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Abstract. A simple hierarchical fermion model is constructed which gives rise to an
exact renormalization transformation in a 2-dimensional parameter space. The
behaviour of this transformation is studied. It has two hyperbolic fixed points for
which the existence of a global critical line is proven. The asymptotic behaviour of
the transformation is used to prove the existence of the thermodynamic limit in a
certain domain in parameter space. Also the existence of a continuum limit for
these theories is investigated using information about the asymptotic renormal-
ization behaviour. It turns out that the "trivial" fixed point gives rise to a two-
parameter family of continuum limits corresponding to that part of parameter
space where the renormalization trajectories originate at this fixed point. Although
the model is not very realistic it serves as a simple example of the application of the
renormalization group to proving the existence of the thermodynamic limit and
the continuum limit of lattice models. Moreover, it illustrates possible complica-
tions that can arise in global renormalization group behaviour, and that might
also be present in other models where no global analysis of the renormalization
transformation has yet been achieved.

1. Introduction

Hierarchical models were introduced by Dyson [8] before Wilson [19] formulated
his theory of the renormalization group. It was Baker [1] who pointed out the
simple renormalization group structure of the model. Actually, Baker's model is
different from Dyson's in that it has continuous spins instead of Ising spins. The
first mathematical investigation of hierarchical models was carried out by Bleher
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and Sinai [3 and 4]. It was elaborated by Collet and Eckmann [5] and, more
recently, by Gawedzki and Kupiainen [11,12]. Here we construct a fermion
analogue of Baker's model by replacing the spins with elements of a Grassmann
algebra. Thus we obtain a model with a very simple renormalization group
structure. It is somewhat like a hierarchical version of the Gross-Neveu model, the
renormalization group structure of which was studied by Gawedzki and
Kupiainen [14] and Feldman et al. [9]. However, our hierarchical model does not
satisfy reflection positivity, so that the continuum limit is not a feasible candidate
for a quantum field theory. The renormalization group transformation of our
model takes place in a two-dimensional space of coupling parameters r and g. It is
given by formulas (2.16). The simplicity of the transformation enables us to study
the global flow of the transformation.

In the next section the model is introduced and its renormalization transfor-
mation derived. In Sect. 3 the main results about the asymptotic behaviour of the
transformation are stated and discussed. Theorems 1 and 2 are precise statements
about the existence and uniqueness of a global critical line for each of the fixed
points (0,0) and (—f,^7). Theorem 3 is a result about the asymptotic behaviour of
points that are not critical. Proofs of these theorems are deferred to Sect. 7.
FigureJ shows a computer picture of the flow of the transformation. In Sect. 4 we
use the asymptotic renormalization group behaviour to investigate the existence of
a thermodynamic limit. Along the same lines, in Sect. 5, we prove a result about the
decay of correlation functions, which is used in the study of the continuum limit in
Sect. 6. The existence of a continuum limit is proven for each point on the
trajectories receding from the trivial fixed point (0,0). The existence of a continuum
limit for points on the line g = 0, r > 0 is the easiest to establish: it is Gaussian. As in
the case of the Gross-Neveu model, the other trajectories give rise to non-trivial
continuum limits. Section 8 contains some concluding remarks.

2. The Model

For a Grassmann algebra $n with an even number of generators arranged in
conjugate pairs {ψί9ψl9.. , ψn, ψn}, there exists an analogue of a Gaussian integral
due to Berezin [2]. It is given by the linear functional ωc on <&n with

Here dψdψ stands for dψx ...dψndψn...dψ1 and J dŷ  is the usual fermionic
integration defined by

B is a non-degenerate n x n matrix and

n

(ψ,Bψ)= X ΨiBijψj.

The exponential is given by its (terminating) Taylor expansion.
ωc satisfies the usual fermionic Wick formulae,

ωdΨhΨjWhΨh) = chifi2h ~ chhci2h > e t c
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For a degenerate matrix C we can still define ωc by ωc{ψiΨj)= Ctp a n d the Wick
formulae.

We now introduce a hierarchical covariance C as follows. We consider a
2-dimensional square lattice ΛNC%2 with (2N)2 sites and subdivide it into blocks,
blocks of blocks and so forth at each level or scale. The blocks Bt at the l-th level
will contain 221 lattice sites each. For x e AN we denote by x e ΛN_ j the index of the
block B(x) containing x. More generally, xik) e ΛN_ x is defined by x{k~ 1 )GB(X ( Λ )). We
define a matrix Γ = (Γxy)Xf y e ΛN by Γxy = (/i)Λy if x = y and ̂  = 0 if x φ y. Γx is defined
on a block £(x) by

/ 1 - 1 1 - 1 ^

\

with an arbitrary numbering of the sites in a block, fixed once for all. The
hierarchical covariance is now defined by the series

(CN)xy = NΣ2-kΓ(x«\/»). (2.4)
fc = O

(A slightly different covariance was considered in [6]. Our present choice has the
advantage that MΓ = 0, where the operator M is defined by (2.5).) This defines a
Gaussian state on the Grassmann algebra generated by the 2 22ΛΓ spins
{ψx>Ψx}xeΛN' Introducing an average spin {Mψ)x for each block B(x) by

Σ
xeB(x)

with d = 29 σ=\, L = 2 and analogously for φ, we find for the renormalized
covariance (cf. [7]):

(C^^MCHM^CX-,. (2.6)

Here Mι is the transposed matrix.
Before being able to introduce a non-trivial local interaction we have to double

the number of spin components so that the corresponding Grassmann algebra $N

now has 4 22N generators. The covariance of the resulting 2-component lattice
field becomes CNφCN, i.e.

Q>cNecN(ψ*xΨβy) = δ*β(CN)xy cc,β=l,2;x,yeΛN. (2.7)

We consider the general local potentials VN(ψ, φ) = Σ v(ψχ> Vx) wi

xeΛN

V(ψχ, ψx) = r(ψίxψlx + ψ2χψ2x) + gΨlxΨlxΨ2xΨ2x

In the presence of the potential VN the "expectation value" of a general polynomial
F in the fields is given by

, ψ) exp [ - VN(ψ,

where we have written ωN instead of COCN®CN' The renormalized state ρ' is defined
on^.i by

ρ'(F) = ρ(F(Mψ,Mψ)). (2.10)
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Due to the fact that

(CA y = i(C*-i)*, + Γ,y, (2.11)

we can split the field ψ into ψ' = Mψ and a fluctuation field ζ with covariance Γ®Γ
so that

ψ'x + ζx, — ψ'k + ζx)Y (2.12)

It then easily follows that

where the effective potential Vχ-1 is also local,

with v' given by

X X \ I v- r- R/'vΛ \ 1 / / 1 / / / I /
\ i XEJD(X) \ 1/ Z* 1/ z* / 1/

exp [ - ι/(i/4 φ^)] = -, r

 v

 r

 v

 ΊN (2.14)
ω Γ i Θ Γ i /exp — 2̂  ^(ςx, ς j ]

Remark. In this expression one has to collect the £'s before calculating the
expectation with respect to ωΓ±@Λ.. Thus, for instance, cθr0@r0(ψaCίψβζi) = — ψ'aΨβ

The fact that local potentials are conserved under the block-spin transforma-
tion is a general property of hierarchical models, much stressed by Gawedzki and
Kupiainen [11,12]. It is due to the fact that Γxy = 0 if xή=y, so that

ωr@r= (X) ωΓχ®Γχ'

Our fermionic hierarchical model has the additional simplifying property that the
exponentials in (2.14) break off. Therefore we can calculate the expectations
explicitly. Diagonalizing Γx and rewriting the result as an exponential, we obtain

««*> V]/2 ]/2

L 4 J 1 1 2 2 1 1 2 2

with

2 ( 1 + r ) 2 : r mej
( l + r ) 2 - g / 4 j *

Notice that (2.15) is in fact independent of x, so that we can omit all indices x and
write Γo instead of Γx.
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To derive (2.15) we define

2 1 - 1 1 - 1 '

and introduce new variables ηax = (Qζa)x satisfying

Clearly only the third component ηa = ηa3 of η matters and we can write

^

I , 1 \ / 1 , 1

= exp [ - 2r{\p\xp\ + φ'2i//2) - gφΊ φΊ t/3'2i//2]

x ω x ί exp -r(ήίη1+η2η2)-

^ ^ ^ " ^ ^^ί 2 J
= exp [ -

exp [ - r'ίφ φ'i + V2 V2) - g'wWiWWil

From (2.15) it follows that the denominator in (2.14) equals (1 + r ) 2 — \g, so that 1/
has the same form as (2.1) but with r and g replaced by r' and gr respectively.
Apparently, the renormalization transformation for this model is given by a simple
explicit transformation (t, g)\-^>R(r, g) in a 2-dimensional parameter space.

3. Analysis of the Flow of R

Figure 1 shows a computer picture of the flow of R. For clarity successive points
under the iteration of R have been connected by straight lines. The parabola is the
set of singular points of the transformation.
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Fig. 1

The fixed points of R are (0,0) and (—f,^). By construction the linearized
transformation about the origin is

0K(O,O)=Q " * ) . (3.1)

The ί j eigendirection is repulsive; ί I is a marginal eigendirection. To second

order the latter is attracting, which is also clearly visible in Fig. 1. The existence
and uniqueness of a critical line in this direction is stated in Theorem 1.

The linearization of R about (—f,^r) is given by

(3.2)

The eigenvalues are

eigendirections are

35, —0.057. The corresponding

respectively ( ). The existence=

and uniqueness of a critical line for this hyperbolic fixed point is stated in
Theorem 2. Finally, the asymptotic behaviour of other parameter values (r, g)
under the iteration of R is stated in Theorem 3. Unfortunately, we have not been
able to prove any rigorous result about the behaviour of points (r, g) with g > 0
between the two critical lines.

For a precise statement of the existence and uniqueness of a critical line
associated with the fixed point (0,0) we define a region ^(g 0 ) with g0 > 0 as follows.
Let the curves r_(g\ r+(g), and ro(g) be defined by

(3.3)
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for g ̂  0. Then ̂ (g0) is the region bounded by these curves and the line g = g0, i.e.

^(go) = {(r,g)|0^g^go,max(r_(g),ro(g))^rgr+(g)}. (3.4)

We shall prove

Theorem 1. For all g o >O there exists a unique critical r-value r c(g o)>0 such that

for all n^O, and Rn(rc(go),go)->(0,0) as n^co.

The existence of a critical line in the neighbourhood of (0,0) also follows from
the Centre Manifold Theorem. We can use it in the form proven by Lanford in [16]
(see also [17]) by inverting R. The inverse mapping R'1 can be calculated
explicitly,

1 , 1 g'(l+r'/2)
r = 2 r + 4(l+r'/2)2-g'/2

g = gi(l+r'/2)2-g'/2J

The centre manifold is not unique in general. (See Van Strien [18] for a striking
counterexample.) Our unique result in Theorem 1 together with the Centre
Manifold Theorem imply

Corollary. The critical line rc(g) is C00 for g^O.

The inverse mapping has also been used to draw the critical line in Fig. 1. It is in
fact sufficient to know only a small portion of the critical line to generate the whole
line in a finite number of steps. This follows from Lemma 7.2 below together with
the fact that, if g' > 4ε with ε<γζ and g' > r'(\ + r') then g >(1 + ε)g'. A small piece of
the critical line extending from g' = 0 to g' > 4ε will therefore extend beyond the line
g' = 2(l +^r')2 after applying R"1 a finite number of times. The next time R'1 is
applied it extends to infinity. Points above the line g' = 2(1 +\rf)2 are mapped into
the second quadrant, which therefore also contains critical points! Applying R~ι

sufficiently many times critical points may even return to the neighbourhood of
(0,0), which is why Theorem 1 contains the clause R\rc(g0\ g0) e ̂ (go)

An analogous result holds for the fixed point (—f,^). We define

jg+(r)=f(l +rf

and

We have put

ro=-f-ll/^ (3-8)
sothat2(l+ir0)

2 = g_(r0).

Theorem 2. For all r^r0 there exists a unique critical value gc{r) such that
R\J))3-&-2 for all n^0 and i?π(r,gc(r))^(-f,^) as n^oo.
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For the proof of both theorems we make use of a version of the interval
argument due to Bleher and Sinai [3]. We need several technical lemmas which are
postponed to Sect. 7.

We now state our result about the asymptotic behaviour of other points (r, g) in
the plane. This result will prove to be useful for taking the infinite volume limit
N—>oo and the continuum limit in Sects. 4 and 6 respectively.

Theorem 3. For all g < 0 there exists a unique value rs(g) of r such that

(1) £"Wg),gH(-f,-cx>) as fi->oo,

(2) r>rs(g)=>Rn(r,g)-+{co,ga0(r,g)) as n-»oo,

(3) r<rs(g)=> Rn(r, g)->(- oo, gj^g)) as n^co.

where - o o <go o(r,g)< oo.
Furthermore, if g^O and r>rc(g) then Rn(r, g)-+(co, g^r, g)\ and if r^r0 and

0^g<g c (r) or r<, - 1 and O ^ g < f ( l + r ) 2 then Rn^{-oo,gQO(r,g)) as rc->oo, with
0(

We postpone the proof to Sect. 7. Finally we mention a result about the
existence of an unstable line for the fixed point (—f,^).

Proposition 1.1. For all r between — 2 and — 4/3 there exists a unique value gu(r) such
that (rn,gn) = R-n(r,gu(r)) satisfies (4 + r J ( l + i r Λ ) 2 ^ g l l ^ f ( l +\rn)

2 for n^O, and
fa, £„)-*(-f, ^7) as

4. The Infinite Volume Limit

We can use the renormalization transformation to study the existence of the
infinite volume limit N^co and the existence of the continuum limit (cf. [11,15]).
We shall find that the infinite volume limit exists for the points (r, g) such that
Rn(r,g)-J>(± °°>goo)? and also for the critical points (r,g) associated with the fixed
point (0,0), but not for the critical points associated with the fixed point (—f,^).
An elaboration of the methods used to prove the existence of the thermodynamic
limit yields information about the decay of correlation functions. This is shown in
Sect. 5. In Sect. 6 this information is used to prove the existence of the continuum
limit for points (r, g) on the trajectories receding from the "trivial" fixed point (0,0).

To study the thermodynamic limit N-^co we start by considering the 2-point
function QN(ψixΨιy) given by (2.9). Assume first that xή=y. Then we can use the
decomposition formula (2.12) to reduce N by 1. Indeed, by symmetry and the fact
that MΓ = 0, it follows that QN(Ψixψiy)

 = IQ'N- liψ'ixψ'iy)' Iterating this relation we
find

QN(ψixΨiy) = 2 - ^ _ M i ( s ) ψ f } ( s ) ) , (4.1)

where s = s(x,y) is the smallest number 5^0 such that j ; ( s + 1 ) = χ ( s + 1 ) . We are left
with the calculation oϊρN(ψlxψly) when x = j>. Again we apply the decomposition
formula (2.12) to find

Ψly))> ( 4 2 )
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where, for a general polynomial F in ψ and ψ, we define TF by

ω
Γ@Γ

(4.3)

Let us also introduce a block expectation <•> by

It is easy to see that this is a product state over blocks, and that, for x, y with x = y,

<Lχζβy} = SχSyδaβC1, (4.5)

with

and

+ 1, if x = l ,3;

- 1 , if x = 2,4;

i.e. εxεy = — 1 if x and y are nearest neighbours, and = +1 otherwise (assuming that
the points in a block are numbered in a circular way).

Similarly, for xί=x2 = yί = j>2,

<£«i*iΓ/?mC«2*2Γto2> = e ^ A A2y(ai> a 2 ^ 1 ? j82)c2, (4.7)
with

C 2 = Ϊ 6 ( l + r ) 2 - g / 4 ' ( 4 8 )

and

y(α1? α 2 ^ l 5 β2) = (δaiβl - δa2β2) (1 - δaiaj (1 - δβlβ2)

= Kβlδ*2β2~Kβ2δ*2βl' ( 4 9 )

All other block expectations are zero. We define truncated block expectations

for monomials Fί9 ...,Fn by the usual inductive procedure:

(4.10)

where the sum is over all partitions {//}f=i of {l,...,n}, and π(/ l 5 ...,/p) is the
number of odd transpositions needed to reorder (1,..., n) according to Iί9..., Ip. A
transposition of i and j is called odd if the monomials Ft and Fj both have odd
degree.
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Let us denote a general monomial F(ψ, ψ) by ψX9 where X is a set of pairs (α, x)
with oc e {1, ϊ , 2,2}. Thus, for example, ψίxψ2y

 = Ψx with X = {(1> *)> (2, )>)}• We then
have:

Proposition 4.1. 77ze coefficient of \p'γ in the expansion of Txpx:

Tψx = Σ2-m/2TxγψΎ (4.11)
Y

is given by

\Y\Xo\

τXY= Σ Σ ( - i ) p Σ ( -
{Xo\XoCY} P = 0 {Xι}ϊ=i

„..., dζi

(4.12)

Here the first sum is over all sets Xo of pairs (α,x) such that
Xo = {(α, x)[(α, x ) e l o } ^ Y and the third sum is over all collections of sets Xl9..., Xp

such that {Xu ...,Xp) is a partition of Y\X0. The sets Xo, ...,Xp are assumed to be
ordered according to Y and the differentiation is to be performed in reverse order.
σ(X0, ...,Xp) is the number of transpositions needed to reorder X according to
X o , ...,Λ p.

Proof This kind of formula is standard in perturbation theory: see e.g. formula
(5.8) in [11]. However, since we are dealing with Grassmann variables here, we
have to be careful about reordering factors. This gives rise to factors (— l) σ ( X o ' •••'**>>

Q\xλy
in the expression (4.12). Notice also that — — = 0 unless all ζax with (α, x) e Xt are

vζχι

situated at the same lattice point x. Moreover, looking at the expressions (4.5) and
(4.7) for the non-zero block expectations it transpires that changing the lattice
point at which Xι is situated can only change the sign of the expectation. Since we
are summing over all Xx it follows that \X\ must be even. This justifies pulling the

g dV
derivatives -^r~~ through F. It also means that all ——— are even so that we can

dζχι dζXι

restrict the sum to collections {Xt} with the same order as (l,...,n) omitting a
factor ί/kl D

Notice that the non-zero terms in (4.12) must satisfy:
1. Xo C ind(F) and, in particular, \X0\ ^ deg(F), where ind(F) is the index set of F,
and deg(F) is the degree of F.
2. \Xt\ = 2 for all /= 1,2,..., p and the points of Xt are equal, because of the fac-
tors εx.
3. I O U I J U . - . U ^ C (J B(x\ where supp(F) = S is the set of points x such

xesupp(F) _ _

that ψax occurs in F(ψ,ψ) for some α = 1,1,2,2. Hence suppYcS.
Applying (4.12) to F(ψ,ψ) = ψίxψίy we find

(4.13)

with

Γ a11=a22=
:

2:-2g(c2-c2

1)

a12 = a21 = 2gcl . (4.14)
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Of course, by symmetry, the same formula (4.13) but with the indices 1 and 2
interchanged, holds for T(ψ2xψ2y) with x = y. Apparently, in order to be able to
iterate these equations as in (4.1) we need to include the 4-point function in our
consideration. A straightforward calculation yields

where

(a3ί=a32=^cί(ί+4gc2)

\a3,=k+2gc\-6gc2 + Ag2c2{2c\-?>c2y
 { ' >

By inserting Eq. (4.13) into (4.2) we have expressed the ρ^-expectation into
ρ'N-ι-expectations. We can do the same with QN(ψιxψixψ2xΨ2χ) a n d equation
(4.15). In fact the ρ^-expectation of any polynomial can be expressed in terms of a
finite number of ρ$Lfe-expectations of monomials at a single point x{k\ Thus, in
order to prove the existence of the thermodynamic limit it suffices to consider the
monomials at a single point x:

Theorem 4. Let 3) be the set of points (r, g) satisfying g<0or(g>0 and r ̂  rc(g)) or
(r ^ r0 and g < gc{r)) or (r0 < r < — 1 and g < f (1 4- r)2), where r0 is defined by (3.9)
and rc(g) and gc(r) have been defined in Theorems 2 and 3. Define the state ρN on the
Grassmann algebra &(EN) over EN = (R2)ΛN by (2.9). Then the thermodynamic limit
exists if(r, g)e@ in the sense that ρ(F) = lim ρN{F) exists for all polynomials F in the
fields. N^«>

Proof It is sufficient to consider the cases F = ψlxψlx9 F = ψ2xψ2x, and

F = ΨlxΨlxW2xΨ2x'

By symmetry all other single point expectations vanish. Also,

QN(ΨIXΨ1X) = QN(Ψ2XΨ2X)'

Writing

: Q , ώ p l x φ 1 J and

lxΨlxΨ2XΨ2x) >

and defining the matrices

AM = U i 41 4 i L (4.18)
\ n(n) Λή) n(n) \
\"31 "32 ^33/

where the aff are given by (4.14) and (4.16) with r and g replaced by r(n) and g(/l), we
can rewrite (4.13) and (4.15) in the form of a vector equation:

(iv) (O) ( O ) ( i v i ) j a n d m o r e g e n e r a l l y ?

lj(ΛΓ - n) _ c(w) _|_ ̂ ( Ό u ( W ~ w ~ 1) (419)

Iterating this equation we obtain

{0).A{n-ι)c{n). (4.20)
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We used the fact that u{0) = c{N); the rc = O-term is simply c(0).
We now want to study the convergence of (4.20) as JV-> oo. We use the following

lemma:

Lemma 4.1. Suppose that l imsup \\A(n)\\ < 1 and that \\c(n)\\ is bounded.
n—• o o

00

Then Σ A{0)... A{n~ι)Q{n) converges.

Now, for points (r,g) such that Rn(r, g)-+(± co, g^) we have

/1/2 0 0 \

A{n)->1 0 1/2 0 as n->oo,

\ 0 0 1/4/
and

l+ r(»)1
4 ( 1 + r(n))2 _ g(»)

>0 a n d c(

2

ϊl) =
1 1

so that the thermodynamic limit exists. For points (r, g) such that (r(n), g(n))->(0,0),
i.e. r = rc(g\ we have

1/2 0 0 \

0 1/2 0 and c(n)-

vl/8 1/8 1/4

so that, again, lim u{N) exists.
iV-> oo

Next consider the points (r, g) with r = rs(g), so that Rn(r, g)->(—f, - oo). In that
case

Λ(n)_

1 0 -4/3 \ /0\

0 1 -4/3 and c(w)-> 0

\ 0 /0 0 1

and Lemma 4.1 does not apply. Instead we can use

||c<"+1>||
Lemma 4.2. Suppose that

II c H
><5>0 and limsup |

Then ^ A(0)... A(n υ c ( " } converges absolutely.
n = 0

In the present case, g(" + 1>~4g(M), so that c(" + 1 )~^c ( / l ), and H>l(fI)||-^ H l̂̂ ll
= 2.15<4. It follows that X A(0)... i ^ " 1 ^ still converges.

n = 0

Finally, we consider the points (r, g) on the critical line belonging to the fixed
point (-|,^7), i.e. g = gc(r). We have

/ 5/2 3 -8/3\ /-9/4\

3 5/2 -8/3 and c(n)-+ -9/4

-27/8 -27/8 13/4/ \ 27/16/

and A(co) has three eigenvalues: — \ and λ+ =-^±|j/l37. Since (—|,f^) has a
component in the expanding right-eigendirection, ||(^4(oo))fec(00)||->oo, and the
thermodynamic limit does not exist. •
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5. Decay of Correlation Functions

By an extension of the methods used to prove the existence of the thermodynamic
limit we can obtain information about the decay of correlation functions. We shall
do this in the region g<0 which is relevant for the continuum limit.

We need a few definitions:
Given a point (r, g) with g < 0 we define the trajectory &~(r, g) as the set of points

Rn(r,g) with n=..., - 2 , -1,0,1,2,.... The (truncated) correlation functions

QT{ψ«ίXlΨβιyί - ΨanxnΨβnyn) = QT(ψaίXι ΨanxnΨβnyn ~>Ψβiyι)

are defined inductively as in (4.10):

<KvWr)= Σ Σ ( - 1 ) ™ + ™ ft ρ τ ( i/^ k ), (5.2)
{ * } £ { y > E | r | | J Γ l * = i

where {X J and {!£} are partitions of the sets X = {(αf, Xj)}"= i and 7= {
respectively.

For two sequences of points x = (xu...,xn) and y = ()Ί, ...,)O we define a
quantity /(x, y) as follows.

Let y(x, y) be the set of permutations σ e £fn of (1,..., ή) such that every block Bs

at any level 5 containing at least one point xt or yj but not all xt and all y^ is
connected to another block B's. Here two level-s blocks Bs and B's are called
connected if there exists an z' = 1,..., n such that either xteBs and yσ{i) e 1% or xt

d
Next we define

/(x,y)= min X s(Xi,yff(0) (5.3)

if «5̂ (x, y) Φ 0 and Z(x, y) = oo otherwise.
The main theorem in this section is:

Theorem 5. Let (r,g) be a point in the lower half-plane (g<0) such that Rn(r,g)
-•( + °o, goo). For alln^.1 there exists a constant Cn(r, g) depending only on n and the
trajectory ^(r, g), such that, for any set of In points xu ..., xn, yu ..., yn and indices
al9...,ocwβl9...,βne{l92},

\QT(ψ«ίXίΨβιyί V ω f c J I ^ Q r , g)2" '<«.*> (5.4)

wzί/i x = (x1,...,xj and y = (yl9—>yά

We shall prove this theorem by inductive application of the renormalization
transformation. However, unlike the proof of Theorem 4, we do not have a nice
iteration formula for QT as we did for ρ in (4.2). We therefore replace the truncated
expectation (5.1) by partially truncated expectations of the form

^2;. . . ;^J ? (5.5)

where each Fk is a polynomial concentrated at a single point zk, i.e. supp(Ffc) = {zfc},
and zk Φ zk, if k Φ fc'. In fact we can subdivide the polynomials Ffc into classes which
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are invariant under renormalization, as follows. For an arbitrary monomial

we introduce "charges" qa(F) (α = l,2) by

Next we observe

Lemma 5.1. // F is a monomial then T(F) given by (4.11) is a charge-homogeneous
polynomial, and qa(T(F)) — qa(F).

Proof. Clearly, for any polynomial G in ζ and ζ, < G> = 0 unless qa(G) = 0 (α = 1,2). It
follows that, in formula (4.12),

p

j=i α J

But Y= U Xj so that
7 = 0

P

k=l

m

We now restrict our consideration to polynomials of the form F= f] Fk,
k=l

where the polynomials Fk are concentrated at distinct points zk and each Fk is
charge-homogeneous, i.e. it belongs to one of the following classes:

Table 1

<h=+l # 2 = + l F=fψ1ψ2 d = 0

qλ = +l q2 = 0 F=fίψί+f2ψ1ψ2ψ2 d=\
9i=0 ^2=+l F=f1ψ2+f2ψ1ψίψ2 d=\
<?i = " ~ l <?2 = 0 F=f1ψ1+f2ψ1ψ2ψ2 d=\

^ 1 = 0 (?2 = 0 F = fo-\-fiψ iψ i + f2ψ 2ψ 2-\-f^ψ iψ iψ 2ψ 2 ί/ = 0
Qι~— 1 # 2 = + l F=f\p^2 d = 0
Qi — +1 <?2="~1 F=fψ1ψ2 d = 0

The third column in this table shows the general form of a polynomial Ffc

belonging to this class. The /'s are coefficients, i/^ stands for ψlZk etc. The number d
is defined in formula (5.12).

m

The collection of polynomials F = \\ Fk described above we shall denote by

#\ For Fe^ we write ρ(;F) for ρl Π'^feJ ^ i s defined analogous to
<F i ; . . . ; iO c inSect.4. \k = i /

Instead of Theorem 5 we shall prove an analogous result for the expectations
ρ(;F), from which Theorem 5 then follows. In order to formulate this result we
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need to extend the definition of /(x, y) to polynomials of this form. This is possible
because of the following fact.

Lemma5.2. Suppose that, for two sequences of points x = (xu...,xn) and
y = 0>i,..., JΊi) the following holds:

xn = yn and there exists iή=n such that xt = xn or yi = yn (or both). Then /(x,y)

Proof Suppose that σ e 5^(x', y'). Then we can define σe^(x,γ) by σ(ί) = σ(i) for
i = l, ...,n — 1, and σ(n) = n. Obviously l(σ) = Γ(σ) if we put

n— 1 n

l'(σ)= Σ s(xbyσ{i)) and l(σ) = £ s(xbym).
i=l i=ί

Conversely, for τ e ^ ( x , y ) we shall presently construct σe^(x',y ') with Γ(σ)
^ Z(τ). That completes the proof of the lemma. We may assume that, for some i φ n,
χ. = xn = yn, (The case yi = xn = yn is similar.) There are five separate cases to be
considered:

(ί) X» = j>t(π) 0 Γ *n = *χ-*(n) 0 Γ *i = h®'

(ii) χτ-Hn) = yτ{n) = yτ(i) + χn.
(iii) Xi + y ^ y ^ + Xτ-^ + Xi or x i Φ x t - i w = ί t ( ί ) φy t ( I I ) φS i .
(ivj X/Φxt-!(„> = A(Λ)*Λ(i)* *i
(v) ^ = *„ = ]/„ and xτ-i(II) and yτ{n) and j)τ(i) all different.

We simply state the definition of σ in the various cases. The verification of the
fact that σ e Sf(x\ y') and ΐ(σ) ^ l(τ) is simple and will be omitted.

Remark. Notice that the connectivity of s = 0-blocks, i.e. points, need not be
checked because if there is a point yσ(j) = x} then the level-1 block containing that
point contains another point xk connected outside the block; we can then simply
modify σ as follows: σ'{ϊ) = σ(j) and σ'(j) = σ(ϊ).

In case (i), if yτ(n) = xn but τ(ri)φ n we can put σ(τ~ V)) = τ(n). lfyτ(i) = xn then we
put σ(i) = τ(ή) and σ(τ~1(n)) = τ(i) and if xτ-i(n) = xn we put σ(τ~1(n)) = τ(n). In
case (ii) and (iii) we put σ(τ " x(n)) = τ(ή). In case (iv) we define σ(i) = τ(ή) and σ(τ ~ ί(ή))
= τ(i). In case (v) we must distinguish the following two possibilities:
(a) s(Xi, yτ(n)) + s(xτ- Hn)9 yτ(i))^s(xί? yτ{ί)) + s(xτ- i(ll), yτ(n)), and
(b) s(xf, yτ(M)) + s{xτ - i(B), y τ ( 0) > s(xf, >;τ(ί)) + s(x τ J 1(II), yτ(n)).

In the first case we put σ(0 = τ(ί) and σ(τ ^n)) = τ(n); in the second case we put
σ(ί) = τ(n) and σ(τ ~ \ή)) = τ(ί). Π

m

From this lemma it follows that, for a polynomial F = f] Fk in the class ^ , we
can define fc=1

C ) C 4 (5-7)

where ψXk is one of the monomials of Fk (Xk c {(1, zk), (T, zfc), (2, zfc), (2, zfc)}). We can
now state the result for ρ{;F) from which Theorem 5 follows:

m

Lemma 5.3. If F= Y[ Fk is a polynomial in the class 2F then there exists a constant

Cm(r, g) depending only on m and the trajectory ^~(r, g) such that

\ρ(;F)\ίCm(r,g) ft \\Fk\\2-'{F)• (5.8)
k=ί
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Proof of Theorem 5 given Lemma 5.3. We use the following relation:

Lemma 5.4. Let Fk = ψXkψYk. Then

ρ(;F)= Σ* Σ*(-Ψ{X:)) + πaY;])nQT(ψχ;Ψγ;), (5-9)

m m

where the sum is taken over all partitions {X'ι}ϊ= i and {Yi}f= i of (J Xk and (J Yk
k=\ k=\

respectively, such that \X\\ = \ Y{\ and for each pair (k, k') with k,k'e{l92,...9m} there
exists a sequence of "links" ( k b k i + 1 ) (7 = 1, . . . , r — 1 ) such that k1=k, kr = k' and for
each Ϊ = 1, ...,r— 1 there exists Z fe{l, ...,p} such that X k . n X J . Φ 0 and Yk + l n i y . φ 0

Now assume that Lemma 5.3 has been proven. We can then make the
following rough estimate by moving all the terms in (5.9) with p > 1 to the left-hand
side of the equation:

\Qτ(ψΛlXl .• Ψ«nXnΨβnyn ..ψβσMCΛr,g)2-l{x'y)

+ Σ Σ Σ* Σ* ΠC,,(r,gμ-w.
p = 2 « ! , . . . , n p ^ l {X{)^χ {Y{)f_ 1=1

Σm = n \Xί\=m \Yi\=nι

Next we use the following result:

Lemma 5.5. // {xj}f= ί and {yΊ}ΐ= ι are partitions of x and y satisfying the link
property of Lemma 5.4 then

Z = 1

P

Proof We show that, if σι e Sf(x'l9 y[) then f] σι6 ^( x ? y\ where
1=1

p \

Π σι (α, x) = σ,(α, x) if (α, x) e x'z.
= i /

If a block β s contains points of xuy but not all, then there must exist fe, k! such that
zk G Bs, zk, φ Bs. Suppose xΛnxJ φ 0 and yfcΉyί Φ 0. Then 5 S contains a point (namely
zfc) of xj but not all points of yj. Therefore Bs is connected via GX to another block
B's. D

Inserting this into the estimate for ρτ gives (5.4) with

C ( r , g ) = CJr,g)+Σ Σ ( }

n\ , Y Π CB l(r,g) (5.11)
2 ^ i y V n\J ι i

•'•np\
Π

ι=i

depending only on n and ^(r, g). This provides the induction step in the proof of
the theorem, proving the estimate for n given Lemma 5.3 and the same estimate for
smaller n. •

Given F= \\ Fke&r with supp(Ffc) = {zk}, we define
fc=l

(5.12)
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Essential in the proof of Lemma 5.3 is the following iterative evaluation of /(x, y):

Lemma 5.6. Let x — {xl9 ...,xn} and y = {yί9 ••.,}>„} and assume that m ' ^ 2 where

m'=φ{z\3i:xi = z or yt = z}.

Assume also that \qa(B)\ ^ 1 for every leυel-1 block B. Then

/(x,y) = /(x,y) + m ' - i £ d'k. (5.13)
k=l

Here x = (*<)?= i, y = ()><)?= i, and

d'k = dk(Ψiίψy) = #{i\x t = zk} - #{i\y t = zk} (mod2).

Proof. It is clear that if σ e 5^(x, y) then σ e if (x, y), where σ(xf) = σ(xf). On the other
hand, if τ e ^ ( x j ) then we can modify τ to σe^(x,y) so that l{σ) = l{τ) and l(σ)
= /(τ). (See the remark in the proof of Lemma 5.2.)

Next we use Lemma 5.2 and the fact that \qa(B{zk))\ ^ 1 for each k to conclude
that we have the following possibilities for each block: 2?(zk)n(xuy) = {xj, {xb Xj},
{yt}, {yi,yj} or {xi,yj}. The result now follows from the fact that /(x,y) —/(x,y)
equals the number of blocks containing a point xu •

Proof of Lemma 5.3. Denote the points of support of the successive F(P) = TPF by
ϊtlp

zk

p\ that is F(p)= f] Fk

p) with supp(flp)) = {zkp)}. We are going to proceed by
k=ί

induction on the number r oϊp's such that mp > mp +1 ^ 1. This number is obviously
less than m. Clearly, if r = 0 then l(F) = 0 and m = 1 and

|ρ(; JOI = |ρ(F)| ^ \fo\ + (\fx\ + \f2\)Λ2 + \f3\Λ4, (5.14)

where F=fo+f1ψ1ψ1+f2ψ2ψ2+f3ψ1ψ1ψ2ψ2 and A2(r,g) and A4(r,g) are con-
stants bounding Q(ψiΨι) = Q(ψ2ψ2) a n ( l QiΨiΨiΨiΨi) respectively on the trajecto-
ry ^(r,g).

Now consider the induction step. We want to reduce r by 1 so we consider p

suchthatm = m >m + 1 ^ l .
/ m \ / m \

T\',Fk) = ρ'[ \\\TFk andin
\k=l ) \k=l )

TFk we can omit a constant term. Iterating we can write

(5.15)

where Fk

p) = T pFk and T = 2 1 ~d*/2(l - P0)T{\ - P o ) and P o is the projection on the
constants in the class (0,0). The transformation T is given by a matrix M which
decomposes into matrices Mquq2 for each class (<?i,g2). Presently we prove:

Lemma 5.7. Let (r, g) be a point in the lower half-plane such that Rn(r, g)-»( ± oo, g^).

//

then γ\ M(p) is bounded on the trajectory 3~{r, g) by a constant K(r, g) independent

of q.

From Lemma 5.6 it follows that

pm+ip Σ dk = l(F)-l(Fip)). (5.16)
fc=l
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(Notice that we can choose a representative monomial in each Fk with \qk\^l.)
Hence

(5.17)

where

Π \\F^\\SK(r,gr U \\Fk\\.
k=l k=l

It remains to prove that

m

when it is given that

~~ ' k=l

m(G)

for all G= Yl Gke^ with m(G)<mp.
k=l

Without loss of generality we can put p = 0 here. From (5.20) it follows that

Π ; Π ,F,
k=l l:zi=z;

l=Zk
^K(r,gr'Cm,(r,g)U II^112-'<*'> (5.21)

1=1

for all F = f] f] Fte^F and m'<m, where K(r,g) is a constant depending only

on ^"(r,g). Let us first remark that it is sufficient to prove (5.19) for a monomial
m

F= γ\ ev(zj), where ev (v = l,...,15) denote the monomials of Table 5.1. We
1=1

proceed as below Lemma 5.4 using the following analogue of Lemma 5.4:

e ( ί l ; Π eVI(z,)) = π * ( - i ) π ( { y l ι } ) Π ^ Π ; e v ^ ) V (5 2 2 )
\ fc=l l:zι = Zk / {Λι} ί \leΛι )

where the sum is over all partitions {At} of {1,..., m} such that every pair (k, k!) is
connected by a chain of "links" (fcl5/c2), ...,(kr,kr+1). A link (fc,k') satisfies:

π({Λι}) is the number of odd transpositions needed to reorder {1,..., m} according
to {At} [assuming that the eVι in the left-hand side of (5.22) are in increasing order].
The required result now follows by moving all terms in the sum with A{ Φ {1,..., m}
to the left and using induction on n and Lemma 5.5. Notice that the number of
terms in the sum is bounded by m m + 1 and that m ^ n ^ 4 m . •

Proof of Lemma 5.7. The classes of Table 5.1 transform according to the matrices

^ i , « 2 s i v e n b y

M _ l f _ 1 = M + 1 > + 1 = l [i.e.
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where Λ(0) is the matrix defined in (4.18), and

M_1> + 1 = M + 1 > _ 1 = i ( l - 4 g c 2 ) .

/ 1 0\
Now, as (r,g)->(O,O), M- l t 0 -> I A and

1 0 0
0 1 0

,1/4 1/4 1/2,

and M_1> + 1 - 4 , all exponentially fast. Furthermore,

1 0\" ( \ 0\
,1/4 0/ \l/4 0/

and

q

are both bounded. The bound on the norm of Π M(p) then follows from the trivial
p = O

Lemma 5.8. Let M(n) be a sequence of matrices satisfying Min) = M(X)+ y~nE(n\ where

| |M^H^o, ||£ ( w ) | |^c, and y>ί. Then

As (r,g)->(± oo, g j ,

1 O\ / X ° ° \
and

= o |

This proves Lemma 5.7 for all trajectories except the trajectory going off to
(—I, — oo). For the latter we remark that as (r,g)->(—f, — oo),

Λ o\ /2 ° "8/3\
M-!,o- L 1 / 2 ) , Mo,o- 0 2 -8/3 ,

V 7 J \0 0 2 /

M_ 1 + 1 ->1,

so that the bound on the product of matrices M(p) does not hold. •

If we extend the definition of s(x9 y) to n-tuples by

s(x,y) = max X s(xh yσ(i)), (5.22)

then we have the following

Corollary. Let (r,g) be a point in the lower half-plane (g<0) such that Rn(r,g)
-•( ± oo, g^). For alln^ί there exists a constant Dn(r, g) depending only on n and the
trajectory βΓ{r, g) such that

,g)2-s{Xl *»••»••-»•> (5.24)

for any set of In points x l 9 . . . , x n , y l 9 ...9yH and indices α l 5 . . . , α Λ , β l 9 . . . 9 β n e { 1 , 2 } .
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Proof. Use the formula (5.2) together with the relation

s(x,y)^ Σ f(x»y*). • (5.25)
k=l

Remark. This bound on the rc-point functions is also correct in the case of the
"critical" trajectories ^~{rs(g\ g).

6. The Continuum Limit

Using the information about the decay of correlation functions obtained in Sect. 5
we shall prove the existence of the continuum limit for theories corresponding to
points (r, g) on the trajectories receding from the "trivial" fixed point (0,0). This is
particularly easy for the unstable line g = 0, r ^ 0: these theories are "Gaussian" so
that we need only consider the 2-point functions. The theories with g < 0 are non-
trivial and we have to consider the behaviour of the general w-point function.
However, it turns out that the result of the Corollary of Theorem 5 is strong
enough to ensure the existence of the continuum limit, so that the latter also exists
for the theories with Rn(r,g)->( —-f, — oo). The existence of an unstable line for the
fixed point (—f,^) suggests that there also exist continuum limits associated with
this fixed point. In fact this appears not to be the case in the proper sense to be
defined below. This pathology can be seen to be connected to the fact that the
thermodynamic limit does not exist for this fixed point.

The usual way to proceed in constructing a continuum limit is the following. We
choose a sequence (rni gn) converging to a point on either of the two critical lines
such that 0lnvm+n converges as n->oo for all m (large enough). Here vn = v(rn,gn) is
the potential with coupling constants (rn, gn) defined by (2.8) and Stυn = v(R(rn, gj)
is the transformed potential. Thus we obtain states ρm satisfying

&Qm = Qm-i (6.1)

We then define states ρm "living" on the rescaled lattices 2~mΈ? by

ρm(F) = ρm(F(2^2ψ2m *, 2m*2ψ2.m*)), (6.2)

where F(ψm9 ψm) is a polynomial in the fields ψm living on 2~mTL2. By (6.1) we have

(6.3)

We want to consider the fields ψm as the means of a putative continuum field ψ over
blocks Π m :

ψm(x) = 22"V(1 D m t e ) ) (x e2-™Z2), (6.4)

where 1A is the indicator function of the set ,4clR2 and

• m (x) = { t ; G l R 2 | x / - 2 - m - 1 ^ ^ ^ x I . + 2- M - 1 } . (6.5)

Approximating the smooth functions ft and gf (ί = l,...,k) on R 2 successively by

nm)= Σ Λ Ϊ ) W > (6-6)
2 Z 2
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and g\m) defined analogously, we accordingly define the /c-point function of the
continuum state ρ on &(E) with £ = S(R 2 ,R) by

i) ••• Ψ«k(fk)Ψβk(gk))

= lim \dmx1 ...ίdmxkμmy1 .•.$dmykf1(x1)g1(yί)...fk(xk)gk(yk)

Here \dmx = 2'2m £ and fu...,fk, g1? . . .,g f eeS(R 2;R). One easily checks

with the help of (6.3) that the limit (6.7) would be trivial, if f=pm) and g^g^ for
some m and all i. We remark that the above procedure is only possible in the
infinite volume limit. Hence we must take (rn, gn) e 3) for all n. As the transforma-
tion R does not depend on N it is unchanged in the infinite volume limit. From
Lemma 7.1 below we can deduce that, if we keep gn = go^0 fixed and let r[rc(g0)
then we end up with a Gaussian theory, i.e. ρm = ά~mρ0, where ρ0 is given by a
point (r0,0) with r 0 > 0. [If we take rn = r~(g0) then r 0 = 0.] This means that we might
as well start from ρm = &~mρ0. In the same way, taking rn = r0 fixed and letting
gΛtgc(

ro) fr°m below we obtain points (fm, gw) on the unstable line of the fixed point
(~f > rz) tending to this fixed point as m->oo. Finally, we can take sequences (rn, gn)
=R~n(r0, g0) converging to (0,0) from the lower half-plane, i.e. with g 0 <0. In that
case (fw, gm) = R~m(r0, g0). It remains to verify that the limit (6.7) exists in these three
cases. In fact this is true only in the cases where (rm,gm)-»(0,0):

Theorem 6. Let ρm be the state ^ ( E J with E(X) = (R2f2 defined by Theorem 4 with
(rm> gm) = & m(ro> &o)> where g0 < 0 or g 0 = 0 and r0 ^ 0. Then the continuum limit (6.7)
exists for all k and fl9 ...,/k, gl9 . . . ,g k 6S(R 2 ;R).

Proof We estimate the difference between the m-th and the rc-th element in the
sequence (6.7) with n>m, and rewrite the "integrals" Jdmx { as "integrals" Jdnx{ by
replacing f with / ( m ) .

Now, given ε > 0 we can choose m so large that

and the same for gt (i = 1, ...,/c). Assume also that we have the bound

|/.(x)|^M(l + | x | 2 )- 2 Vxe

and the same for gf (i= 1, ...,fe). Then we find

X Π

where by the Corollary of Theorem 6,

g ) 2 " s ( x > y )2^ψβl,iny,... ψak,2-Λ,2»ΪJl ^

with x ί = 2πxί and yi = 2nγi. We now use the following simple estimate:
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Lemma 6.1. For x,yeΈ2 the following bound holds:

2-s(x>y)<-—p -. (6.9)

~l+\x-y\
It follows from this lemma that

Π I (6.10)
i=ι \+ 2 \x — y\

and hence the right-hand expression of (6.8) is bounded by

The double "integral" is bounded by a constant independent of n. This concludes
the proof of the existence of the continuum limit. •

Notice that in the case that (rwgm) = R~m(r0,g0)-^{-trf) we have ρn(ψaxψβy)

δ - , with > l + = ^ + | | A 3 7 , if s{x,y)<2n. This means that the con-
api + \χ-y\9

tinuum limit does not exist for the same reason that the infinite volume limit does
not exist at the fixed point.

7. Proofs of the Results in Sect. 3

The existence part of Theorem 1 follows from

Lemma 7.1. Let y be a continuous curve in ^(g 0 ) with endpoints (r l 5 gγ) and (r2, g2) at
the left- and right-hand boundary respectively, i.e. rί=max{r_(g1),r0(gι)} and
r2 = r+(g2). Then y' = R(y) is contained within the region 0^g^g'o = F + (g0), where
the function F+ is defined by

17 ί~\ O ίΠ Λ\

Furthermore, the endpoints (r\,g\) and (r2,g2) satisfy

r\ S max {r_(g;), r^)} and r 2 ^r+(g'2).

Proof If (r,g) is a point of y then g ^ 2 ( l + r ) 2 , so - ^ +f!)2_ /4

Consequently,

This proves the first statement of the lemma. The second statement follows by a
simple calculation. •

The existence of the critical line now follows with the interval argument of Sinai
and Bleher [3]:

Proposition 7.1. For all g0 > 0 there exists a critical r-value rc(g0) such that
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Proof. Let Jo be the interval of r-values: Io = [max{r_(g0),ro(go)}, r+(goy], and let
y0 be the curve of points (r,g0) where r runs through Jo. Let yί be a maximal
connected part ofγ'0n£f(g0) and let J2 C /0 be such that the corresponding part of y0

is mapped onto yv Proceeding in this way we find /ΛC/n_i such that Rn maps the
corresponding part of γ0 onto the connected part γn of y i - i Π ^ g J with
gn = F+(gn-i)- We take rc(g0)e f] In. Then, by construction, Rn(rc(g0),g0)e^(gn).

The fact that Fn

+(go)-+0 implies that Rn(rc(go),go)^(0,0). Π

The proof of the uniqueness is rather delicate. Again we make use of a
horizontal curve y and prove by induction that it is stretched in the r-direction. The
induction works only after the first iteration with which we have to deal separately.
Let us first define the variable

4(1+r)2

Then 1 + r = -—^- ί 1 + - r' ) and z' = zi , ) . The first iteration step is dealt
1 — 2z\ 2 / \ 1 -f r /

with in the following two lemmas. We omit the proofs which are straightforward
though somewhat tedious.

Lemma 7.2. // (r, g) e Sf(g0) for some g0 > 0, and (r', g') e ̂ (g0) then g' ̂

Lemma 7.3. Assume (r, g) e Sf(g0) and {r\ g') e Sf(g0). Then 0^~-< 6z'(l + r') ^ .
c r ^r

For the next iterations we may assume that r < — and g S 2(1 + \r)2 < | + f |/3.

But then g' ̂  F + ( f+f |/3) = 2. In addition g ̂  2(1 -I- \r)2 => z S zo> where z0 is given

by 4zo(l +r) 2 = 4r(l +r) = 2(l +ir) 2 , i.e. z o = ̂ ^ |

Lemma 7.4. Let y be a curve in ^(g0) lying entirely below the line g = 2(l +\r)2.
Assume that its tangent satisfies

0^<6z(l+r), (7.3)
ar

dg'
and assume also that the endpoints of y' lie within <$f(g0). Then 0 ̂  -— < 6z'(ί -f r'). In

dr
particular yf lies entirely within ^()

dz
Proof Put -f- =4αz(l +r). Then

ar

>o (7-4)

Using the fact that z^f the result now follows from the formula

dr' \dr dg ' dr)\dr dg' dr) ' U
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Proposition 7.2. For all g0 > 0 there exists a unique critical value rc(g0) > 0 such that

Rn(rc(go\go)E^(go) for all n^O

and Rn(rc(go\go)^(0,0) as w-oo.

Proof. Suppose that for a certain value of g o > 0 there exist two values r^go) and
r2{g0) with the required properties. Consider the horizontal line y0 connecting the
points (^(goXgo) and {r2(g0),g0\

 a n < i i t s iterates yn. According to Lemma 7.3,
7iC^(g 0 ) and its tangent is less than 6z(l +r). Furthermore, Lemma 7.2 shows
that (r,g)ey1 =>g<2(l + 2r)2. Thus we can use Lemma 7.4 to iterate R and find
that (7.3) holds for all yn. For large n,z becomes small and from (7.4) we have
Δr'>\Δr, where Δr is the distance in the r-direction between the endpoints.
Clearly, this contradicts the hypothesis that yn lies in ^(g 0 ) for all n. •

The proof of Theorem 2 is similar to the above proof of Theorem 1. We simply
state the necessary lemmas.

Lemma 7.5. Let ybe a continuous curve in ^ with endpoints at the upper- and lower
boundary respectively, i.e. assume that the points (rug1) and (r2,g2) satisfy
gι=g-{rι) and g2 = gΛr2) Then y' is contained in the region 2 ( l + | r ' ) 2 ^ g '
= 1(1 + i r ' ) 2 with γ> > — 2, and g\ Sg + (r\) and g'2 ^ g_(r'2). //, in addition, y lies below
the line g = (f + ε)(l + i r ) 2 then y' lies above the line g' = (f—|ε)(l +\r')2 provided
that ε^f.

Lemma 7.6. Let y be a continuous curve in ^2 with endpoints (r1,gί) and (r2,g2)
satisfying g1 =g+(rι) and g2 = g-{ri) Then f is contained in the region f(l +-§r')2

^ g ' ^ ^ 1 +¥')2 with rf>-2, and g\ύgΛΛ\ gitg + fc)- ιf Ί lies above the line
g = (f — ε) (1 +\r)2 with ε ^ f then y' lies below g' = (f + fε)(l +\r')2.

Proof of Theorem 3. The proof consists of a successive reduction to smaller
regions.

The case g>0, r>rc(g) reduces to g<2r(l +r) which subsequently reduces to
the case g<r( l +r) where r ' > f r and g(")-^goo(r,g)>0.

The cases r^r0, g<gc(r) and r< — \, g<g+(r) reduce with the help of
Lemmas 7.5 and 7.6 to r< — 1, 0 < g < 2 ( l + r ) 2 which reduces further to the case
r< -2, 0 < g < ( l +r)2 which is trivial.

For g < 0 one proves the existence and uniqueness of the line rs(g) in the region
24r(\+r)

—f<r<0, 0 < g < — — - — in the same way as the existence and uniqueness of

rc(g) and gc(r) was established in the proofs of Theorems 1 and 2. Points outside this
region are easily seen to move to (+ oOjg^) with go0> — oo.

8. Final Remarks

Although the model that we have studied in this paper is rather artificial it has the
advantage that it can be renormalized easily. The renormalization transformation
involves only two coupling parameters r and g and is given by the exact
transformation formulas (2.16). Thus many technicalities that appear in other
models when studying the asymptotic renormalization group behaviour do not
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occur here. Other simple renormalization group transformations were considered
by Nelson and Fisher [10]. Their aim was different, however, and they did not
consider the decay of correlations or the existence of a continuum limit.

Also unlike most other models it is possible to make non-perturbative, i.e.
global statements about the renormalization group flow. In particular we have
seen that there exists, apart from the trivial fixed point (0,0), a non-trivial fixed
point (—f,^r), and we have managed to prove the existence and uniqueness of
global critical lines for both fixed points. This is not to say that everything about
the flow in parameter space is fully understood. Computer studies show that the
behaviour in the region above and between the two critical lines is rather erratic.
Iterating the inverse mapping for a small part of the critical line near (0,0) one
obtains an array of points that seem to be concentrated on a bundle of curves in
this region. (For a picture, see [7].) If this behaviour is genuine all these curves are
critical lines for the fixed point (0,0)! Also, some of the points thus obtained lie in
the neighbourhood of (0,0) itself.

Some of the unusual features of the renormalization group flow may be due to
the hierarchical structure of the model. However, it cannot be ruled out that
similar complications occur also in other, more realistic models. For instance, the
recurrence of critical points to the neighbourhood of the fixed point is a possibility
to be kept in mind. The large null space of Γo means that there is no Hamiltonian
formulation for this model. Hence the concept of a phase transition is unclear but,
judging by the behaviour of the correlation functions, the line rs(g) in the lower
half-plane behaves as a critical line: The decay of correlation functions for points
(r, g) on this line is slower than for other points of the lower half-plane.
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