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Abstract. The equations of ideal Magneto-Hydrodynamics are investigated
concerning initial boundary value problems with a perfectly conducting wall
condition. The local in time solution is proved to exist uniquely, provided that the
normal component of the initial magnetic field vanishes everywhere or nowhere on
the boundary.

1. Introduction

The equations of ideal Magneto-Hydrodynamics (ideal MHD) are the model
which describes the macroscopic motion of an electrically conducting fluid. Here
"ideal" means the model to be free from the effect of viscosity and electrical
resistivity. In this paper we study initial boundary value problems for the ideal
MHD with a perfectly (electrically) conducting wall condition.

Although there are several studies of these problems relevant to the plasma
confinement from physical and engineering viewpoints (cf. [6]), any mathematical
exploration into these problems, as far as we know, has not been found. Even the
boundary conditions themselves, which are not only mathematically proper but
also fully consistent with the physical situation, have not been well investigated.
Therefore we first investigate and propose such adequate boundary conditions to a
perfectly conducting wall. Then we show local in time existence of a unique
classical solution to two special cases of these conditions. Now we state our
problems more precisely. The problems we will treat are the equations of ideal
MHD,

(d + ( V ) ) + V = 0, (1.1).

dtH-Vx(uxH) = 0, in
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with initial conditions
t(p,u,H,S)\t=o = t(po,uo,Ho,So)=Uo in £2, (1.2)

and with "perfectly conducting wall boundary conditions," which we will
formulate in Sect. 2,

u-n = 0, Hn = 0 on [0, T]xΓ 0 ,

w = 0 on [0,T]xΓl9

where

*) Λ(x) = 0} and Γί = {x

Here Ω is a bounded or unbounded domain in R 3 with sufficiently smooth and
compact boundary Γ, or a half space R+ = {x\xί>0} with the boundary
5IR+ = {x\xι =0}; pressure p=p(t,x) (scalar), entropy S = S(t,x) (sealer), velocity
u = u(t9x) = {u1

9u
2

9u% and magnetic field H = (Hί,H2,H3) are unknown func-
tions of time t and space variables x = (xux2,x3\ For simplicity, we denote the
unknown functions *(p, u, H, S) by U; density ρ is determined by the equation of
state Q=f(p,S), where / is a given function so that / > 0 and df/dp ( = ρp)>0 for
p >0 and each S; magnetic permeability μ is assumed to be a positive constant; we
write dt = d/dt, 9£ = 3/9xf (i = l,2,3), V = (d/dxι,d/dx2,d/dx3) and use the conven-
tional notations in the vector analysis; n = n(x) = (nί,n2,n3) denotes the unit
outward normal at x e Γ.

We will show local in time existence theorems of these problems when Γ
consists only of Γo or Γx in (1.3). In each case we can reduce (1.1)—(1.3) into initial
boundary value problems for quasilinear symmetric hyperbolic systems with
characteristic boundary. The proof of the theorems is proceeded through the
iteration scheme, and the main ingredient is to get a priori estimates of the
linearized problems subordinate to the scheme.

We first note the structure of the problem in which Γ consists only of Γx is very
similar to that studied in [17]. So we can show the local in time existence of the
solution by the same line of the proof as in [17] (see Remark 2.9).

We next note that the problem in which Γ consists only of Γo seems peculiar one
compared with initial boundary value problems appeared in other physical
problems (a typical example is the problem for the compressible Euler equations,
see [13]) by the following reasons:
(i) the condition on the boundary, H n = 0, seems to be an excess boundary
condition when we solve the linearized problem as an initial boundary problem of
symmetric hyperbolic systems (see, for example, Lemma 3.3).
(ii) it seems difficult to show that the solution has full regularity, i.e., that the
solution has the same order of regularity in the direction normal to Γ as in the
direction tangential to Γ.

By virtue of the fact we may regard the condition H n = 0 as the restriction on
the initial data Uo instead of on the lateral surface [0, T] x Γ, we can overcome the
first difficulty by adding lower order terms to the linearized equations subordinate
to the usual iteration scheme [see (3.10) and Lemma 5.2]. We owe this idea to Taira
Shirota.

Next, to evade the second difficulty we introduce a weighted Sobolev space
with respect to space variables in which the order of the partial differentiation in
the direction transversal to Γ is half of that in the direction tangential to Γ (as for
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the definition of function spaces, see Sect. 2). This space seems to be suitable to get
a priori estimates of solutions for our linearized problems.

In preparation of this manuscript, we heard of the results by Chen Shuxing [3].
He develops the general theory for the initial boundary value problems for a
quasilinear symmetric hyperbolic system with boundary characteristic of constant
multiplicity. Although his approach is close to ours, the theorem of [3] is too
restrictive to apply it to our problems directly. In addition, some further
considerations are needed because of the first difficulty (i) cited above. (As for the
linear problems, see [9, 11, 15].)

Finally we point out two open problems related to these initial boundary value
problems. The first problem is the initial boundary value problem (1.1)—(1.3) in
which both Γo and Γt are not empty. Any linearized problem of this problem
requires the study of the initial boundary value problem with boundary
characteristic of nonconstant multiplicity. The second problem is the question of
whether the solution of the problem in which Γ consists only of Γo has full
regularity or not (cf. [7, 10, 14]).

This paper is the full and extended version of [16]. The plan of this paper is as
follows. In Sect. 2 we present formulation of a perfectly conducting wall condition
and then give the statements of the main theorems. In Sects. 3-5 we give the proof
of the theorems for the case in which we are most interested that Γ consists only of

2. Formulation of Perfectly Conducting Wall Condition
and Statements of Main Theorems

In this section we formulate the conditions on the lateral surface when the
boundary wall consists of a perfectly conducting wall. Since the boundary is
supposed to be rigid and fixed (independent of time variable), the same condition
as in the fluid dynamics is imposed on velocity u:

u rc = 0 on [0,T]xΓ. (2.1)

Since we suppose the boundary wall is perfectly conducting, i.e. electric
conductivity σ on the boundary wall is infinite, the tangential components of the
electric field E must vanish:

Exn = 0 on [0,T]xΓ. (2.2)

Further, by Ohm's law J = σ(E + ux μH), we get formally

E=-uxμH on [0,T]xΓ.

Accordingly, by virtue of vector identity that (AxB)xC = (A-C)B-(B-C)A,
we get from (2.2),

u(H-n) = 0 on [0,T]xΓ. (2.3)

Now we can summarize as perfectly conducting wall conditions

u n = 0, u(H ή) = 0 on [0,T]xΓ. (2.4)

The second part of (2.4) forms nonlinear conditions. However, we can reduce them
to linear ones by the following proposition.
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Proposition 2.1. Let u and H be1 a classical solution of (1.1) with initial conditions
(u,H)\t=o = {uθ9Ho). Then the following conditions are equivalent to (2.4);

u - n = 0 on [0, T] x Γo,

u = 0 on [O^jxΓi ,

where ΓQ,^ are the same as in (1.3).

Proof Let (w, H) satisfy (2.4). Let S be any portion on Γ. Since the condition (2.4)
yields n x (u x H) = 0 on [0, Γ] x Γ, we find from (1.1 )c by integration by parts

= 0 on[0,Γ],

where dΓ denotes surface element on Γ.
Accordingly, we get

Hn = H0 n on [0,T]xΓ.

Thus (u, H) satisfies (2.5). Next we prove the reversion. Let u satisfy (2.5). If we show
that

Hn = 0 on [0,Γ]xΓo, (2.6)

we easily see that (w, H) satisfy (2.4). To prove (2.6), we first note the following vector
identity: -Vx(uxH) = u- VH-H- Vu-uVH. Since u n = 0 on [0, T] x Γ, we
get by direct calculations

- n)-H- (u Vn),

-(H 'Vu)-n= -{H - n)(n F(u n)) + w (iί Vn) on [0, Γ ] x Γ .

Accordingly, we obtain from (1.1 )c,

dt(H -n) + U'V(H'n) + b(Vu, u, n)Hn + c(u, H, Vn) = 0 on [0, T] x Γ, (2.7)

where b(Vu,u,n)=V-u-n'V(u'ή) and φ , J ϊ , Γn)= - # - ( u Pn) + w (H Γn).
Since n = n(x) is expressed by — Fdisψc, Γ), we see that c(u, H, Vn) = 0. Thus by the
standard method of characteristic curves, we get (2.6). This completes the proof.

Remark 2.2. The above proof shows that we can regard the condition

Hn = 0 on [0,Γ]xΓo

as the restriction only on the initial data.
We use the following notations for the function spaces. Let Hm(Ω) be a usual

vector-valued Sobolev space of order m, with the associated inner product denoted
by (,)m or (,)m>β and norm denoted by | |m or | |m Ω. Define the function space
H™(Ω) to be the set of functions U(x) taking values in R 8 and satisfying the
following properties:

Let k be an integer such that 0 ̂  k ̂  m and let Λt (i = 1, „., k) be an arbitrary
vector field tangential to Γ, i.e. Λt belongs to B°°(Ω;R3) and satisfies
(Λi(x),n(x)) = 0 for all xeΓ and i=l,...,k. Then Ax...ΛkU(x)eH[{m-k)/2\Ω),
where [ ] denotes Gaussian bracket.

1 We use here and hereafter the terms of "being a classical solution" to represent that each
component of the solution belongs to C1([0, T] x Ω)
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In connection with H™(Ω), we define the function space X™(Ω) by

XRΩ) = Γ) i«(0, T;H™-k(Ω)). (2.8)
k = 0

Here ίίJO, Γ; #£"*(&)) is the space of all functions U=U(t9x) such that d\U9

0^/^fc, are essentiallly bounded and strongly measurable functions on [0, T]
taking values in H™~k(Ω). We introduce norm || | |m § Γ associated to the space
Xγ(Ω) (cf. Lemma 1 in [2]). At first, cover Ω by a finite family of open sets {(Pj ^o
such that 0,-nβ, ί = l,...,/, are diffeomorphic to J^+ = {x 1 ^0}n{ |x |<l} with Γ
mapping to {*i=0} and 0oCCΩ. Denote these diffeomorphisms from 0,-nΩ,
i=l9...,£, to J*+ by yf. Choose a finite number of partition of unity {φjf=o

V

subordinate to this covering {Θtfi=0 such that £ <p? = l in Ω. Now define the
n o π n | | | | W f Γ by i=0

| |M| | m > Γ = esssup | |w( ί ) | | m ,
ίe[0,Γ]

IWί)llϊ=Σ HSWOIIi-*.^
fc 0

where
[m/2]

l/lέ. = Σ Σ
s = 0 |α|^m-2s

with dl = (σ(x1)d1)
aida

2d
a

3

3 for α = (α 1,α2,α3) and |α| = α 1 + α 2 + α3. The weight
σ(Xi) is a smooth and positive function such that σ(xx): = xx for small enough xί9

: = 1 for xx ̂  1 and
σ/(x1) = (5/ax1)σ(λ;1)>0 for O ^ x ^ l .

We remark that the norms arising from different choice of Θb yb φt are equivalent.
So when Ω = 1R3

+, we can define || ||m>s|s by || ||m ̂  = | |m>:(:. Throughout this paper
c, C, and ch Ct (i = 0,1,...) denote positive constants which may change from line to
line.

Now we state our main theorems. For the problem (1.1)—(1.3) in which Γ
consists only of Γo, the statement is

Theorem 2.3. Let Ωbea bounded domain in R 3 with sufficiently smooth boundary Γ.
Let m ̂  8 be an integer. Suppose that the initial data Uo e Hm(Ω) satisfies

VHo = 0, po>0inΩ, Ho n = 0onΓ, (2.10)

and the compatibility conditions:

Skuo-n = 0, for fc = 0, . . . ,m-l, on Γ. (2.11)

Then there exists a constant To > 0 such that the initial boundary value problem
(1.1)—(1.3) has a unique solution UeX™Q(Ω).

When Ω is unbounded, we get

Theorem 2.4. Let Ω be an unbounded domain in R 3 with sufficiently smooth and
compact boundary Γ or a half space R + . Let m^S be an integer. Suppose that



124 T. Yanagisawa and A. Matsumura

Uo — \c, 0)eHm(Ω) for some constant c>0 and that Uo satisfies the conditions given
in Theorem 2.3. Then there exists a constant T1>0such that the problem (1.1)—(1.3)
has a unique solution U satisfying U — t(c,0)eX™ι(Ω).

Remark 2.5. (a) Since H™(Ω)cH[m/2\Ω) and m^8, these solutions U are classical.
(b) The term Sku0 in (2.11) is determined by less than or equal to fcth order
derivatives of Uo by using Eqs. (1.1) at t = 0 successively. We can also determine the
terms SkH0, and SkU0 analogously. [As for precise definitions, see (3.5).]
(c) The compatibility conditions associated with the boundary condition H n = 0:

>n = 09 for Jfc = 0,l, . . . ,m-l , on Γ (2.12)

are automatically satisfied by the condition Ho n = 0 in (2.10) and Sku0 n = 0, for
/c = 0,...,m-l,in(2.11).

For the problem (1.1)—(1.3) in which Γ consists only of Γί9 we can show the
following theorems. This result was pointed out by Taira Shirota before us.

Theorem 2.6 (T. Shirota). Let Ωbea bounded domain in R 3 with sufficiently smooth
boundary Γ. Let m^3be an integer. Suppose that UosHm(Ω) and that Uo satisfies

VHo = 0, po>0inΩ, H0 n*OonΓ, (2.13)

and the compatibility conditions

δk

tu0 = Q, for k = 0,l,...9m-ί,onΓ. (2.14)

Then there exists a constant T2>0 such that the problem (1.1)—(1.3) has a unique

solution Uef) Cj(0,T2; Hm-j(Ω)).
j=o

When Ω is unbounded, we get

Theorem 2.7. Let Ω be an unbounded domain in R 3 with sufficiently smooth and
compact boundary Γ (respectively a half space JR.%). Let m ^ 3 be an integer.
Suppose that Uo — \x, 0) e Hm(Ω) for some constant c>0 (respectively
Uo-'faO,0,0,^,0,0,0)6//^^) for some constants c>0, c'ή=0) and that Uo

satisfies the conditions given in Theorem 2.6. Then there exists a constant T3>0 such
that the problem (1.1)—(1.3) has a unique solution

m

U-\c,0)e Π Cj(0,T3;H
m-\Ω))

(
respectively U-'(c,0,0,0,c',0,0,0)e Π C"(0, T3 Hm'^IR3

Remark 2.8. The assumptions that V Ho = 0 in Ω and Ho n =t= 0 on Γ in (2.13) imply
that the boundary Γ consists of more than two connected components except
when Ω is a half space.

Remark 2.9. We present a sketch of the proof of Theorem 2.6 and 2.7. We set
U = \p,u,H,S) and rewrite Eqs. (l.l) a_ d into the symmetric form

A0(U)dtU+ Σ AjU)dtU = 0 (cf. [17]). (2.15)
i = l

In order to solve the problem by iteration, we consider the linearization of (2.15)
around an arbitrary function U' = \p',u',H\S') near the initial data, satisfying
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uf n = 0 and H' n Φ 0 on Γ. The linearized equations form a symmetric hyperbolic

system with singular boundary matrix, An( U')= £ At{ U')nh which in fact has

constant rank 6 on Γ. First, we find by direct calculation that the null space of
boundary conditions, i.e.

is a maximally nonnegative subspace of the boundary matrix. Next, although the
boundary is characteristic, we can estimate, by virtue of the special structure of the
equation to divi/, 3 f |divίί|^_ 1 Ω in terms of \U\^Ω (see Eq. (5.3) in [17]). Further,
we can also estimate dt\S\^Ω in terms of | U\^Ω from the equation for S by standard
energy estimates. Then by using the nonzero part of An(U') and these estimates, we
can estimate normal derivatives of U. All the rest procedure proceeds as in the
proof in [17]. So we omit it.

3. Study of a Linearized Problem

We first rewrite Eqs. (1.1). We may assume μ = l without loss of generality;
otherwise it suffices to introduce new variables μ1/2H instead of H. Then (1.1) can
be converted into the following symmetric system:

This equivalence of (3.1) and (1.1), under the initial and boundary conditions (1.2)
and (1.3), can be seen by noting the fact that if the solution of (3.1)3 satisfies V H = 0
in Ω at ί = 0, then VH = 0 in Ω is true for all ί > 0 . Next, we introduce new
unknown functions V= \q — c, u, H, S) in place of U (when Ω is a bounded domain
we omit a positive constant c in the above V and hereafter we do not mention this
remark), where <? = p + l/2|i/|2 is the summation of (fluid dynamical) pressure and
magnetic pressure, and rewrite Eqs. (3.1) in the form

α
0

-oίH

0

+

0

0 J 3 -

0

/ φ F)

-aίHiμ

\ o
3

=A0(V)δtv+ Σ

-ocH

0

\-ocH®H

0

ρ(w

F) - ( £

o\
0

0
1/

F

0

K=0

<xH(u-V)

M F/

(3.2)
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Here we set oc = ρq/ρ, where ρ=f(q — l/2\H\2,S) and ρq = df/dq, and

H®H=(^^14^1,2,3,^1,2,3).

Note that ρ>0, ρq>0 for q-ί/2\H\2>0 and each S.
Then the initial boundary value problem we consider is that for Eqs. (3.2) with

initial conditions

V\t=0 = \q0-c,u0,H0,S0)=V0 infl, (3.3)

and with boundary conditions

wn = 0, Hn = 0 on [0 ,T]xΓ. (3.4)

For setting an invariant set for iteration scheme we define "/c-Cauchy data
%V0" for the Cauchy problem (3.2) and (3.3) as follows: Set S?V0 = V0 and
determine S*V0 successively by

%V0=-\kΣ Σ (k~ΆGiβy0,..J%)dβk

t-
i-1vλ, for fc = l,2,...,

O = o j = o \ ί / J

where
G^/^Ko ^Ko) = a^o1^ i)(F)ll(K.-.,SίF)==(^ )Ko,...,^Ko).

We also define fc-Cauchy data (%u0 and (%HΌ as counterparts of (3.5).
Now we set an invariant subset for iteration scheme. Let K, Mm_ l 5 and Mm be

positive constants and let Xτ(Ω;κ,Mm_ί,Mm) be a set of functions
7' = \c[ — c, M;, H\ Sf) satisfying the following conditions:

'\2>κ in [0,Γ]xfl,

uf'Π = Hf'Π = 0 on [0 ,T]xΓ,

According to (2.10), the initial data Vo satisfy that

F tfo = 0, 4 0 -( l/2) | t f 0 | 2 >0 i n Q ,

Hon = 0 on/ 1 .

We further suppose that Fo satisfy the additional conditions

V0eHm+2(Ω), %uo-n = 09 for fe = 0,...,m, o n Γ . (3.8)

By Remark 2.5(c), we know that the compatibility conditions

%HO'n = 0, for fe = 0,...,m, on Γ (3.9)

associated to the boundary condition H n = 0 are automatically satisfied.

Let V be a given function belonging to X^(Ω;κ,Mm_1,Mm). Then the
linearized problem we study is

Ao(V')dtV+£AjiV')djV+B(V'9V) = 0 in [0,Γ]xO, (3.10)

w n = 0 on [0 ,T]xΓ. (3.12)
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Here B(V, V) is an 8 dimensional vector valued two form of V and V defined by

F) = ί(0,0,0,0,/(F,n0), (3.13)

where l(V\ V)=m{{u' Fin) H-{Hf- Fin) u} with me^°°(Ω) such thatm|Γ=n. We
remark that B(V, V) = — B(V, V). Hence it is easy to know that fe-Cauchy data for
(3.10) and (3.11) take the same value as Sk

tV0 defined by (3.5).

For this linearized problem we can get the following a priori estimate in
accordance with H™(Ω).

Proposition 3.1 (A priori estimate). Let m ^ 6 be an integer and let

m+l

Thenasolution Ve f] CJ(0, T;Hm+1-j(Ω))of theproblem{3Λ0) and (3 Λ2) satisfies
7 = 0

imί)IL^C(Af111_1,fc)||nθ)ILexp(C(AfJί) for OϊtϊT. (3.14)

Here and hereafter C(A,B,...) denotes a positive constant depending smoothly on
A,B,..., and m,Ω.

We postpone the proof of Proposition 3.1 till Sect. 4. On the basis of this a
priori estimate, we get the main result in this section.

Theorem3.2. Let m^8 be an integer. Let F e I ? ( Ω ; κ , M m _ 1 , M m ) . Then the
problem (3.10)—(3.12) has a unique solution VeX™(Ω) with the estimate

m y T m ^ ) Σ ^ 0
k = 0

for O^t^T. (3.15)

To proceed the proof of this theorem, we need the following two lemmas. We
first show

Lemma 3.3. Let V = \q' — c, u\ H\ S') be a smooth given function satisfying the
conditions u' n = H' n = 0 on [0, T] x Γ. Then the null space of the boundary
condition (3.12) is maximally nonnegative subspace of the boundary matrix An(V).

3

Here the boundary matrix An(V) stands for £ AfV^nfx).

Proof Observe that the boundary matrix An(V) takes the form

αV rc n -OLH'u'-n

«π αV nJ3 -H>.nl3

nK } ' -oc'Ή'u' n -H'nh {Iz + a'H'®H')u' n

0 0 0

Since uf n = H' n = 0 on Γ, we can easily check the boundary space

is nonnegative subspace of An(V). Further, the maximality is followed by the fact
that eigenvalues of An(V) consists of +1 (simple) and 0 (with multiplicity six).
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Next we show

Lemma 3.4. Let V e X™(Ω; K, Mm_ l9 Mm). Let δ, ε, λ, ε' be parameters such that δ>ε
>λ>ε'>0. Then there exists a function V^( such that

We"?) σ(09T;Hm+1-'(Ω))
r = 0

and

when ε'—>Ό, λ->0, ε—>Ό, <5-»0 in this order,
in HT\Ω\ f°r 0^/c^m, for a.e. ίe[0, Γ\.

Further, there exist positive constants C0 = C0(\V0\m+2) and c0, independent of the
parameters, such that

for 0 < ε ' < λ < ε < δ < c 0 .

Proof We construct the function V^( by four steps as follows, (i) We first extend
Cauchydata(F0, . . . ^ " ^ t o [0, T] x Ω. Since V0eHm+2(Ω) by assumption (3.8),
we see that 8k

tVoeHm+2~ \Ω) for 0 ̂  k ̂  m - 1 . Hence, by virtue of Theorem 2.5.7 of
[5], we can get an extension V=\ή[-c,ύ,H,§) of the data (%Vθ9 for 0 ^ / c ^ m - l ,

( m+l \

i.e. Ve Π Cr(0,T;i]rm+1"r(Ω)) and
r 0 /

dk

tV{ϋ)\ =dk

tV0 for 0 ^ / c ^ m - l , : = 0 for fc = m and m + 1, in Ω, with the following
estimate

Next we define an operator (1 — Λ)^ ιf where / is a given function on Γ, by a
bounded solution of the Dirichlet boundary value problem

u=f onΓ.

Let us put

<V) = Ϋ-(ί-A)J1g(Ϋ), (3.17)

where the function g(V) is defined by

(0,(yΓύ n)n,(yΓH.n)n,0)

and 7Γ is the trace operator on Γ.
Obviously, this < Vs) = ̂  - c, w, # , S) satisfies that u n = H n = 0 on [0, T] x Γ.

Further, by (3.8) and (3.9) we see that dk(V)(0) = dkV(0% for 0 ^ / c ^ m - l , in Ω.
From (3.16) we also see that there exists a positive constant Cγ = C 1 ( |F 0 | m + 2 ) such
that KVy\\m^Cv

(ii) For ^ > 0, let us define the function Vδ by

vδ=<vy-τδo«vy-vf), (3.18)

where T5 o/(ί, x) =/(ί - δ, x) for ί ̂  δ, = 0 for (5 > t ̂  0. Then there exists a constant
cx > 0 such that Vδ belongs to

for δ<cl9
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where C2 = 2C1 + 1. Further, we can see that when (5->0

Vδ-+V in JSfRΩ). (3.19)

(iii) We take the mollifϊer of the second part of (3.18) with respect to time variable
and spatial variable tangential to the boundary. Fix δ such that cί>δ>0. For
ε < <5, let us define the function Vξ by

To make the meaning of JεiuxΊ clear, we carry over localization and flattening of
the boundary by using the covering near the boundary {Θtfi=ι, the diffeomor-
phisms yi9 and the partition of unity φi appeared in the definition of (2.9). By this
procedure, we may suppose that Vδ — <F> has support in J*+ for each te [0, T].
Then the meaning oϊJε{UxΊ is a (Friedrichs') moUifier with respect to t and (x29 x3).
As for the function Vδ — < V} localized on a covering far from the boundary, we take
the moUifier with respect to t and x. Of course the integrand Vδ — <F> is naturally
extended to (—<5, T+δ) x Ω. It is easily seen that there exists a constant c2(<c1)
such that Vδ

ε belongs to

1 2 , w 2) for ε<c2.

Further, we see that when ε-»0

dkVδ

ε^dkVδ in Hζ~k{Ω\ for 0^/c^m, for a.e. te[0, T] . (3.20)

(iv) Lastly, we take the moUifier of the second part of Vδ with respect to spatial
variables normal to the boundary. Fix δ and ε such that c2 > δ > ε > 0. Let us define

^ b y vε-T (V-SV\)

Then we apply the same localization and flattening of the boundary as in the last
step and suppose that the function Vδ localized near the boundary has support in
&+. For λ>0 and fixed ίe[0, T], let us define the function Vδ>λ by

VIλ(t,x) = τλo Vδ%x) = F/(ί,X l + Kx').

Since Sξ.Vδ

ε e C°°(0, T; H^QR3,tλ)) for each αr = (α2, α3) e 1ST x ISί, where

m,λ = {*\xi>-λ}, K = K\Z%, and ίί = Nu{0},

we can see that
dx:VUt,)eC«>(0,T;Hm(R3

+)).

Next let us take a (Friedrichs') moUifier of Vδ\λ with respect to xv For εf such that
0 < ε' < λ, let us define F/ f by

Clearly, the function F/;/ belongs to C°°([0, T]xR 3

+) and when ε'-̂ O

dϊ'Vi:ϊ^dϊ>Vlλ in C ^ T iί-αR^)),
for each / e ίί, αr e ί ί x IN. (3.21)

Further, we will prove that when /l-»0

for each / e 1ST, a' e tfί x f ί . (3.22)
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Let us fix α l 5 α', 5, and / such that ô  + 2s^m, IGΊN, ot'eltί x Ίti and denote

dϊ+sd*dι

tVδ

ε byF.

Then the same argument as on pp. 43^46 in [8] shows that when Λ->0

Φ i Γ τ A ° P - > Φ i Γ P in C°(0, T;L2(R3)). (3.23)

Since d%d\{d\Vi) = σ^ΓF+l.o.t . , where α = (αl5α'), we can easily see (3.22) from
(3.23).

Finally, we compensate the boundary value of V^J. Let us define the function

< > ^ <Vδ

ε;ϊ> = Vi;ί-(ί-A^Wlί), (3.24)

where g is the same function as in (3.17). Note that dι

tdχ,g(V£) = 0, for each leΫf,
tg(£)

α' e ISf x ίsΓ, on [0, T] x Γ. Hence, by (3.21) and (3.22), it is easily shown that when
ε'->0 and /l->0 in this order,

)^0 in
for each I e ΪJ, α' e 1ST x ί l . (3.25)

Further, we can show that when ε'->0 and /l->0 in this order

σixjd^ί - Δ); ιg(VtJ V 0 in ^(0, Γ; tf^(R3

+)),

foreach/elSί, s e ί ϊ . (3.26)

This is shown by the following manner. First, denote the function (1 — Δ)~[ 1g{V^()
by G and fix te [0, Γ]. By the definition of (1 -Δ)^1 we see that

(l-Δ)G = 0 inR3.,

Operating σix^dl'1 to the above equations in R 3 and taking inner product in
L2(R+) with σ(xί)

sds

1~
ίG, we find that by integration by parts

= -2s(σ(x 1 ) 2 s " 1 ^ 1 )^ 1 G,δΓ 1G) 0,

where ^' = (52,̂ 3). Accordingly, by Young's inequality we get

By using this estimate repeatedly we get

Hence, we can see (3.26) easily by virtue of the standard estimates to (1 — Δ)ά1. So
combining (3.26) with (3.25), we find that when εr->0 and δ^O in this order

(1 - Δ)J ̂ (F/ l V O in C% T; H™(Ω)\ for each / e ISf. (3.27)

Now let us define J^;|' by

By (3.21), (3.22), and (3.27), we can show that when εr->0, /-»0 in this order,

VtJ -+ Vi in C% T; H™(Ω)), for each / e Isί. (3.28)
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Further, we find easily that there exists a constant co( < c2) such that, for c0 > δ > ε
>λ>ε\ V^ii belongs to

XRΩ; κj% Mm_ x + 3C2, Mm + 3C2)
m+l

and to Π CJ'(°> T;Hm+1 ~j{Ω)). Hence, putting Co = 3C2, we can show from (3.19),
j=o

(3.20), and (3.28) that this Vf l is a desired function. We complete the proof of
Lemma 3.4.

We now give
Proof of Theorem 3.2. By virtue of Proposition 3.2, we first regularize F', the
coefficients of the differential operator in (3.10), by V^ε

λ'. Let us fix δ, ε, λ, and ε'.
Denote the differential operator with the regularized coefficients V£;( by L:

where £(F/;/) is the 8 x 8 matrix such that B(Vδ

ε;ε

λ')V=B{V£;ε

λ\ V). Next we apply
noncharacterίstίc regularization to L. Letm be one defined in (3.13). Let us define for
a parameter 1 ̂ > γ > 0,

ί7

We find that for 27 with 7 small, Γ is noncharacteristic and the boundary condition
(3.12) is still maximality nonnegative. Now we consider the initial boundary value
problems UVγ = γ(μ- Γ)Fin [0, Γ]xΩ with (3.11) and (3.12). Here Fis the function
constructed in part (i) of the proof of Lemma 3.4. We remark that A -Cauchy data
for these problems also satisfy the compatibility conditions of second part of (3.8)
and (3.9). Hence, by virtue of the existence and regularity theorem for linear
symmetric hyperbolic systems with noncharacteristic boundary (we refer to

m+l
Theorem A.I in [13]), we obtain a unique solution Vγe f] Cj(0,T;Hm+ί~j(Ω))

J=O
for these problems. Further, it is easy to see that when y->0, Vγ converges to a
function V in C°(0, T; L2(Ω)), which depends on the parameters δ, ε, λ9 and ε'. In
addition, by retracing the derivation of the a priori estimate (3.14) of Prop-
osition 3.1, we find the following estimate holds:

Σ
k = 0

xexp}c3(||F/;r(τ)||m)dτ, for O^t^T. (3.29)
0

Hence, referring to the inequality ||(m F ) F | | m > Γ ^ c | F | w + 2 5 [ 0 Γ ] x Ω , we know by
(3.16) that the norm | |F y | | O T 5 r is bounded uniformly to γ. Accordingly, by the
standard argument (see, [11,13]), we see that V belongs to X™(Ω) and is a solution
of the problem such that LF=0 in [0, T]xΩ with (3.11) and (3.12). We also find
that the solution V satisfies the estimate of (3.29) in which Vy is replaced by V and
the term

is omitted. Next, by virtue of Proposition 3.4, we find by (3.29) that | | F | | m Γ is
bounded uniformly to δ, ε, λ, and ε', and we further find that V converges to a
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function Fin C°(0, T; L2(Ω)) when ε'->0, λ-+0, ε->0, and δ->0 in this order. Hence,
it is easy to show that this F is a desired solution, which belongs to X™(Ω), of the
problem (3.10), (3.11), and (3.12). By Lebesgue's dominated convergence theorem,
we also see that the solution F satisfies the estimate (3.15). Uniqueness readily
follows from L2 estimate of (3.10) with (3.12). We complete the proof of
Theorem 3.2.

4. A Priori Estimates

First we recall some inequalities of Sobolev and Hardy type.

Lemma 4.1. (i) Let Ω be an arbitrary domain in R 3 having the cone property. Then

(a) l/lc-(Λ)^C|/|2ifl, 0^σ<l/2, for feH2(Ω),
(4 1)

(b) l /U»^C|/ | 1 > i 2 , for feH\Ω)

hold.
(ii) For feHι(K\) such that /(0) = 0, the inequality

\f'{xψdx (4.2)
0 0

holds.
Proof. For example, see [1,4].

As a direct consequence of Lemma 4.1 (i) we get the following estimation of a
product of functions.

Lemma 4.2. Under the same conditions as of Lemma 4.i(ϊ), we get

for feH2(Ω),geL2(Ω),

for feH\Ω\geH\Ω).

Let Ω be a bounded or unbounded domain in R 3. We first note the invariance
of the principal part of Eqs. (3.10) and the boundary condition (3.12) for 0(3) (the
orthogonal group of order 3). Then, by applying localization and flattening of the
boundary of the problems (3.10)—(3.12) localized near the boundary, we can reduce
them to the problems for a half space R+. Although in the process of localization
we must add lower order terms of F and V to (3.10), they give no essential change
in deriving a priori estimate (3.14). So we neglect them.

Hence, we begin to treat the problem (3.10)—(3.12) for Ω=R 3

f = {x\xx >0} and
suppose that F has support in J^+. Note that B(V\ F) = 0 in this case. For
convenience, we write

{ $ ' tor i=0>1 3| m

w h e r e P,(F), β , (F) , a n d -R ( F ) a re 2 x 2, 2 x 6, a n d 6 x 6 submatr ices , respectively.
We write also v = \q-c,uι), w = \u2y,H\H2,H3,S). Hence V='(v,w). Notice
that

J ) , Qi(ϊ0lx1-o = 0, Ki(K)L-o = 0. (4.5)
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= o = H1
 IJCI = o = 0. We find that the boundary matrix has constant rank 2 on

Γ.
Now we begin to obtain the estimate of tangential derivatives of the solution V

of(3.10)-(3.12).

Lemma 4.3. We have

u. ^ C(κ, Mm_,) || F(0)||m,tan + J (C(|| Πτ)IIJ

, /or O^f^T, (4.6)

, /or 0<Ξί<ΞΓ, (4.7)

where | |F(t)||*, tan = Σ Iδ^nOlS wίtΛ
|α|Sm

^an = ̂ 0(σ(x1)51)
αi5α

2

1δl3 /or α = (α o ,α 1 ,α 2 ,α 3 )

[m/2]

|[φ)]£= Σ Σ S
fcl | | ^ 2

/ For α such that |α|^m, differentiate Eqs. (3.10) by δ?an and take inner
product with d*anF in L2(R+). Set Va = d^anV. Then integration by parts gives

dt(A0(V')V\ Fα)0 = (divi(F)Fα, Fα)o- ί3 'V'A^V'dΓ-iG*, Fα)0, (4.8)

where

and

? a n , i
Since the tangential derivatives d^anV of the solution (3.10)—(3.12) satisfy the same
boundary condition as in (3.12), we can get by (4.1)(a),

I V\t)\lAo(t)ύ I HO)IU(O) + ί (C(| Hτ) | 3 ) I V\τ)\2

0

) | ^ τ , for O^ί^T, (4.9)

where \V\t)\lAo{t) = {Ao{V\t))V\t\ V*(t))0.
Since q'—(1/2) |fίΊ2 > /c and (4.1)(a), we find that there exist a positive constant

φc,Mm_j) such that c(fc,Mm_1)"1^yl0(F)^c(κ:,Mm_1). Hence, if the following
estimate is shown

f £ 1 ^ , ^ ) 1 0 + ||F(τ)||mV (4.10)
\\β\=m-l J

we obtain the desired estimate (4.6) by plugging (4.10) in (4.9) and summing them
over all α with |α|^m. In deriving (4.10), the crucial terms to be estimated are
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iK for |α| = m, which contains the terms such as
and d^R.iV^-Jd^ with |/| = 1. Recall β 1 ( Γ ) = 0, Ri(V) = 0 on [0, T] x dIR3

+.
We deal with these terms by regarding d\2ίΏQ1{V')da

i~n

ιd1 and <5{an#i(H<9?an î as
vector fields tangential to 3R+. (Refer to Rauch [11] on this technique.) For
instance, we have

where

Accordingly, we obtain by (4.1) (a)

^C |H(F) | 2 | |F | | m i t a n . (4.11)

Further, we can get by a change of variable and (4.2)

oo /I \2

dx'dx1

= ί f ί (-ΊdidLQi(V\,9,xΊdθ)dxλdx'
E2\o \X o / /

Hence, we get higher order estimates similarly

L U , (4.12)

by recalling that if [m/2](ί2) D H^(Ω) and m ̂  8. This is the reason why we take m ̂  8.
Accordingly, by (4.11) and (4.12) we can evaluate the crucial terms, and by applying
(4.3) to the other terms repeatedly we can get the estimate (4.10). The estimate (4.7)
is shown by a direct calculation. Now the proof of Lemma 4.3 is completed.

Next we shall obtain the estimates of normal derivatives of v. To this aim, we
first note by (4.4) that P^V) is invertible on [0, T] x {x \xγ = 0}. Hence, we can take
a small constant <50 such that there exists a positive constant c = c(δ0) satisfying

IdetPΛΠI^Φo) for (£,x)e[0,T] x {x lO^x^^}- (4 1 3 )

By (4.1)(a) and m^8, we see that this <50 depends only on Mm_v Next, define a
smooth cut off function χ(x) supported in { X I O ^ X ^ ^ Q } and equal to one in
{xlO^Xi^o/^}, which satisfies the estimate

sup \(d/dxTχ(x)\^C(δ0),
xe[0,δ0]

with |α| ̂  m, for a constant C(δ0) > 0. By using this cut off function χ(x\ we divide v
into the form

For this υI and vπ, we get the following estimates.
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Lemma 4.4. We have

U, for OϊtίT, (4.14)

(τ)L) \\V(τ)\\mdτ, for O ^ f ^ Γ ,

(4.15)

where (50 = <50(Mm_1) is the positive constant defined in (4.13).

Proof. By the definition of χ(x), we can solve Eq. (3.10) with respect to d^υ and
deduce the expression of dtv such that

«anK dιVπ), (4.16)

where

7 = 2

Note that we can regard QiiV^d^w as a tangential derivative of w, so the right-
hand side of (4.16) contains only first order tangential derivatives of V and d^jj.
Let us fix t e [0, T] and fix α and fe such that |α| ̂  m - 2k + 1 and 1 ̂  fe ̂  [m/2]. Then
by using the expression (4.16) of dγVj repeatedly, and by applying (4.3), we obtain

l « " \P~ \V')F(V\ dtanV, ^Mo

^ + I I ^ I I J . (4.17)

Hence, we get (4.14) by these estimates and (4.16).
As for vIh we observe that

A0(V')dAi-X)V)+ Σ Aj(V')dJ{(l-χ)V)+

Then, by applying the same argument as in the Cauchy Problem to these equations
with respect to (1 — χ)V, we readily obtain (4.15). We complete the proof of this
lemma.

Lastly we have to show the estimates of normal derivatives of w.

Lemma 4.5. We have

l/2 /[m/2] \l/2

)Σ Σ ) Σ
fc=l \a\^m-2k ) \k=ί

+ ίC(||F(τ)| |m)(|[ι;(τ)]|m+||F(τ)| |m)dτ, for O ^ Γ . (4.18)
o

Proof. We observe that w satisfies

Ro(V)dtw+ Σ W)djw= - (tQo(Vf)dtv+ Σ 'QFVjv). (4.19)
J = l \ 7=1 /

For α and k such that |α |^m —2/c and 1 ̂ /c^[m/2], differentiate the equations
(4.19) by da

iΛΐid\ and take inner product with d^nd\w in L2(R3

+). Set waΛ = d^nd
k

1w.
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Then in view of R1(V') = 0 on [0, T] x 5R+, we get by integration by parts

K ' f c ( 0 l U ( ί ) ^ | w α ^

+ \Ga>\τ)\l)dτ for O^ί^T, (4.20)

where

and

) = [ « , R0(V'(t))ldMt) + Σ C «

+dΐ>A('Qo(v'(t))dtv(t)+Σi

tQJ(V'(t))djv(t))

Since Kt(F') = 0 and tQ1(V')=0 on [0, Γ] x 5K.+, we can apply similar estimates of
(4.11) and (4.12) to the counterpart of |Gα *(ί)lo Hence, by the same argument as in
deriving (4.10), we get

Accordingly, since R0(V) is positive definite, we can obtain the estimate (4.18). We
complete the proof of Lemma 4.5.

As for the problem localized on the region far from the boundary, we can get

, for OίtίT. (4.21)
0

Hence, by combining (4.6), (4.7), (4.14), (4.15), and (4.18) for each localized
problems, with (4.21), and by applying Gronwall's inequality, we obtain the
estimate (3.14).

5. Proof of Theorem 2.3 and 2.4

We first show

Lemma 5.1. Let m ̂  8 be an integer. Let K and M be positive constants such that
40-(l/2)|i/0 |2>τc in Ω, and \V0\m^M. Then there exists^ a function V° = V°{t,x)
= V-c,w°,H°9 S°) and positive constants T= T{κ,M), _Mm_ x = Mm_γ{κ, M\
Mm = Mm(κ,M) such that V° belongs to Xψ(Ω;κ/2,Mm_uMm).

Proof. We construct the function V° as the solution of the following problem:

Ao(Vo)dtV° + Σ AfVoJdjV0 + B(V0, V°) = G in [0,7]xO,

F° | t = 0 = F0 inO, (5.1)

u° n=0 on [0,T]xΓ.
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Here G = G(t, x) is the function which belongs to ίΓ"([0, T] x Ω) and satisfies the
following conditions:

NHG(t,x)=0 on [0,Γ]xΓ, (5.2)

δkG(0,x)= -l%,A0(V0)-]dtV\=0- Σ [^M/K°)]^.K0 | f=0

-l%,B}{V0)-]V%=0, for O^fc^m-l . inΩ, (5.3)

Here NH='(O,O,n,O) and dkV°\t=0 = SkV0, k=O,...,m-i, where (%V0 is defined by
(3.5).

Once we get such a function G{t, x), by virtue of the version of Theorem 3.2 we
obtain the solution V° e X^(Ω) of the problem (5.1). Since V°\t=:0 = Fo, it follows, by
inductions, from the equalities (5.3) that this V° satisfies that

\j=ι J ° J ι ° x Λ=o

= $ί%, for O^fe^m — 1, iniQ. (5.5)

Next take inner product of NH and the equations of (5.1) on [0, T]xΓ and retrace
the same calculations as in deriving Eq. (2.7). Since u° n = 0 on [0, T] x Γ,
Ho - n = 0 on Γ and (5.2), we obtain

ri) = 0 on [O,T]xΓ.

We note that the lower order terms of Vo and V° corresponding to c(u, H, Vn) of
(2.7) are canceled by the term NH B(VQ, V°). It is easily seen that this equation
with the assumption Ho n = 0 on Γ yields

H° n = 0, on [0,Γ]xΓ. (5.6)

On the other hand, the estimate of V° suchas (3.14) and (5.4) show that we can take
positive constants T=T(κ,M), Mm_ 1 = Mm_1(/c,M), Mm = Mm{κ,M) such that

q°-ί/2\H°\2>κ/2 inΩ,

^ , , | | F ° | | m , f = M m .

By (5.5), (5.6), and (5.7), we see that this function V° is a desired one.
To complete the proof, we have only to construct G e #m([0, Γ] x Ω) satisfying

(5.2), (5.3), and (5.4). Since the right-hand side of (5.3) belongs to Hm'\Ω\ we can
get a function

satisfying

0,x) = the right-hand side of (5.3),

for 0 ^ f c ^ m - l , inΩ, (5.8)

/ (cf. Theorem 2.5.7 of [5]). (5.9)

Here we note that, from the assumptions (3.8) and (3.9),

)=0, for 0 ^ / c ^ m - l , o n Γ . (5.10)
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Next we take a trace of G(ί,x) on [0, T ] x Γ , 7 [ 0,τ]χr(G), which belongs to
# m ( [ 0 , T] x Γ) and satsifies the estimate

l7[0, T] x r(G)\m, [0, T]xΓ = C l^lm + 1/2, [0, Γ] x Ω W l 1)

Then we can easily construct an extension of NH γ[0T]xΓ(G) to [0, T]x ί2,
S(N(G))> which is independent of ί and satisfies the following:

S(NH.γ[OtT]xΓ(G))EHm(ί0, T ] χ β ) ,

H * 7[0, T] x ΛG))\m, [0, Γ] x Ω = C l ^ f ί ' 7[0, T] x r(v)lm, [0, Γ] x Γ

Note that by (5.10) we obtain

) = 0, for 0 ^ / c ^ m - l , on {ί|ί = 0 } x Γ . (5.13)

Now let us define a function G(ί, x) by

where N f f =
 r(0,0,m,0). By (5.8), (5.9), (5.11), (5.12), and (5.13), we find that this G is

a desired function. So the proof is completed.
We next show

Lemma 5.2. Let m^Sbean integer. Let K and M be the same constants as defined in
Lemma 5^.1. Then there exist positive constants Γ ( ^ T ) , M m _ 1 ( ^ M m _ 1 ) , and
Mm(^.Mm) depending only on K and M such that, if V belongs to
XψΩ;κ/39Mm-l9Sij9 then the problem (3.10), (3.11)^ami (3.12) with additional
conditions (3.8) has a unique solution VeXίf(Ω;κβ,Mm^1,Mm). Further, this V
satisfies the estimate (3.14) in which T, K, Mm_ ί9 Mm are replaced by % ic, M m _ ί9 Mm,
respectively.

Proof. Let V be a given function belonging to Xf(Ω;κβ,Mm-ί:>Mrn) for some
positive constants M m _ l 5 Mm, and T. Existence of the solution, V9 of the problem
(3.10)—(3.12) with the conditions (3.8), which satisfies the estimate corresponding to
(3.14), is proven in Theorem 3.2. Hence, combined with mean value theorem, we
see that this V satisfies

linOL^^^^Op^J), for Ogί̂

and

, t , for 0^ί.

Here, we choose Mm-ι so large that (l-fC 3 (M))vM m _ 1 ^M m _ 1 . Next, we
choose Mm so large that 2C 1(M,κ )Mm_j)vMm^Mm. Lastly, we choose T so
small that exp(C2(MJ)T^2, T M W ^ 1 , T^% and q-{\β)\H\2^κβ in [0,f]
x Ω; the last condition is ensured by the inequality

sup | F - F 0 |
f
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Further, by the same argument as in the proof of Lemma 5.1 we see that H n = 0
on [0, Ψ] x Γ. Now we can easily see that if we take the function V in
X^(Ω;κ/3,M m _ l 5 MJ then the solution V of (3.10)-(3.12) belongs to the same
space again. So we complete the proof.

To remove the additional conditions (3.8) from initial data we show

Lemma 5.3. Let Vo be a function such that V0GHm(Ω) and Skuo-n = 09 for
fc = 0,1, ...,m— 1, on Γ. Then there exists a sequence, {V$}jLθ9 such that

VjeHm+2(Ω),

d y o n = 0, for /c = 0,l,...,m, on Γ, (5.14)

Vj-+V0 in Hm(Ω) as j^oo.

Here "3kuj

0" is defined by the same manner as in "3ku0" but using V$ instead of Vo.

Proof Recall NH = (0, n, 0,0). If we get the relations

RangeNH(Λn(V0))k = RangeN, on Γ, for k = 1,2,..., m,

by the same arguments as on pp. 52-53 in [13] we can translate the proof of
Lemma 3.3 in [12] to our case and construct the desired sequence. Since Λn(V0) is
symmetric, we find that Range(^4Π(FO)) = Range (An(V0))k for fe=l,...,m. So it is
sufficient to show that

RangeNH{An(V0)) = RangeNH on Γ. (5.15)

Since KerNH is maximally nonnegative subspace of An(V0\ we see that Ker^π(F 0)
CKerΛΓH, so that by the symmetry of An(V0), (KerNH)λC RangeAn(V0), which
implies (5.15).

Now we give the proof of Theorems 2.3 and 2.4. Let us define the iteration
scheme associated with the linearized problem (3.10)—(3.12) by

Σ J j 1

9V
i) = 0 in [0,T]xΩ,

j=ί

V%=0 = V0 i n Ω ,

ul-n = 0 on [ 0 , Γ ] x Γ , for i = l,2,

Here V° is the function constructed in Lemma 5.1. By virtue of Lemma 5.2, we find
that the space X™(Ω; κ/3, Mm-u Mm) is an invariant subset of this iteration scheme.
Further, it is easy to see that, when ;->oo, Vj converges to a function V in
C°(0, T;L2(Ω)) by taking T smaller if it is needed. Hence, combined with the
uniform boundedness of || Vs\\mtf9 we can show by interpolation argument that a
subsequence of {Vj} converges to the function V in

C^T HWV-^ΩynC^T HWV-'-XΩ)), for 0<ε<ί.

Further we know that this V belongs to X™(Ω) and satisfies the estimate
corresponding to (3.14). So, by recalling m ̂  8, we find that this is a solution of (3.1),
(3.3), and (3.4) with additional conditions (3.8). However, by virtue of the estimate
of V corresponding to (3.14) and Lemma 5.3, we can remove the condition (3.8)
from the initial data. Uniqueness of the solution of the problem (3.1), (3.3), and (3.4)
is a direct consequence of L2 estimate such as (5.20) in [17]. Now the proof is
completed.
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