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Abstract. The affiliation relation that allows to include unbounded elements
(operators) into the C*-algebra framework is introduced, investigated and applied
to the quantum group theory. The quantum deformation of (the two-fold covering
of) the group of motions of Euclidean plane is constructed. A remarkable radius
quantization is discovered. It is also shown that the quantum SU(1, 1) group does
not exist on the C*-algebra level for real value of the deformation parameter.

0. Introduction

In practical computations in quantum physics we mostly deal with unbounded
physical quantities represented by unbounded operators. On the other hand in the
very theoretical approaches (see for example [5,2]) we consider C*-algebras
consisting of bounded elements only. Therefore it is necessary to investigate the
relation between particular unbounded operators and C*-algebras.

The same problem in a more apparent way arises in the theory of non-compact
topological quantum groups, where on the one hand the doctrine [18] says that
the C*-algebra language is the only one to be used and where on the other hand we
have to deal with matrix elements of finite-dimensional non-unitary representa-
tions which in general are not bounded.

The similar problem was encountered in the von Neumann algebra theory [11]
where the affiliation relation anM [where M C B(H)is a von Neumann algebra and
a is an unbounded operator acting on the Hilbert space H] was invented to
describe such situations. We borrow from this theory the name of the relation and
its symbol: in what follows we shall speak about unbounded elements a affiliated
with a C*-algebra 4 and write anA. We have however to warn the reader that the
affiliation relation that we introduce in the present paper is not a generalization of
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the one used in the von Neumann algebra theory. For example if anM (where M is
a von Neumann algebra and # is understood in the C*-algebra sense) then
according to Proposition 1.3 ae M.

As we shall see, elements affiliated with the C*-algebra 4 are unbounded
multipliers of a special kind. The domain D(a) of an element.anA depends on a and
need not coincide with the Pedersen ideal of A. It means that the theory presented
in this paper goes in the other direction than the one developed in [7] and [13].

The paper is organized in the following way. In the remaining part of the
Introduction we remind the necessary definitions and results of the theory of
(bounded) multipliers [1].

In Sect. 1 the definition of the affiliation relation is formulated and basic
examples are presented. In particular the set of all elements affiliated with the
C*-algebra CB(H) of all compact operators acting on a Hilbert space H coincides
with the set of all closed operators acting on H. It shows that the existing theory of
unbounded closed Hilbert space operators (that contains such chapters as the
theory of symmetric and selfadjoint operators including the Caley transform and
extension theory, Friedrichs and Krein extensions of positive operators, Lie group
and algebra representations including the Nelson integrability condition, the
algebras of unbounded elements and many more ...) is related to a very particular
C*-algebra CB(H) and should be generalized to an arbitrary C*-algebra A. In an
attempt to limit the volume of this paper we decided to shift all this program to a
separate paper [20]. We include only a few results concerning normal elements
that are used in Sect. 3.

In Sect. 2 we investigate the characteristic properties of the graphs of affiliated
elements. The results provide us with a convenient method of introducing
particular elements affiliated with C*-algebras.

Section 3 is devoted to the quantum deformation of the Euclidean plane and its
group of motions. This is where the theory of affiliation relation is applied. We
discover the remarkable radius quantization that was not seen in the Hopf-algebra
framework. The similar quantum group is considered in [3]. The very related
material is contained in [17].

Finally in Sect. 4 the quantum group §,U(1,1) is investigated. We show that
something is essentially wrong for peR: on the C*-algebra level the comultipli-
cation does not exist. In our opinion the only deformation of SU(1,1)=SL(2,IR)
that may exist is the one corresponding to the value e S*. This case has not been
seriously investigated yet. We have obtained very preliminary results [19] related
to the Hilbert space level.

Both Sects. 3 and 4 are divided into three parts corresponding to different levels
of the quantum group theory. The most technical Hilbert space level gives the link
between a very surface Hopf-algebra level and deep C*-algebra level. We believe
that constructing any non-compact quantum group one has to consider these
three levels. In very lucky cases the Hilbert space level may be very easy: all
irreducible representations of the considered commutation relations are realized
by bounded operators. Then many of the technical difficulties disappear. Such a
case is considered in [14].

We have to recall a few facts concerning multipliers on non-unital
C*-algebras. Let B(A) be the algebra of all bounded linear mappings acting on a
C*-algebra 4 and a, b e B(A4). We say that b is the hermitian adjoint of a and write
b=a*if

y*(ax)=(by)*x (0.1)
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for any x,y€ A. We have to stress that the existence of the hermitian adjoint is a
very restrictive condition. M(A) is by definition the set of all bounded linear
mappings that have the hermitian adjoint:

M(A)={ae B(A): there exists a*}.

M(A) endowed with the natural algebraic operations and with the sup-norm
becomes a unital C*-algebra. There exists the natural embedding A ¢, M(A4); we
identify any element a€ A with the left multiplication by a. One can easily verify
that A4 is a closed two-sided ideal in M(A).

Using (0.1) one can prove that

(ax1)x,=a(x;x5)

for any x,,x, € A. If A is unital then inserting x, =1 we observe that a coincides
withe the left multiplication by al. This way we showed that A4 is unital if and
oly if A=M(A). ’

It is known that M(CB(H)) [where CB(H) denotes the algebra of all compact
operators acting on a Hilbert space H] coincides with B(H). Denoting by
Choundea(A)[C ,,(A) respectively] the algebra of all continuous, bounded (vanishing
at infinity respectively) functions on a locally compact topological space 4 we
have M(Coo(A)) = Cbounded(A)'

We shall prove

Proposition 0.1. Let A be a C*-algebra and u be a bijective linear mapping acting on
A such that (uy)*(ux)=y*x for any x,y€ A. Then u is a unitary element of M(A).

Proof. Inserting in the assumed relation u~ !y instead of y we get y*(ux)=(u~'y)*x
for any x, ye A. It shows that u*=u""! and the statement follows. Q.E.D.

Proposition 0.2. Let A be a C*-algebra and a e M(A). Assume that aA and a*A are
dense in A. Then there exists unique unitary ue M(A) such that

a=ula|, 0.2)
where |a| =(a*a)'/%.
Proof. One can easily verify that the mapping
u:lalx—ax, 0.3)

where x runs over A extends by continuity to a linear bijection acting on A
satisfying the assumptions of Proposition 0.1. Therefore u € M(A) and u is unitary.
(0.2) follows immediately from (0.3). Q.E.D.

Proposition 0.3. Let A be a C*-algebra, Te B(A) and ae M(A). Assume that a*A is
dense in A and aTe M(A). Then Te M(A).

Proof. Let c=aT. For any xe A we have
lle*x]1?= [x*cc*x| = [ x*aT(c*x)| < |l x*all | T || c*x|| .

Therefore | c*x|| < || T| - |a*x|. Remembering that a*A is dense in A we see that
there exists S e B(A) such that

Sa*x=c*x
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for any x € A. We shall prove that S is the hermitian adjoint of T. Indeed for any
x,y€ A we have

(a*y)*Tx=y*aTx=y*cx=(c*y)*x =(Sa*y)*x,

and using once more the density of a*4 we obtain y*Tx =(Sy)*x for any x, y € 4.
The latter means that S=T* [cf. (0.1)]. Q.E.D.

At the end of this section we remind the category of C*-algebras that plays the
basic role in the non-commutative topology [18, 16]. All C*-algebras are objects of
this category. For any C*-algebras A and B, the set of morphisms Mor(4, B)
consists of all *-algebra homomorphisms ¢ acting from A into M(B) such that

¢(A)B is dense in B. 0.4)

Any ¢ € Mor(4, B) admits unique extension to the *-algebra homomorphism
acting from M(A)into M(B). Due to this fact the compositions of morphisms is well
defined. The extension (denoted by the same letter) is introduced in the following
way: For any Te M(A), ¢(T) is a bounded operator acting on B such that

&(T)(¢(a)b) = p(Ta)b (0.5)

for all ae A and be B. By virtue of (0.4), ¢(T) is unique and one can show that
¢(T)e M(B). Clearly ¢(I ) =I5, where I , (I respectively) denotes the unity of M(A)
[M(B) respectively].

1. The Affiliation Relation

In this section we introduce elements affiliated with a C*-algebra. Heuristic
justification of the formal definition given below is the following: In brief, an
element T is affiliated with a C*-algebra A if bounded continuous functions of T
belong to M(A). We choose a bounded continuous function

Coi—z,eC

defined by a simple algebraic expression such that z,+z, for A+ 1". Then A is
determined by z,. By definition ThA if z; € M(A). The choice

z;=M1+22)"1? (1.1)
leads to Definition 1.1. Indeed in this case formal computations show that
T(I—z%zp) 2 =2z,.

Throughout the paper the domain of any (unbounded) linear operator T acting
on a C*-algebra will be denoted by D(T). On the other hand the domain of an
operator T acting on a Hilbert space is denoted by 2(T). This distinction is
necessary because in some cases we identify operators acting on a Hilbert space H
with corresponding operators acting on a C*-algebra embedded into B(H) (see
Examples 3 and 4 in this section).

Definition 1.1. Let A be a C*-algebra and T be a linear mapping acting on A
defined on a linear dense subset D(T)C A. We say that T is affiliated with 4 and
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write ThA if and only if there exists ze M(A) such that |z|| <1 and

xeD(T) - There exists ae A such that
and y="Tx x=(I—z*z)"?a and y=za

for any x, ye A.

Clearly T is determined by z. We say that T is the T-transform of z: T=T,. In
the next section we shall prove that z is determined by 7. We say that z is the
z-transform of T: z=z,. Clearly z € M(A) is the z-transform of an element affiliated
with A if and only if |z|| £1 and (I —z*z)'/?A4 is dense in A.

It follows immediately from the definition that T is a closed linear map, D(T) is
aright ideal in 4 and T(ab)=(Ta)b for any ae D(T) and be A. Let ThA and D be a
dense linear subset in 4. We say that D is a core of T if DCD(T) and T coincides
with the closure of T|,. One can easily check that D is a core of T if and only if
D=(I—z%¥z;)'?D’, where D’ is a dense linear subset in A.

The functorial properties of the definition are described in the following

Theorem 1.2. Let A, B be C*-algebras, ¢ € Mor(A, B) and ThA. Then there exists
¢(T)mB such that ¢(D(T))B is a core of ¢(T) and

&(T)($(a)b)=p(Ta)b 1.2)
forany ae D(T) and b € B. The z-transforms of ¢(T) and T arerelated by the formula
Zy(ry= d(zr). (1.3)

Moreover if A,B,C are C*-algebras, ¢ € Mor(A4, B), yeMor(B, C) and ThA,
then

Y(H(T) = P)(T). (1.4)
Proof. At first we notice that ||¢(z7)|| <[ z7]| =1 and
(I = d(z)* $(z7))'*B= $((I — 2%21)"*)BD P(I — 2%21)"*)$(4)B = $(D(T))B

isdensein B [cf. (0.4)]. It shows that ¢(zy) is the z-transform of an element affiliated
with B. Denoting the latter element by ¢(T) we get (1.3).
Let us notice that

$D(T)B= (I —z}z7)" > A)B=(I — z124(r))'*$(4)B.

Using once more (0.4) we see that ¢(D(T))Bis a core of ¢(T). Letae D(T)and be B.
Then a=(I —z*z;)"/?x, Ta=zrx (where x is an element belonging to A4) and

dab=(I— Z$<T)Z¢(T))l/2¢(x)b .
Therefore
H(T)P(a)b =z 41\ p(x)b = P(z7)p(x)b = P(zrx)b=(Ta)b,
and (1.2) follows. (1.4) follows immediately from (1.3). Q.E.D.

Example 1. Let A be a C*-algebra, ae M(A) and T be the left multiplication by a.
By definition D(T)=A. We claim that ThA. Indeed one can easily check that
z-transform of T is given by the formula

zr=a(l +a*a)~ /2. 1.5)
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In what follows we shall identify ThA with ae M(A). Let us notice that T is
bounded: || Tx|| < ||la|| | x| for any x € A. Conversely if TyA and T is bounded then
lzrll<1 and one can easily verify that T is the left multiplication by
a=z(I—z%z;)” /2 e M(A). Therefore

M(A)={TyA: | T|<w}. (1.6)

If 4 is unital then any dense right ideal of 4 coincides with 4 and (closed graph
theorem) any Ty A is bounded. On the other hand in this case M(4)= A. Taking
into account (1.6) we get

Proposition 1.3. If A is unital then any element affiliated with A belongs to A.

This is a noncommutative version of the known theorem of classical analysis
saying that on a compact space any continuous function is bounded.
Finally we notice that for Te M(A) the definition (1.2) coincides with (0.5).

Example 2. Let A be a locally compact topological space, A=C_(A) be the
C*-algebra of all continuous, vanishing at infinity complex functions on A4,
aeC(A) and T be the multiplication by a. By definition D(T) is the set of all
x € C(A) such that hm a(/l)x(l) 0. Then TyC ,(A); the z-transform of T given by

zrf(A)=a(A) (1 + |a(l)|2)‘ 2 is a bounded continuous function on 4. In what follows
we shall identify TnC . (A) with a € C(A). Conversely if TyC ,(A) then z € M(C (A))
=Cpounded(4), lz7l=1, and |zp(A)]<1 for all Aed [otherwise D(T)
=(I —z%¥z4)">C ,(A) would not be dense in C(4)]. Therefore setting

a(/l)d=sz(/1) (1 _ IZT(/l)lz)_ 1/2

we define an element a e C(A4) and one can easily verify that T coincides with the
multiplication by a. It shows that the set of all elements affiliated with C(A)
coincides with C(A).

Example 3. Let H be a Hilbert space (dim H = o0), 4= CB(H) be the C*-algebra of
all compact operators acting on H, a be a closed operator acting on H with a dense
domain 2(a)C H and T be the left multiplication by a. By definition D(T) is the set
of all x e CB(H) such that the product ax is well defined [i.e. xH C 2(a)] and belongs
to CB(H). Then TiCB(H); the z-transform of T given by (1.5)is a bounded operator
acting on H [in the considered case M(A4)= B(H)]. In what follows we shall identify
TyCB(H) with the closed operator a acting on H.

Conversely if ThCB(H) then z; € M(CB(H))=B(H), |zr|| <1, and 1 is not an
eigenvalue of z¥z; [otherwise D(T)=(I —z¥z7)"/*CB(H) would not be dense in
CB(H)]. Therefore a=z4(I —z%z;)~'/? is a well defined closed operator and one
can easily verify that T coincides with the left multiplication by a. It shows that the
set of all elements affiliated with CB(H) coincides with the set of all closed
operators acting on H.

Example 4. Let H be a Hilbert space and A CB(H) be a C*-algebra of operators
acting on H. As usual we assume that A is nondegenerate, i.c. for any non-zero
we H there exists ae A such that ayp+0. Then the embedding

i:Asar—ae B(H)

belongs to Mor(A4, CB(H)). Therefore for any Th A, i(T)yCB(H) and (cf. Example 3)
i(T)is a closed operator acting on H. In what follows we shall identify T with i(T).
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For any closed operator T acting on H we have

L+ TT) e M(4)and
(T”A)©<(I+ T*T)—l/ZA isdensein 4/°

Example 5. Let {A4,},.y be a family of C*-algebras labeled by a set N (in most cases
N is denumerable) and
A=7Y%4,.
neN

By definition the elements of A are sequences a=(a,),.y such that a,e€ A4, for all

neN and lim |a,||=0. Let n,:A—A4, be the canonical projection. Then
n— oo

7, € Mor(A4, 4,).

Let ThA. Then T,==,(T)nA,. One can easily show that T is determined by the
sequence (T,),.y and that any sequence (T,),.y (Where T,n A4, for any ne N) can be
obtained in this way. If all 4, are unital, then (cf. Proposition 1.3) T,nA, means
T, € A, and the set of all elements affiliated with £® 4, coincides with the cartesian
product >n<A,,. This fact is very much used in [14].

For the C*-algebras A4 considered in Examples 2 and 5 (with unital 4,) the set
of all elements affiliated with A4 is endowed with the natural *-algebra structure.
Example 3 shows that this is not always the case: In general even the sum of two
closed operators is not well defined. We have however

Theorem 1.4. Let A be a C*-algebra and TnA. Then there exists T*nA such that for

any a,be A
(aeD(T*) and>®<For any xeD(T)>‘ w7
b=T*a a*(Tx)=b*x
The z-transforms of T* and T are related by the formula
Zpe=ZF. (1.8)
If A, B are C*-algebras, ¢ € Mor(A4, B) and ThA, then
H(T*)=p(T)*. 1.9)

Proof. Clearly ||z¥| = |z¢|| £1. Assume for the moment that (I —z;z%)'/?4 is not
dense in A. Then (cf. [4, Theorem 2.9.5]) there exists a state w on A4 such that

o((I —z7z2§)!?a)=0

for all ae A. Using the GNS procedure we construct a representation n of 4 acting
on a Hilbert space H and a cyclic vector Q€ H such that

o(a)=(Q|n(a)&2)

for all ae A. Comparing the last two formulae and remembering that Q is cyclic we
get

(zpn(zr)*R=Q. (1.10)
Let Q' =n(z;)*Q and for any ae A
w'(a)=(Q'|n(a)Q)).



406 S. L. Woronowicz

Clearly o’ is a state on A. Applying 7(z;)* to the both sides of (1.10) we get
w(zp)*n(zp)Q =Q'.
Therefore for any ae A
o'(I — z¥z7)?a)=0.

On the other hand D(T)=(I —z¥zy)'/*A is dense in A. This contradiction shows
that (I —z;z%)'/24 is dense in A. It means that z% is a z-transform of an element
affiliated with 4. Denoting the latter element by T* we get (1.8).

Let us notice that the right-hand side of (1.7) is equivalent to

a*zp=b*(I —z¥z,)'?. (1.11)

If ae D(T*) and b= T*a then a=(I —z;z%¥)'/%y, b= z*y (where y € A) and using the
equality
(U —z7z9)*zp =271 - 2}27)'? (1.12)

one can easily verify (1.11). Conversely if (1.11) holds then setting
y=(—zrz%)?a+z:b
and using (1.12) we obtain
(I —z72§)' 2y =(I — z7z§)a+ (I — z;2$) Pz7b
=(I—zrz¥)a+z4(I —z%z7)'?b
=(I—zpz¥)a+zrzia=a
and
¥y =2¥I—z;2¥)2a+ z¥z b
=(I—z¥z7)*z¥a+z%z4b
= —z¥zp)b+z¥zrb=b.

It shows that ae D(T*) and b= Ta. The equivalence (1.7) is proved. Relation (1.9)
follows immediately from (1.8) and (1.3). Q.E.D.

The reader easily examines how the *-operation introduced by (1.7) acts in
particular examples. In Example 1 it coincides with the hermitian conjugation in
M(A),in Examples 3 and 4 T* is the adjoint of T in the sense of the theory of closed
operators acting on a Hilbert space (see e.g. [10]). In Example 2

(THH=TA) (1.13)

for any ThC(A) and A€ 4.
It follows immediately from (1.8) that

T**=T

for any TnA. We say that an element T affiliated with a C*-algebra A is normal if
D(T)=D(T*) and
(Ta)*(Ta)=(T*a)*(T*a) (1.14)

for any ae D(T). We shall prove that

(T is normal) <> (z¥z; =z,z¥). (1.15)
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In particular any element affiliated with a commutative C*-algebra is normal. The
implication “=>"is obvious. To prove the converse we notice that the relation D(T)
=D(T*) means that there exists a bijective mapping

As3x—-uxeAd
such that
(I —z¥zp) Pux=(I — zrz%)**x (1.16)

for any xe A. Let a=(I —z;z%)'/?x. Then T*a=z%x, Ta=zux and (1.14) shows
that (ux)*z¥z(ux) = x*zpz¥x. Combining this result with (1.16) we obtain (ux)*(ux)
=x*x for any x € A and by polarization (uy)*(ux) = y*x for any x, y € A. Therefore
(cf. Proposition 0.1) ue M(A) and u is unitary. Equation (1.16) means that
(I —z¥zp) Pu=(I—z72z%)'/? and remembering that the polar decomposition is
unique we see that u=1I, (I —z%¥z;)"/? =(I —z;z¥)'/? and the relation z¥z;=z,z%
follows. This way the equivalence (1.15) is proved.

It turns out (see Theorem 1.5 below) that there exists an universal normal
element. Let { be an element affiliated with C(C) introduced by the formula
{(A)=A for any AeC. Clearly { is normal [C(C) is commutative!]. We have

Theorem 1.5. Let A be a C*-algebra and T be a normal element affiliated with A.
Then there exists unique @€ Mor(C (), A) such that

pr(Q)=T. (1.17)

Proof. Let
D'={leC:|A<1},

S'=4D'={AeC:|A|=1}.

We know that z, is normal and |z;|| <1. Therefore Spz,CD'. The same
relation holds for z,. We shall use the continuous function calculus of normal
elements of M(4) and M(C (€)= Cy,ynaea(T)- Relation (1.17) means that

orl(z)=1z7. (1.18)

Therefore
or(f(z))=f(z7) (1.19)

for any fe C(D'). One can easily check that any function belonging to C(C) is of
the form f{(z,), where f(z;), where fe C(D") and f |, =0 and the uniqueness of ¢
follows.

On the other hand the formula (1.19) defines a mapping ¢+ acting from C ()
into M(A). One can easily check that ¢ is a *-algebra homomorphism. Let x be
the element of C(C) such that x(4)=(1+14)~!/? for all Ae C. By virtue of (1.19)
@p(x)=(I — z¥z;)"* and @ (C (C))A contains @ (x)A=(I —z¥z7)">*A=D(T). Re-
membering that D(T) is dense in A we obtain ¢4 € Mor(C(C), 4). (1.18) is the
special case of (1.19) and (1.17) follows. Q.E.D.

In the general ¢ is not an embedding. This fact is related to the spectral
properties of T. The general notion of spectrum of any (not necessarly normal)
element affiliated with a C*-algebra is introduced in [20]. For normal elements

_ f(A)=0 for
SpT= {leC.an feKerpr}’ (1.20)
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where

Keror={feC.,(C):p(f)=0}.

Clearly Sp T'is a closed subset of €. It is never empty. Let ¢ € Mor(4, A'), where
A’ is another C*-algebra. Then ¢(T) is normal [this fact follows immediately from

(1.3) and (1.15)] and Sp(T)CSpT. (1.21)

Indeed (¢o@1)(0)=Pp(@1())=¢(T). Therefore Py = oo, KerorCKergyr,
and (1.21) follows. We shall prove

Theorem 1.6. Let A be a C*-algebra, T be a normal element affiliated with A and (g, 1
be the restriction of { to SpT. Then there exists a unique embedding
wreMor(C(SpT), A) such that

WT(CSp T) =T.

Proof. Ker ¢y is a closed ideal in C,(C). Let ng, 7€ Mor(C,(T), C(C)/Kerpy) be
the canonical epimorphism and 1y be the element of Mor(C(C)/Ker ¢, A) that
makes the diagram C.(D)

nspT QT

Col@/Kerpr ——> 4
commutative. To complete the proof we notice that
Kerpr= {fE C,(© 3f|spT= 0} 5
Cw(C)/KCI'(pT = Coo(Sp T) H

and 7, € Mor(C ,(C), C,(Sp T)) is the restriction map. The uniqueness of y is
obvious. Q.E.D. ‘

The reader easily examines how the morphism ¢; acts in the particular
examples. In Example 3 and 4 T is normal if and only if it is normal in the operator
theory sense (i.e. T*T=TT*). In this case

¢(f)=[ SEQ),

where dE(-) is the spectral measure associated with the normal operator T:
T={AdE(4).
C

Taking into account (1.20) we see that Sp T coincides with the support of the
spectral measure and the definition (1.20) agrees with the one known from the
operator theory.

We know [cf. (1.15)] that the normality of an element Ty A4 can be expressed in
terms of its z-transform. One can also check that

SpT={A1—14)""2:1eSp(zq7), 14| <1}

Remembering that any C*-algebra A admits a non-degenerate embedding into
B(H), where H is a Hilbert space [the embedding belongs to Mor(A4, CB(H)] and
that any representation of 4 can be decomposed into direct integral of irreducible
ones we get
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Proposition 1.7. Let A be a C*-algebra, TnA and A be a closed subset of C. Then T is
normal and Sp TC A if and only if n(T) is normal and Sprn(T)C A for any irreducible
representation © of A.

2. The Graphs of Affiliated Elements

The definition of the affiliation relation given in Sect. 1 is nice if one is going to
investigate properties of affiliated elements. It is however less convenient if one has
to show that a given linear operator acting on a C*-algebra is affiliated with it. In
the present section we develop a method that in many cases allows us to prove that
the affiliation relation holds. To this end we give new conditions characterizing
elements affiliated with a C*-algebra in terms of their graphs. These conditions
make no use of any particular z-transform [like (1.1) used in Definition 1.1].

For any C*-algebra A we set A,=A®A. We endow A, with its canonical
Hilbert right A-module structure [12]:

()4 (5)
(E)G)) Ewavorw

for any a, b, a/, b', x€ A. For any GCA, we put
Gt={keA,:(k|l),=0 for all IeG}.

G'is always a submodule of 4,. In the great contrast with the Hilbert space theory,
evenif G is a closed submodule of 4, then in general G¢ G+ and GG ¢ A,. The
canonical projections 4,—A will be denoted by p, and p,:

a a
p1<b> =a, p2<b> =b
for any a,be A.

Proposition 2.1. Let T be an element affiliated with a C*-algebra A and G be the

graph of T:
G= {(;x>:xeD(T)}. 2.1)

Then G is a closed submodule of A,,

A,=G®G* 2.2
and the orthogonal complement is given by
T
Gt= {( f y): yeD(T*)}. 2.3)

Proof. Let z=z; be the z-transform of T. One can easily verify that

E < I—z*z, (I—z*z)”zz*) 2.4)

2(I —z*z)'/?, zz*
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is an orthogonal projection onto (2.1) and (2.2) follows. (2.3) follows immediately
from definition (1.7). Q.E.D.

Let us notice that in the situation described in Proposition 2.1, p, G=D(T) and
p,G*=D(T*) are dense in A.

Proposition 2.2. Let A be a C*-algebra and G C A, be a closed submodule such that
p1G and p,G* are dense in A. Assume that the decomposition (2.2) holds. Then G is
the graph of an element TnA.

Proof. Any bounded linear mapping E acting on A4, can be represented by a matrix

*
E=<p, q>,
4, r

where p, g, g*, r are bounded linear mappings acting on A. In what follows E will
denote the projection onto G along G*: E(y +y*)=1 for any € G and y' e G*.
One can easily check that p and r are self adjoint and that ¢* is the adjoint of g.
Therefore (cf. Sect. 0) p, g, q*, r € M(A). We have to show that E is of the form (2.4),
ie. that

p=I1—z*%z, 2.5)
q=2(I—z*z)'2, (2.6)
r=zz*, 2.7)

where ze M(A), ||z|| £1, and (I —z*z)'/?4 is dense in A. Remembering that E>=E
we obtain

p=p*+4*q, (2.8)
(I—rq=qp, (2.9)
I—r=(I-1r)?*+qq*. (2.10)

Equations (2.8) and (2.10) show that p and I —r are positive. Equation (2.9) implies
that
(I—n)'2q=qp'>. 211)

Assume for the moment pA is not dense in A. Then there exists a state w on 4
such that w(p)=0. By virtue of (2.8) w(p?)=w(q*q)=0 and (Schwarz inequality)

o(px+g*y)=0 for any x, y€ A. On the other hand if <;> € G then ;) =E (;),

x=px+q*y, and w(x)=0. It shows that w kills all elements of p, G and we obtain
contradiction with the assumed density of p, G. Therefore pA is dense in A, so is
p/?A. Similarly using (2.10) and the density of p, G* one can show that (I —r)'/2 4 is
dense in A.

Using (2.8) one can easily check that

laxll < Ip*2x].

for any x € A. Therefore there exists bounded linear mapping z acting on A such
that D(z)=closure of p}/24= A, | z| £1, and zp'/>x = gx for any x € A. According
to this definition

pt2=gq. (2.12)
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By virtue of (2.11) (I —r)}/?zp*/? = (I —r)V*q'= qp'/* and remembering that p/2A4 is
dense in 4 we get
(I—r)'2z=g. .13)

Using now Proposition 0.3 [with T and a replaced by z and (I —r)!/? respectively]
we conclude that ze M(A).

Inserting (2.12) into (2.8) we obtain p=p?+p
1/2

127%zp1/2, Therefore

p*=p'*(I—z*2)p

and (2.5) follows. Similarly using (2.13) and (2.10) we get (2.7). Finally combining
(2.5) and (2.12) we prove (2.6). Q.E.D.

Remark. In the situation described in Proposition 2.2 for given p, g, r there exists at
most one z satisfying relations (2.5)—(2.7). Indeed (2.12) is implied by (2.5) and (2.6).
It means that the z-transform of any element Ty 4 is determined uniquely.

—pk
Theorem 2.3. Let A be a C*-algebra; a, b, c,de M(A) and Q= (‘;’ ai ) Assume

that ’
ab=cd, (2.14)
a*A is dense in A, (2.15)
dA is dense in A, (2.16)
QA, is dense in A, . (2.17)

Then there exists ThA such that
1° dA is a core for T and

Tdx=bx (2.18)
for any xe A.
2° For any x,ye A
xeD(T) and _
( y=Tx )@(ay—cx). (2.19)

If Q is invertible (this assumption is stronger than (2.17)) then D(T)=dA.

Proof. We consider the following submodules of 4,:

=)o}

G =the closure of G, (2.20)

G, = {(;::x) :xeA}.
Gi= {(;) €Ayicx= ay} . 2.21)

The relation (2.14) implies that

One can easily verify that

GcGy.
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It means that submodules G and G, are mutually orthogonal. We have
assumed that G+ G, =QA4, is dense in A,. Therefore G*=the closure of G,,
G=Gt,and A, =G@®G*. Let us notice that p, GO p,G=dA and p,G* D p,G, =a*4
are assumed to be dense in A4 [cf. (2.15) and (2.16)]. According to Proposition 2.2, G
is a graph of an element ThA. Equation (2.20) shows that d4 is a core for T and that
(2.18) holds. Remembering that G= Gy and using (2.21) we obtain (2.19).

One can easily check that G = Q(ker p,). If Q is invertible then G is closed: G =G
and D(T)=p,G=p,G=dA. QED.

In the examples illustrating Theorem 2.3 we shall use the following

Lemma 2.4. Let B be a unital C*-algebra, V be an invertible element of B, E,, E, be
orthogonal projections belonging to B suchthat E, + E,=1and Q=VE,+V*'E,.
Then Q is invertible.

Proof. At first we notice that
Q*Q=E V*VE+E,(V*V) 'E,2cl,

where ¢=inf{Sp(V*V)uSp(V*V)~ !} >0. Therefore Sp(Q*Q)C[c, o[ and (cf. [6,
Problem 61]) Sp(QQ*)C {0}u[c, oo[. Let f be a continuous function on R such
that

1 for A=0
f(l)={0 for Azc¢’

Then f(Q*Q)=0, F=f(QQ*) is an orthogonal projection and
Q*F=0*f(Q0*)=/f(Q*Q)Q*=0.
Therefore E,V*F=E,Q*F=0, F*V* 1E,=F*QE, =0, and
F=F*F=F*V* Y(E,+E,)V*F=0.

It shows that 0¢ Sp(QQ*). This way we showed that both Q*Q and QQ* are
invertible, so is Q. Q.E.D.

In the following examples A4 is a C*-algebra, S is an element affiliated with A
and z=zg is the z-transform of S. We shall also use the unitary matrix

_ (U —z*2)"?, —z*
Qo= < z, (I—zz*)m)'

Example 1. Let ge M(A) and
a=(I—zz""?, b=z+q(l—z*2)'?, c=z+I—2zz%'%q, d=(I-z*z)"2.

The relations (2.14)—(2.16) are obviously satisfied. One can easily check that

_(d, =\ _ (I, 0\ . ___.(0, 0
Q'(b, a*)‘V<0, 0)”’ (0, 1)’
I, 0
=<q, 1>Q°'

where
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Using Lemma 2.4 we conclude that Q is invertible and all assumptions of
Theorem 2.3 are verified. Let T be the element affiliated with A introduced in this
theorem. Then D(T)=dA = D(S) and

Tx=S8x+4gx

for any x e D(S). In what follows the element T considered in this example will be
denoted by S+4.

Example 2. Let v be an invertible element of M(A4) and
a=(I—zz%"p"!, b=vz, c=z, d=(-z*z)"2.

Again the relations (2.14)—(2.16) are obviously satisfied. Moreover in this case

d, —c* I, 0 0, 0
— s — s *—1 s
o=(3 o )=vle o)+ o 9)

I 0
V= (0 U) QO

and (cf. Lemma 2.4) Q is invertible. Let ThA be the element introduced in
Theorem 2.3. Then D(T)=dA=D(S) and

Tx=vSx

for any x € D(S). In what follows the element T considered in this example will be
denoted by vS.

where

Example 3. Let ve M(A) be invertible and
a=(I—zz%'?*, b=z, c=zv, d=v"'(I-z*z)".

Also in this example the relations (2.14)—(2.16) are obvious. Moreover

d, —c* I, 0 0, 0
= > = > *—1 4
¢ (b, a* > ”(o, 0>'+” (0, I)’

v !, 0
=%, 1)
and (cf. Lemma 2.4) Q is invertible. Let ThA be the element introduced in

Theorem 2.3. Then D(T)=dA=v"'D(S) and
Tx = S(vx)

where

for any x e v~ 1D(S). In what follows the element T considered in this example will
be denoted by Sv.

In concrete application of Theorem 2.3 the most difficult assumption to verify
is the one saying that Q A, is dense in A. The following proposition shows that the
problem may be reduced to the similar problem in the Hilbert space theory.
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Proposition 2.5.
1° Let A be a C*-algebra and d € M(A). Then dA is dense in A if and only if for any
irreducible representation Tt of A acting on a Hilbert space H, the range of n(d) is
dense in H,.
2° Let A be a C*-algebra, Q € M(M ,(C)® A) and q denote the canonical represen-
tation of M ,(C) on C2. Then QA, is dense in A, if and only if for any irreducible
representation 7 of A acting on a Hilbert space H, the range of (q®m)(Q) is dense in
C’®H,=H,®H,.
Proof.
Ad 1° IfdAisdensein A4 then n(d)n(A)H is dense in n(A)H which in turn is dense in
H. Therefore the range of n(d) is dense.

IfdAis not dense in A then (cf. [4, Theorem 2.9.5]) there exists a pure state w on
A such that

w(dx)=0
forall x € A. Let = be the GNS representation of A acting on a Hilbert space H, and
Qe H, be the corresponding cyclic vector:
w(x)=(Q[n(x)2)
for any xe A. Combining the two formulae we see that the range of n(d) is

contained in Q* = {p € H,:(¢|Q2)=0}. Therefore it is not dense and Statement 1°is
proved.

Ad 2° This case can be easily reduced to the previous one. Indeed QA, is dense in
A, if and only if Q(M,(C)® A) is dense in M,(C)®A. On the other hand any
irreducible representation of M ,(C)® A is of the form g@®= when 7 is an irreducible
representation of 4. Q.E.D.

We shall also use

Proposition 2.6. Let A be a C*-algebra and a, b, c, d € M(A). Assume that for any
irreducible representation © of A acting on a Hilbert space H, there exists a closed
operator T, acting on H, such that

1° m(d)H, is a core for T, and

Tn(d)p =n(b)e

for any peH,.
2° w(a)*H, is a core for T} and

T¥na)*y =n(c)*y

for any yeH,.
Then the assumptions (2.14)—(2.17) of Theorem 2.3 are satisfied and denoting by
T the element affiliated with A introduced in this theorem we have

o(T)=T, (2.22)
for any irreducible representation © of A.
Proof. For any = and any ¢, pe€ H,, we have
(y|n(ab)p) = (m(a)*y | n(b)p) = (n(a)*y | T,n(d)p) =(T*n(a)*y|n(d)¢)
=(m(c)*y|n(d)p) = (y|n(cd)p)
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and (2.14) follows. We assumed that n(d)H, and n(a)*H, are cores of closed
operators. Therefore these sets are dense in H and using Proposition 2.5.1° we
obtain (2.15) and (2.16). Let Q be the element of M,(C)®A introduced in
Theorem 2.3. Then

n(d), —ﬂ(C)*>

nb), n(a)*
and the range of (®7)(Q) equals to K, + K,, where

nd)e .
Kn(b)co)"”eH“} :
E—_—
{< (@) ) ""GH"}‘

() e
()

Assumption 1° (Assumption 2° respectively) means that K, (K, respectively) is
dense in K, (K, respectively). On the other hand for any closed operator T,, K, is
orthogonal to K, and K, ®K,=C?>®H,. This way we showed that the range of
(g®m)(Q) is dense and using Proposition 2.5.2° we obtain (2.17).

Formula (2.22) follows immediately from assumption 1° and the following
lemma.

Lemma 2.7. Let A be a C*-algebra, ThA, b, d e M(A), and 7 be a representation of A
acting on a Hilbert space H,. Assume that the statement 1° of Theorem 2.3 holds.
Then n(d)H  is a core for n(T) and

(T)n(d)p =n(b)p

(q®m)(Q)= (

~

1

=

2

Let

for any o€ H,.

Proof. We recall that the element n(T) affiliated with the algebra CB(H,) of all
compact operators acting on H, is introduced in Theorem 1.2 [with B and ¢
replaced by CB(H,) and = respectively]. According to Example 3 of Sect. 1, n(T)
may be identified with a closed operator acting on H,. In the proof we shall
frequently refer to these parts of the paper without any further notice. We have
however to distinguish carefully the domains 2(n(T))C H, and D(=(T))C CB(H,).
Similarly the notion of core of n(T) will be used in the two meanings (which one is
used will be clear from the context).
We have to show that:

® "d)pe2((T) and m(T)n(d)e=mn(b)e
for any ¢ e H, and
® For any y e 2(n(T)) there exists a sequence {¢,} of elements of H, such that
y=Ilimn(d)p,
WYy =limn(t)o,| 229
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Ad ®. Any @€ H, is of the form ¢ =mn(x)p’, where xe€ A and ¢'e H,. Therefore
n(d)p = n(dx)¢’ = n(dx)E, ¢, where E , € CB(H,)is the one-dimensional projection
onto C¢'. On the other hand n(dx)E, € D(n(T)) and

n(T)n(dx)E, = n(Tdx)E,, = n(bx)E,, .
Therefore n(d)¢ =n(dx)E, ¢’ € D(n(T)) and
W T)n(d)p =n(bx)E ¢ =n(b)n(x)p’ =n(b)¢ .

Ad ®. We assumed that dA is a core for T. Therefore n(dA)CB(H,) is a core for
n(T). Let wePD(n(T)). Then the one-dimensional projection E onto Cy
belongs to D(n(T)) and for any natural n one can find x,,x,,...,x,€4 and
F,F,,...,F,eCB(H,) such that

|

”n(T) (; n(dx;)F i) —n(T)Etpll < %

We know that n(T)n(dx;)F; = n(T(dx;))F;=n(bx,)F; and the second estimate may be
rewritten in the following way:

Er(@x)F,~Ey| < L (224)

NZ n(bxi)Fi—n(T)Ew” < % (2.25)

Let ¢, =Y n(x;)F;p. Then (2.24) and (2.25) imply that
1
Inde,—vl=

Inblo,~ (Tl S

and (2.23) follows. Q.E.D.

3. The Group of Motions of the Euclidean Quantum Plane

Let G be the set of all matrices of the form

v, n
g= <<0’ v-l)’ (3.1)

where v,ne €, |v]=1. Then G is a three-dimensional solvable Lie group. For any g
of the form (3.1) and { e € we set

gl=v*+vn. (3.2)

One can easily check that this formula defines a homomorphism of G onto the
group of all transformations of € preserving the orientation and the Euclidean
distance. The kernel of this homomorphism is a normal subgroup of G isomorphic
to Z,. Therefore, G is the two-fold covering of the group of motions of two-
dimensional Euclidean plane.
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Now we shall use the mathematical tools developed in Sects. 1 and 2 to analyse
the quantum deformation of the group G. To clarify the exposition we divide this
section into three parts. In part A we introduce the *-Hopf algebra o/ of all
polynomials on G, (G, is the quantum version of G) and the *-algebra % of all
polynomials on C, (T, is the quantum version of C). In part B we investigate the
Hilbert space representations of &/ discovering some unexpected unpleasant
features. To remove them we have to complete the list of commutation relations
defining the algebra «/ by adding a relation of a non-algebraic nature. In the last
part we construct the C*-algebra A of all “continuous vanishing at infinity”
functions on G, and show that there exists the natural comultiplication
¢eMor(4, A® A). The C*-algebra B of all “vanishing at infinity continuous”
functions on €, and the morphism y € Mor(B, A® B) describing the natural action
of G, on €, will also be discussed.

The reader should notice that the meaning of symbols v and n varies
throughout this section. In the introductory part v and n are complex numbers; in
part A they are elements of .7, in part B — operators acting on a Hilbert space and
finally in part C —elements affiliated with the C*-algebra A. Similarly, “®” denotes
in part A the algebraic tensor product, in part B — the tensor product known from
the theory of Hilbert spaces and in part C — the algebraic tensor product followed
by the largest C*-norm completion. This remark applies also to the next section as
well as to other symbols (¢, y, etc.) used in this section.

A. Hopf-Algebra Level

Let us fix a real number u+0. We shall assume that |u|> 1. For |u| <1 we obtain
isomorphic objects; u =1 corresponds to the classical (i.e. non-quantum) case. The
very interesting case u= —1 will not be considered in this paper.

Let % be the *-algebra generated by a single element { such that

(L =p2(C*.

Elements of # are called polynomials on the Euclidean quantum plane C,.
Let o be the *-algebra generated by two elements v and n such that

vro=vv*=1,
n*n=nn*, (3.3)
v¥nv=yun.

Elements of &/ are called polynomials on G,. We endow ¢ with the Hopf-algebra
structure introducing comultiplication ¢, counit e and coinverse (antipode) x in
the following way

P(v)=v®v, (3.4)
d(n)=v@n+n@v*, (3.5
ev)=1, em=0,

kv)=0v*, k(@*)=v,

k(n)=—pun, K(n*)=— %n*.
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We remind that ¢ and e are *-algebra homomorphisms whereas « is linear and
antimultiplicative. One can easily verify that all axioms (cf. [8]) of the *-Hopf
algebra theory are satisfied.

The action of G, on €, is described by the *-algebra homomorphism
v: B4 R introduced by the formula [cf. (3.2)]

P =v*QL+vn®I. (3.6)

One can easily check that the diagram

v

B — AR
v 6®id

d@ﬂwd@&i@g&
id®y

is commutative.
Let us notice that identifying { with vn we embed £ into /. With this
embedding y coincides with ¢|4.

B. Hilbert Space Level

Let v and n be operators acting on a Hilbert space H. We say that the pair (v,n)is a
representation of commutation relations (3.3) if v is unitary, n is normal and
v*nv=pun. We recall that the normality of n means that 2(n*)=2(n) and
In*yl = lIny|| for any ye D(n).

In the considered case the representation theory is relatively simple. One can
easily verify the following facts: As usual any representation is a direct integral of
irreducible ones. Any representation is either infinite or one-dimensional. All one-
dimensional representations are of the form (cI,0), where ce €, |c|=1.

If (v, n) is an irreducible infinite-dimensional representation then Spn={0}u 4,
where A4 is of the form

A={top*: keZ} (3.7
and t,e C—{0}. Moreover, one can find an orthonormal basis {|t): t€ 4} such
that

vle) =|ut, (38)
ity =tt> (39

for any teA. It means that (v,n) is uniquely determined (up to a unitary
equivalence) by Spn.
For any subset @ CC we set

|©|={ct: te®, ce T, and |c|=1}.

Theorem 3.1. Let (v,,n,) and (v,, n,) be infinite-dimensional irreducible representa-
tions of (3.3) and

N=v,®n,+n,®@v%. (3.10)
By definition 2(N)=2(v,®n,)Nn2(n, ®v¥)=2(IQ®n,)nD(n,®I1). Then
1° If |Spn,| % |Spn,| then N is closed, N is not normal and has no normal extension.
2° If |Spn,|=|Spn,| then N is closeable, its closure N is normal and

SpN =|Spn,|. (3.11)
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Proof. According to (3.7) and (3.9) operators n; and n, are up to numeric phase
factors positive selfadjoint. On the other hand [cf. (3.10)], the phase factor of n, can
be absorbed into v, and that of n,; into v¥. Therefore, we may (and shall) assume
that n,, n, are positive selfadjoint.

Let H, (H, respectively) be the Hilbert space where operators v,,n, (v,,n,
respectively) act. We shall identify H, ® H, with L*(Z x S?):

H,®@H,=LXZxS"), (3.12)

where Z is the set of all integers endowed with the counting measure v, [v,(4) =the
number of elements of 4 for any ACZ)], S! is the unit circle

S'={zeC: |z|=1}

endowed with the normalized Lebesgue measure dv(z)= Zim dZ—Z and the cartesian

product Z x S* is endowed with the product measure v, ®v.
Let us fix t, eSpn, and ¢, € Spn, such that

t, Sty <uty.

Then {|p*t,>®|p't,>: k,1€Z} is an orthonormal basis in H,®H,. To give the
meaning to (3.12), for any o€ H,® H, and any (m,z)eZ x S* we set
+ o0
o(m, z)= Lz Pmi1i2 (3.13)
where ¢, are Fourier coefficients of ¢:

Q= % Oulkt > @',y .

One can easily verify that the series (3.13) is convergent in the sense of LX(Z x S!)-
norm and that the correspondence H, @ H,2 ¢ « ¢(-,-)e LXZ x S") is bijective
and respects the Hilbert space structures of H, ® H, and L3(Z x S%).

Let R be the ring

R={{eC: 15[l|SH}.

We say that a function y(-)e L*S') admits a continuous extension on R
holomorphic (meromorphic respectively) inside R if there exists a holomorphic
(meromorphic with a finite number of poles respectively) function i defined on the
interior of R and '€ L*(S?) such that

lim §(rz)=y(2),
r-1+0
lim {(rz2)=y'(2),
r-u—0 )
where limits are understood in the sense of L%(S*)-norm. In this case we write y({)
and y(uz) instead of P({) and y'(z). The reader should notice that % and v’ are

uniquely determined by .
Let pe H,®H,. Using (3.8), (3.9), and (3.13) one can verify that

(0:®Dp)(m, 2)=p(m—1,2), (3.14)
((U®v,)@)(m, 2)=z¢(m+1,2).
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Moreover, ¢ € 9(n, ®I) if and only if all functions ¢(m, -) admit continuous
extensions on R holomorphic inside R and
+

D) 1™ p(m, pz)|2dv(z) < oo .

In this case
(n, @) (m, 2)=1t, 4" p(m, puz). (3.15)
Similarly, ¢ € 2(I®n,) if and only if all functions ¢(m, -) admit continuous
extensions on R holomorphic inside R and

+ o0

X ] lotm, p2)*dv(z) < 0. (3.16)

In this case
(I®ny)p)(m, z)=t,p(m, uz). (317

Consequently, ¢ € 2(N) if and only if all functions ¢(m, -) admit continuous
extensions on R holomorphic inside R and

3 A miptm gy <oo.
In this case
(No)m,z)=(t, +t,u" " 2)p(m—1, uz). (3.18)
Comparing (3.17) and (3.18) we get
(No)(m, 2)=(1+(t/t)u" ' DI @n,)9)(m—1,2) (3.19)

for any ¢ € Z(N).
Assume now that

ISpn,|+|Spn,|.

Thent, <t,<ut, and t,+t,u™ *Z+0for any (m,z)eZ x S!. In fact, one can easily
show that there exist positive constants ¢, and c, such that

tpmScqlt, it pm2, (3:20)
L Scylt, +t 0"z (3.21)
for any (m,z)eZ x S*. Taking into account (3.15), (3.17), and (3.18) we see that
[ ®@Dol| =cyNoll,  [I®n)pl =c,No|

for any @ € 2(N). Therefore, N is closed. Indeed, if {¢, } is a converging sequence of
elements of 2(N) such that {N¢,} is converging, then using the above estimates we
see that {(n,®I)¢,} and {(I®n,)p,} are also converging. Remembering that
(n;®I) and (I®n,) are closed we conclude that

limg,e 2(n, @ )N2(IQ®n,)=P(N),
N(lim¢,) = (v, ®n,)(limg,)+(n; ®v3)(lim¢,)
=lim(v,®n, +n,®v¥)p,=limNg,,

and the statement follows.
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Let ye H,®H,. We shall prove that pe 2(N*) if and only if the following
three conditions are satisfied:

@ For all m=1, y(m,-) admits a continuous extension on R holomorphic
inside R.

® w(1,-) admits a continuous extension on R meromorphic inside R with the
only singularity of the type of simple pole located at the point {= —t,/t,.

© Eow Ja + ") lp(m, pz)*dv(z) < 0 . (3.22)

m=—

To this end we choose a bounded sequence of strictly positive numbers {r,,} <z
such that

sup |r,(1+(t/t)u"z)| < o0,
(m,z)eZxS!

and for any ye H,® H, we set

(rp)(m, 2)=r,p(m, 2),

(Fp)(m, 2)=r,(1+ (/)0 2)p(m+1,2).
Clearly, r and 7 are bounded operators acting on H, ® H,. Let us notice that r*=r
and r2(N)C2(N).

Assume that e Z(N*). Then for all ¢ € I(N)
(@IrN*y)=(re | N*y)
=(Nro|p)=(U®ny)¢|Fy),

where in the last step we used (3.19). Since Z(N)=D(n, @ )NnD(I®n,) is a core for
I®n,, the above relation holds for all ¢ € 2(I®n,). It shows that

fpe 2(IQ®n,)) (3:24)

(3.23)

and
rN*p=(1®@n,)(Fy). (3.25)
Let us notice that the function
Z x R3(m,{)-r,(1+(t,/t)u"0)eC

vanishes only at one point (m, {)=(0, —t,/t,). Therefore, (3.23) and (3.24) imply [cf.
the description of 2(I®n,) given earlier in this proof] that vy satisfies the
conditions ® and ®. Moreover, using (3.25), (3.23), and (3.17) we get

(N*p)(m,z)=(t, +t,4" " '2)p(m+1, uz).

Therefore,

+

Y [ lta+tunzplm, pdv(z) = | N*ol <o,

m=—

and using the estimates (3.20) and (3.21) (with z replaced by z) we get (3.22).
Conversely assume that v satisfies the conditions g, b, and c. Let

Y(m,2) =1+t /t)u"2)p(m+1,2).
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Then all y'(m, -) admit continuous extensions on R holomorphic inside R [the
simple pole of (1, {) at the point { = —t,/t, meets the zero of the first factor placed
at the same point]. Moreover, (3.22) implies (3.16) with ¢ replaced by y'. Therefore,
v e 2(I®n,)). Using (3.19) we get

(Nolw)=(U®n)e|y)=(e|(ISn,)y)
for any @ € 2(N). It shows that e P(N*) [and N*p=(I®n,)y']. This way we

proved that
<@ and ®
and ©

For any we 2(N*) we set
ly)= res w(1,0)= lim ((+1t,/t;)p(1,0).
{=—tafty = —tafty

) < (PeD(N*).

Then [ is a linear functional defined on Z(N*).
Comparing the description of 2(N) and 2(N*) we see that Z(N)C D(N*) and
that p e 9(N*) belongs to P(N) if and only if (p)=0. Therefore,

dim(2(N*)/D(N))=1. (3.26)
Let N be a closed extension of N. Then
dim(2()/D(N) = dim(D(N*)/D(N*).
If N is normal then 2(N)=2(N*) and
dim(2(N*)/2(N)) = dim(D(N*)/(2(N*)) + dim(2(N)/2(N))

would be even. The obvious contradiction with (3.26) shows that N admits no
normal extensions. This ends the proof of the first part of the theorem.
Assume now that

[Spn,|=[Spn,|.
Then t; =t, and combining (3.19) and (3.14) we get
(N@)(m,z2)=(1+p" ™'z ) (v, @n,)9)(m, 2). (3.27)
For any meZ and {e C—{0} we set
= 1+um—1«2kc
Um.O= 11 1 =1

One can easily check that this formula defines the denumerable family of functions
U(m, -) meromorphic on €— {0}. For each m, U(m, {) has simple zeroes at points
{=—p™*9 where g=1,3,5,... and simple poles at points {= —pu~"~4 (g as
above). In particular, all U(m, {) are holomorphic in a neighbourhood of R and
only U(0,{) has a zero in R. Moreover,

U(m,{)=U(m, D), (3.28)
Um,{™H=Um,{~", (3.29)
Um—1,p))=1+p"" 1" HUM, L) (3:30

for any meZ and { e C—{0}.
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For any pe H,®H, we set
(Ug)(m, z)=U(m, z)p(m, z). (3.31)

By virtue of (3.28) and (3.29), |U(m,z)|=1 for all (m,z)eZ x S*. Therefore, U
introduced by (3.31) is a unitary operator acting on HQ H'.
Inserting in (3.30) z instead of { we see that

|U(m, pz)| =1+ p"2].

Having in mind the descriptions of 2(N) and 2(I®n,) given in the introductory
part of this proof, using analytical properties of U(m, -) and the above relation one
can easily check that Up e 2(I®n,) for any ¢ € Z(N). Moreover,

(v,;®n,)Up=UNg. (3.32)
Indeed, using (3.14), (3.17), (3.31), (3.30), and (3.27) we have
(v, ®ny)Ug)(m, z)=t,(Ugp)(m—1, uz)

=t,U(m—1, uz)p(m—1, uz)
=U(m,2)(1 + "'z 1) (v, @n,)9)(m, 2)
=U(m, z)(Np)(m,z)=(UNg)(m,z).

Let 2,=U%(N). Formula (3.32) means that
N=U*@v,®n,)|,U . (3.33)

Anelement o € H; ® H, is said to be a polynomial if all ¢p(m, z) are polynomials
in zand z~ ! and only finite number of them are not zero. One can easily verify that
the set of all polynomials is a core for I®n, (for it contains the complete set of
eigenvectors) and that a polynomial ¢ € H, ® H, belongs to 9, if ¢(0, —u)=0.

Let pe H,®H, be a polynomial. For any natural k we set

(m, 2)= o(m,z) for m=+0,

PEEI=100,9- 00, — e} for m=0,

where #(z)=(1 —z)/(1+ u). Then ¢, (0, —u)=0 and ¢, € 2,. Moreover,
o — @il =19(0, — )| ( sfl lt(Z)I""dV(Z)>” 2

and
1T ®n,)(@ — @) =1210(0, — )| ( ij It(#Z)IZ"dV(Z))” 2

both converge to 0 as k— oco. It shows that 9 is a core for I®n,.
Passing to the closures on the both sides of (3.33) we obtain

N=U*v,®n,)U.

Therefore, N has the same analytical properties as v; ®n,. In particular, N is
normal and (3.11) holds. Q.E.D.

The possibility indicated by the first part of Theorem 3.1 is very disturbing. It
shows that the operator v, ®n, +n, @ v} may have completely different analytical
properties than nitself. It means that we should not expect to have any formula like
(3.5).
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Fortunately, we can eliminate this embarassing possibility by adding to the
relations (3.3) the following new condition:

SpncC,,, (3.34)

where €C,,={(eC: {=0 or |[{|=p* where keZ} and saying that only the
representations (v, n) satisfying this additional condition will be considered. We
call (3.34) the spectral condition.

C. C*-Algebra Level

We look for a C*-algebra A and two elements v,nnA such that v is unitary, n is
normal, SpnCC,,) and v*nv=un having the following:

Universality property: For any C*-algebra 4’ and any V, NyA’ such that V
is unitary, N is normal, SpNCC, and V*NV=uN there exists unique
¢ eMor(A4, A’) such that ¢(v)=V and ¢(n)=N.

The (obviously unique up to a C*-algebra isomorphism) solution of this
problem is provided by the crossed product construction [15].

Let C(€,,) be the algebra of all continuous, vanishing at infinity functions on
C,,,- There is a natural action of Z on C(C,,): For any ke Z and fe C(C,) we
set

W NO=f™*)
for all (e C,. Let
A=C,(Cy)x,Z

be the corresponding crossed product. Then A contains C,(C,) in a non-
degenerate way [i.e. the embedding C(C,,) o 4 belongs to Mor(C(C,,), 4)]
and there exists a unitary ve M(A) such that

v*fo=uf

for any fe C,(C,). Let n be the function on €, such that n({)={ for all { e C,).
Then ne C(C,)) and making use of the affiliation relation (see Example 2 of
Sect. 1) nnC (C,,,). Having in mind the nondegenerate inclusion C(C,,)CA4 we
get nnA. Obviously, n is normal, Spn=C,, and

v¥nv=yun.

Using Theorem 1.6 and the universality of the crossed product one can easily
prove the universality properly formulated above.
Now we shall give the meaning to the expression

N=v®n+n®@uv*.

Theorem 3.2. There exists an element NnA® A such that D(n)®,,,D(n) is a core for
N and

Ny, ®y,=vy,®ny,+ny, ®v*y, (3:35)
for any y,,y,€2(n). N is normal and SpN =C,,,.
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Proof. Let
a=d=(I+n*n)"12QUI+n*n)" 12, (3.36)

b=o(I +n*n)~2@n(I +n*n) "2 +n(I +n*n) " 2Q@v*(I +n*n)~ 1%, (3.37)
c=(I+n*n)"2o@n(I +n*n)~ V2 +n(I +n*n)~ 2@ +n*n)~2v*. (3.38)

Then a,b,c,de M(A® A). We shall use Theorem 2.3 and Proposition 2.6.
Let 7 be an irreducible representation of A® A acting on a Hilbert space H,.
The algebra A is of type I. Therefore, H,=H,®H, and

7'E=7751®TEZ 5 (3.39)

where 7, and 7, are irreducible representations of A acting on Hilbert spaces H,
and H,, respectively. We set

vy =m@®), ny=m(n),
U, =m(v), My=Tmy(n).

Then (v,,n,) and (v,,n,) are irreducible representations of (3.3) satisfying the
spectral condition (3,34). We shall assume that both representations are infinite-
dimensional. The reader himself should consider the much simpler case when at
least one of the representations is one-dimensional.

Let N, be the closure of the operator introduced by (3.10). Taking into account
definitions (3.36) and (3.37) one can easily check that n(d)H,, is a core for N, and

N.n(d)p =n(b)ep

forany ¢ € H,.. According to Theorem 3.1.2° operator N, is normal. Therefore, any
core for N, is a core for N*. In particular, n(a*)H,=n(d)H, is a core for N} and
using (3.38) one can verify that

Nzn(a*yp =mn(c*)y

for any y e H,. This way we showed that the assumptions of Proposition 2.6 are
satisfied.

Using now Theorem 2.3 (with A replaced by A® A) we see that there exists an
element NynA® A such that d(A® A) is a core for N and Ndx=bx for any xe AQ A.
Remembering that A®,;, 4 is dense in A® A, one can easily show that d(4A®,,,4)
=(I+n*n)"2AQ (I +n*n)" > A=D(n)®,,D(n) is a core for N. Moreover, for
any x,,x, €A we have

NI +n*n)~2x, @I +n*n)~12x,] = Nd(x; ®x,) = b(x; ®x,)
=o(I +n*n)"2x, @n(I +n*n) " 2x,
+n(I +n*n)~V2x, @v*(I +n*n)~2x,,

and setting (I +n*n)~Y2x, =y, and (I +n*n)~2x,=y, we get (3.35).

We shall use Proposition 1.7 to prove that N is normal and that SpN CC,,. To
this end it is sufficient to show that for any irreducible representation = of A® 4,
n(N) is normal and Spn(N)CC,,). If = is given by (3.39), where both =, and =, are
infinite-dimensional, then these statements follow directly from the formula (2.22)
with T and T, replaced by N and N, respectively and Theorem 3.1.2° [cf. (3.11)].
The case when at least one of the representations 7, and 7, is one-dimensional, is
again left to the reader. Q.E.D.
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In what follows, the element N introduced by (3.35) will be denoted by
v@®n+n®uv*. One can easily show that

(v®V)*(v®n+n@v*)(v®v)=u(v@n+n®v*),

and using the Universality property we obtain:

Theorem 3.3 There exists unique ¢ € Mor(A, A® A) such that
P(v)=vQv,
o(n)=v@n+n@v*.

We also have

Theorem 3.4. Let ¢ be the morphism introduced in Theorem 3.3. Then the diagram

A =2 Ax4

| e

A®A rryve ARA®A

is commutative.

Proof. Obviously,
(¢ ®id)p(v) =r@Vv@v=(Id® $)P(v).

Moreover, denoting by N any of the two elements (¢ ®id)¢(n) and (id® ¢)p(n)
affiliated with A® A® 4, one can easily show that D(n)® ,,,D(n)®,;,D(n) is a core
for N and

N()’1®J’2®Y3)=UY1®UJ’2®",V3 +vy,®@ny,®@v*y;
+ny; @v*y,@v*y;

for any y,, y,, y5 € D(n). It shows that (¢ ®id)¢(n) =(1d® ¢)P(n). According to the
Universality property, any morphism from A4 into a C*-algebra is completely
determined by its values at v and n. Therefore, (¢®id)¢ =(id®@¢)¢. Q.E.D.

It is not our aim to develop here the complete theory of the group G, of
motions of the Euclidean quantum plane. It will be presented in a separate paper.
We wanted only to convince the reader that the affiliation relation plays a crucial
role in the theory of non-compact quantum groups.

We end this section with a brief description of the algebra B of all continuous
vanishing at infinity functions on the Euclidean quantum plane C,. By definition B
is the universal (i.e. obeying the suitable Universality property) C*-algebra having
a distinguished element {#B such that

D({)=D(™), (3.40)
CxX)*(Cy)= 1> (C*x)*(C*y) (3.41)

for any x, ye D({) and
Sp(C*¢) c{u*: ke Z}U{0}. (3.42)
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Following the last remark of part A we shall look for B inside 4. Using the
Universality property of the algebra 4 one can easily show that there exists one-
parameter group {6,},.g of automorphisms of 4 such that

o(v)=e ", o n)=e"n

for any teR. Let
B={aeA: o(a)=a for all teR},
{=vn.

Then (5B and relations (3.40)3.42) including the suitable Universality property
can be easily verified. Moreover, p = ¢|; belongs to Mor(B, A® B) and describes
the action of G, on C,.

4. The Quantum SU(1, 1)-Group

This group has been introduced and analysed in many papers (see e.g. [9]). The
main aim of this section is to show that it does not exist on the C*-algebra level. In
our opinion this fact does not undermine that general philosophy of the
topological quantum groups [18] saying that the C*-algebra language has to be
used. Conversely, it shows that there is something essentially wrong with S,U(1,1)
for real values of the parameter p. It is very likely that a non-compact form of
SU(2) exists only for ueS* [in this case S,U(1,1) is a deformation of SL(2,R)].

A. Hopf-Algebra Level
Let u be a fixed real number such that u=+0 and |u|<1. The *-algebra o/ of all

polynomials on S,U(1,1) is generated by two elements « and y satisfying the
following commutation relations:

ay=pya |
ay*=puy*a
Y =y*y (4.1)
a*a—y*y=1I
ao* —uly*y=1I.

We endow ¢ with the Hopf-algebra structure introducing the comultiplication ¢,
counit e and coinverse k in the following way:

d)=a®a+uy*®y,
o) =7Q@a+a*®7y,
e@)=1, e(y)=0,

kl@)=o*, x(*)=a,

1
K(y)=—uny, x(y*)=-— ;v*.
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We recall that ¢ and e are *-algebra homomorphisms whereas « is linear and
antimultiplicative. One can easily verify that all axioms of the *-Hopf-algebra
theory are satisfied. The simplest way to memorize the above formulae defining ¢,
e, and « is to remember that
*
e <a, 1y )
Y, oF

is the fundamental two-dimensional representation of S,U(1,1). It means that
(d®Pu=uQu, (i[d®eu=1I, and (id@rxu=u"".

B. Hilbert Space Level
Let « and y be closed operators acting on a Hilbert space H. We say that the pair

(«,7) is a representation of commutation relations (4.1) if 9D(a)=D(e*)=2(y)
=2(y*) and

@*@lyp)=uly*e|ay), 4.2)
@*@ [y*y)=pye |ay),

0*e [v*v)=0el1v), (4.3)

(o o) — (v [yy)=(0|v), (4.4)

(@*o|a*p)— 1> Go lyp)=(¢|v), 4.5)

for any ¢, p € 9(y). Relation (4.3) shows that y is normal. By virtue of (4.4) and (4.5)
kera=kera* ={0}. Therefore, in the polar decomposition o =wv|a|, the first factor is
unitary. Clearly, |«|=(I +7*y)'/2. So we have

a=v(l+y*y)''?, (4.6)
where v is a unitary operator acting on H. Next using (4.2) we get
vyv*=puy.

Using the above two formulae one can easily describe all irreducible
representations of (4.1). They are either one- or infinite-dimensional. Any one-
dimensional representation is of the form (cI,0), where ce T, |c|=1.

If (a,y) is an irreducible infinite-dimensional representation of (4.1) then
Spy={0}u4, where A is of the form

A={top*: keZ},

and t,e C— {0}. Moreover, one can find an orthonormal basis {e(t): te A} such

that
ae(t)=/1+]t e(u™"1),
ye(t)=te(t)

for any teA. It means that (x,y) is uniquely determined (up to a unitary
equivalence) by Spy.
We shall prove the following “no go” theorem.
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Theorem 4.1. Let (a,,7y,) and (a,,7,) be infinite-dimensional irreducible representa-
tions of (4.1) acting on Hilbert spaces H, and H ,, respectively. Then there exists no
representation (a,y) of (4.1) acting on H,®H, such that

ada; ®oy +puyF®7;, 4.7)
727:1®u,+af®7; 5 4.8)
a*dof®af+uy; @73, 4.9)
Y*OyI @0+, ®7%, (4.10)

where by definition the operators on the right-hand side are defined on
9(71)®a1g@(72)-

We shall use the following two lemmae.
Lemma 4.2. Let o, 7., &g, 7o be four operators acting on a Hilbert space H and

having the same dense domain 9. Assume that there exists a representation (a,y) of
(4.1) acting on H such that a Doy, YDy, a* Doy, and y*Dyg. Then

dim[ker(a)nD((vo )*)] =dim[ker((a5)*)N2 ()] (4.11)
Proof. Let (a,7) be the representation of (4.1). Then o™, ya™?, and y*a~! are
bounded operators and one can verify that the matrix
a1, —yrgl
= (w“‘, ot )
is unitary. Moreover, for any ¢, p € 2(y) we have
*
v<a<p+w w>=< ¢ > 412)
v Yo t+aty
Let
+
9. ={<ao<ptpwo "’); (p,we_@}’

@
9. = O, WED ;.
¥ {<vo<p+a3w> ¢v }

According to (4.12) v2_=2%, and remembering that v is unitary we get
v2* = 9L . Therefore,

dim2* =dim 2+ .

On the other hand, one can easily check that

9t — {(—,u())f 4 *X>: xeker(@)nD((ys )*)}’

Pt = {(’;"x); Xeker((ag)*)ﬂg()’g)}’

and (4.11) follows. Q.E.D.
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Lemma 4.3. Let o (7o, %g , and yg , respectively) be the operator standing on the
right-hand side of the relation (4.7) ((4.8), (4.9), and (4.10), respectively ). Then

1° ker(a)={0}, 4.13)
2° dim[ker((xg)*)N2(y¥)]>0.
Proof. Ad1°. Let us notice that

oo =(I+pyta; ' ®y 05 ") (o ®ay). 4.14)

We know [cf. (4.6)] that «; and «, are invertible. Therefore, o, %(y,)=H,,
0, 2(y2)=H;, and (0t; @) (D(71) @414 2(2)) = Hy @1 H, is dense in H; @ H,. On
the other hand, the first factor in (4.14) is a bounded invertible operator
(luy¥oar *®y,05 | =pn<1 and the Neumann series converges!). Therefore, range
of a, is dense and (4.13) follows.

Ad2°. Let ¢, and t, be non-zero elements of Spy, and Spy,, respectively. For any
integer s we set

© p2e\ 12 2\~ 12
Yy=(—pc)’ [1 <1+—2) <1+—2> ,
k=s |t1| |t2|
where
— tlltZ' 1
[t4]t,

Let us notice that for s— + o0, y behaves like (— uc)’, whereas for s— — oo it
tends to zero faster than any natural power of 4~ In particular, {¢,},.z is square
summable. Moreover, for any meZ,

(72 2 PP ™2 22 Ry, = - gy,
Let

+ o0
=3 pelut)®e(u’ts).
We shall prove that p e ker((e.g )*) and y € D(y¥). Indeed, for any integers m,n we
have
(plate(u™"t,)@aZe(u™"t,))
=(1 +ﬂ_2"+2|t1|2)1/2(1+ﬂ_2m+2|t2|2)1/2
X(ple(u™"" t)@e(u™™" )

=(+p7 2" 2 P) 2 4 P2 ]) 28 P

= —ﬂ_2m+1t1t—25mnu—)m

=—p! T (p e(u ) @e(n T Mty)

=—pw|y.e(n"t)@ye(n™mt,)).

It shows that (y | og (e(4™"t;)®e(u"™t,)))=0 for any m,neZ and yp e ker((og )*).
Let

+ o0 _ _ _ _
Y=Y 5+ plt?) T Pye(n ) @e(n ).



C*-Algebras and Non-Compact Quantum Groups 431

Using the same techniques as above one may check that

(W1 yole(n™ "t )@e(u™ ")) =(y' | e(n™"t)@e(n™"t,))
for any m,neZ. It shows that e 2(y¥) (and y§p=v’). Q.E.D.

Proof of Theorem 4.1. It follows immediately from Lemma 4.2 and
Lemma 4.3. Q.E.D.

C. C*-Algebra Level

Assume for the moment that we have a C*-algebra A and two distinguished
elements o and y affiliated with it such that for any representation = of 4 actingon a
Hilbert space H, (n(e), ©(y)) is a representation of commutation relations (4.1).
Using Theorem 4.1 we immediately conclude that there exists no
¢ e Mor(4, A® A) such that

) da®@a+uy*®y,
) OY®u+a*®y,
Pla*)doa*@a* + uy®@y*,
P(*)DV*@a* +a®y*.
Therefore, S,U(1,1) group does not exist on the C*-algebra level.
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