means the least common multiplier for n and m.
Now let us define

P(Gv(n,mlΛ;t)= £ tq{λ^\ (5.19)
ωιeWx

1
with Q(Λ, ωι) = - -g(/ί, ω1). Using this polynomial, the Poincare polynomial

k + g
may be expressed as

m\Λ;t\ (5.20)

if there is no other field identification relation other than the one appearing in
Proposition 5.3. However we easily notice that there is another identification
relation which follows from the isomorphisms of the action γeQλ(yφM). These
isomorphisms are generated by the diagram automorphism pEί which is determined
from the spectral flow σεi, and has order n + m. Thus we expect the correct Poincare
polynomial is given by

P ( G φ , m), t)k = P'(Gr (w, m), ί)k. (5.21)

We will soon find the cases that the denominator n + m does not divide P'(Gτ(n, m),ήk.
This phenomenon is the fixed points [LVW, Gep] remarked previously.

When we consider the case k= 1, such a troublesome case does not occur.
In this case the weight A of g-module can be written as A = (/ 0 ,/ l 5 . . .,/π + m _ 1 )
with only one of the /,-'s being equal to 1 and others zero. The diagram
automorphism pEϊ induces the cyclic permutation of the Dynkin labels /.,-. Therefore,
making λ0 = 1, the Poincare polynomial can be written as

P(Gτ(n,m)9ήk = 1= £ tl{ΰ)1\ (5.22)

and further, as is known,

where dj(§) and dj(ί)) are the exponents for a, and ί), respectively. This relation
holds also for other models with k = 1 based on the simply laced hermitian
symmetric spaces [LVW].

The phenomenon of the fixed point occurs when we consider the model k ̂  2.
To make the argument simple, but without loss of essential generality, let us restrict
our attention to the model; Gr(2,2) at level k = 2. In this case the naively expected
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Poincare polynomial (5.20) is given by

P'(Gr(2,2), t)k = 2 = 2(2ί8 + It6 + 12ί4 + It2 + 2). (5.24)

We see that this polynomials is not divided by the order of the diagram
automorphism; n + m = 4. This can be understood as follows; the k = 2 g-module
consists of the three orbit of the diagram automorphism of g: (2,0,0,0)-orbit,
(1, l,0,0)-orbit and (1,0, l,0)-orbit. Both the (2,0,0,0)-orbit and the (1, l,0,0)-orbit
have order 4, however the (1,0, l,0)-orbit has only order 2. Therefore we must find
the orbit with the fixed point, i.e. the orbit with length less than 4 among the orbit
of the modules Bλ£ω = B{1010)ξω (ωe W1). In fact, we can find that the modules Bλ e

with (Λ;ξω^ξωΛ9ξωf2) = (Λ[+ AsiβAoMP + 2Λ[1\2Λ(2)+ 2[2)) and (Λ^Λ^
6Λ0 - 2p2,2Λ(

o

υ + 2λ[1\ 2/ϊ(

0

2) + 2Λ[2)) both represent the fixed point with order 2
with respect to the action ίεi+ε4, where obvious notations for the fundamental
weights are used. Taking this fact into account, we calculate the correct Poincare
polynomial as

P(Gr(2,2), ήk = 2 = t8 + 4ί6 + 6ί4 + At2 + 1. (5.25)

As a next example for the model based on a non-simply laced Lie algebra, we
briefly present the case of Sp(n)/SU(ή) x £/(l). According to the convention in ref.
[Bo], we adopt a normalization (θ, θ) — 4. Then the system of the simple roots
Π,ΠS for Sp(rc) and SU(n) are Π = {δ — 2ε1,ε1 — ε 2,.. .,επ_ 1 — εw,2εw} and Πs =
{δ — {ε1—εn)9 ε1—ε2,...,εn_1—εn}, respectively. The coroot lattice for Sp(n) is
Qv = Z ε 1 0 φ Z ε n . The classical Weyl group for Sp(π) is known as the semi-
direct product of the symmetric group <£„ and the actions εi-*(±)iεi9 and its
order is 22n\. The element ωeW1 can be constructed as follows; let σ e S n

such that

σ(l) < σ(2) < < σ(s) = n, σ(s + 1) > σ(s + 2) > > σ(n), (5.26)

with fixed s(l ^ s ^ n). Then we can take following elements as ω " 1 for ωeW1;

1 ••• 5 5 + 1 ••• n

±σ(s) — σ ( s + l ) ••• — σ(n)

where the signs, ±σ(s), means the action εs-> ±ε σ ( s ) . In this case the group X> is
generated by pD = tειω

("Jc eW which generates the diagram automorphism of order
n for the sub-algebra su(ή). The same arguments proceed as before and we obtain,
for example,

P(Sp(3)/Sl/(3) x U(l), ήk = 1 = t6 + 2ί5 + 3ί4 + 4ί3 + 3ί2 + 2ί + 1. (5.28)

In this case we cannot write (5.28) in the form as (5.23) even for k = 1 case.
Returning to our initial problem in relation with the L-G description for the

N = 2 Kazama-Suzuki models, we must mention that almost all models with level
k ^ 2 do not have the Poincare polynomial which can be reduced to the form (5.4).
It is most probable that the global (non-perturbative) property of the theory makes
it impossible to describe the theory in terms of a simple perturbative L-G theory.
Admitting that such a global effect of the theory can appear, it is quite obscure to
what extent the global property appears in the description, what role the level k
plays, and . To reveal the geometrical meaning of the Poincare polynomial will
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shed light on these problems; more precisely, to investigate the relation to the
semi-infinite flag manifold from a mathematical viewpoint and to interpret our
cohomology theory via topological field theories [W] from a physical viewpoint.

6. Summary and Discussions

We have studied in detail a cohomological structure behind the N = 2 SCFT
constructed by means of the affine Lie algebra pairs (§, ζ). We have formulated
our cohomology theory as the affinization of the Lie algebra cohomology theory
by Kostant. Kostant's classical Lie algebra cohomology theory can be recovered
through a certain classical limit of our theory. The characteristic features that we
have recognized in our affine Lie algebra case are the essential roles played by the
Dynkin diagram automorphisms for the affine Lie algebras. Motivated by the
Landau-Ginzburg description for the N = 2 SCFT, we have formulated the algebra
automorphisms for N = 2 SCA, spectral flow, and then defined a Poincare
polynomial associated with each N = 2 SCFT. This Poincare polynomial might
have some mathematical importance, e.g., this polynomial might represent a certain
deformation of the Poincare polynomial of the semi-infinite flag manifold LG/LH
[FF] for loop groups LG and LH through the introduction of a certain periodicity
associated with the group To. The geometrical meaning of the Poincare polynomial
should be clarified in future investigations.

As for the L-G description for the N = 2 SCFTs constructed by GKO
construction, we must check as a first step for that purpose whether the Poincarέ
polynomial we have defined can be written in the form of Pj(ή in (5.4). We have
found, contrary to our expectation, that there are many models whose Poincare
polynomial cannot be written in the form (5.4). On this respect, there are arguments
[LVW, Mar] that such theories are described by the orbifold L-G theory. We
must leave the detailed analysis to future investigations.

In any way, there seems not to exist a simple description in terms of the L-G
Lagrangian for the general N = 2 SCFTs based on the GKO construction. And
so, generally, we cannot expect a beautiful correspondence between the L-G theory
with N = 2 supersymmetry and the singularity theory as have been observed for
the minimal theories with cv < 3. However it seems interesting and important to
identify the N = 2 SCFTs which are described by the known singularity types other
than the simple singularity, A-D-E.
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