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Abstract. For a given genus g Riemann surface with n ̂  0 punctures (n ̂  3 for g = 0)
we consider the problem of finding the metric of minimal area under the condition
that the length of any nontrivial closed curve be greater or equal to 2π. The
minimal area metrics are found for the case of all punctured genus zero surfaces
and for many of the higher genus surfaces both with and without punctures. These
metrics are induced by Jenkins-Strebel quadratic differentials. They arise from the
string diagrams corresponding to restricted Feynman graphs of a closed string
field theory action containing classical and quantum restricted polyhedra.

1. Introduction and Summary

During the last year considerable progress was made on the formulation of
covariant closed string field theory. The classical field theory turned out fully
nonpolynomial and its interactions were determined completely [SaZw, KKS]. It
was proven that no purely cubic theory with a symmetric vertex could ever be
satisfactory [SoZw 1], and, modulo a technical assumption, it was established that
covariant closed string field theory exists to all orders in the loop expansion
[SoZw2]. Finally, the various terms entering into the classical action and the
gauge transformation of the string field have been written quite explicitly in [KS].

The determination of the string interactions and string diagrams for the
classical closed string field theory was no simple matter. The most useful tool was
found to be a theorem of Strebel [St 1, St 2] which was used to understand how to
construct Riemann surfaces as contact interactions [SaZw]. This theorem,
however, could not be used to understand the surfaces that arise via Feynman
diagrams with internal lines. It was nevertheless possible to determine the
complete set of interactions [SaZw, KKS] and to give an argument that suggested
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strongly that the classical theory generated correctly all punctured Riemann
spheres [KKS]. The argument in [KKS] actually established that the (apparent)
boundaries of the moduli space regions generated by the various Feynman graphs
can be paired. Provided the two regions that share each boundary lie on opposite
sides of the boundary (an intuitive argument for this was given in [KKS]) the
matching of boundaries guarantees BRST invariance. This argument, however
does not establish that each surface is produced once and only once. It is possible
to imagine that a given Feynman graph might produce some surfaces more than
once, or that there could be some overlap between regions that share a boundary,
since it is not clear that all points of a region have to be in one side of the
boundary.1 It would be desirable to rule out these possibilities and to establish
conclusively the correct covering of moduli space. The physical motivation for the
present work was to prove that indeed the tree diagrams of the closed string field
theory do cover once and only once the moduli spaces of the n-punctured Riemann
spheres. This proof will be given, and is expected to provide a firm basis for future
development of the theory. Another important physical issue is that of the higher
genus string diagrams. In fact, the understanding of the tree level string diagrams
do give a strong suggestion for a canonical definition of the higher genus diagrams
both for surfaces with and without punctures. (A brief summary of the results of the
present paper, with emphasis on physics issues, can be found in [Zw].)

The future development of closed string field theory will depend to a large
degree on finding a useful mathematical language. Such language is necessary in
order to write down the action in an elegant way. The present results may be a step
in this direction. The principle of minimal area, although admittedly still tied to the
perturbative definition of the theory, is very suggestive. At a more concrete level we
will see that it will be necessary to construct new existence and uniqueness
theorems for quadratic differentials, extending previous results by Jenkins and
Strebel. The idea of reduced area, which is a useful extension of the idea of area
suitable for punctured surfaces will be introduced.

The usual extremal metric problem consists of picking an admissible set of
curves on a surface (nonintersecting, nonhomotopic curves), requiring that lengths
of curves homotopic to these be greater or equal to some fixed constants, and
finding the metric of minimal area. This metric always arises from a quadratic
differential with closed trajectories, namely, a Jenkins-Strebel (JS) quadratic
differential. It will be seen that the string diagrams are the solutions of the
following generalized minimal area problem:

Minimal Area Problem. Given a genus g Riemann surface R with n ̂  0 punctures
(n^3 for g = 0) find the metric of minimal (reduced) area under the condition that
the length of any nontrivial homotopy closed curve be greater or equal to 2π.

This problem is very different from the usual minimal area problem because
this time one does not fix a particular admissible set of curves, one requires that all
nontrivial curves (including those homotopic to punctures) must be larger than
some constant, and the set of all curves is not an admissible set of curves! It is very
important to realize that just from the statement of the problem the minimal area
metric is expected to be modular invariant, factorizable, and independent of the
labeling of the punctures. It should be modular invariant because the condition
that all curves be longer than a fixed constant is invariant under modular

I thank S. Carlip who raised this type of possibilities to me



Minimal Area Problem 85

transformations. It should be factorizable, roughly speaking, because of the
additivity of the area, if a minimal area surface is made out of two surfaces joined
by a long tube, the two surfaces must be of minimal area. The problem is also
manifestly independent of the labeling of the punctures. These three properties are
hallmarks of a covariant field theory formulation, as explained in [SoZw2]. In
order to have off-shell amplitudes we do not only need a metric, but also a
canonical definition of coordinates around punctures. These coordinates are easily
found if the metric arises from a quadratic differential with second order poles with
negative residues at the punctures [SoZw2].

The results of this paper can be summarized making reference to the following
string action

Here, schematically, the term ΦQΦ represents the kinetic term, and the vertices
Y{o>M are the restricted polyhedra of the classical field theory [SaZw, KKS] (precise
definitions are given in Sect. 3). It is established that the tree level Feynman graphs
or string diagrams of the classical closed string field theory give the solution of the
minimal area problem posed above for Riemann spheres with three or more
punctures. This result is used to show the correct covering of moduli space
(without overcounting or undercounting) for the classical theory.

It is also shown, however, that the naive Feynman graphs built with the
classical interactions eventually miss higher genus surfaces. It thus seems very
likely that the complete quantum action will require new interactions. Reasonable
candidates are given by the restricted quantum polyhedra denoted by ^ w . Their
contribution to the action is accompanied by powers of h as shown above. Using
naive Feynman rules the above action will not miss any surface, but there will be
overcounting. There is a very interesting subset of Feynman graphs that do not
give overcounting (but apparently undercount). These are restricted Feynman
graphs, defined to be graphs following from the above action, but satisfying the
additional constraint that no closed curve be shorter than 2π. This constraint only
affects higher genus diagrams. The restricted Feynman graphs generate subspaces
of every moduli space Jί9tn of the higher genus surfaces with or without punctures.
It is shown that the restricted Feynman graphs do give the metric of minimal area,
thus providing the solution for the above minimal area problem for a large fraction
of the surfaces of higher genus. Since the Feynman graphs of the above field theory
define JS quadratic differentials, it follows that the extremal metric arises from a JS
quadratic differential. The restricted Feynman graphs construct a system of
factorizable quadratic differentials, namely a system which is consistent with
degeneration of surfaces. From the viewpoint of string field theory the above
results suggest that the final formulation will be able to deal correctly not only with
punctured surfaces, but also with the unpunctured ones (vacuum graphs).

The main open problem left in this paper is finding the string diagrams for the
surfaces that are not generated by the restricted Feynman graphs. It seems natural
that they should also be given by the metric solving the minimal area problem. But
we do not know what the minimal area metric is for the missing surfaces. Once
these are found it will be possible to study if the above quantum action is really the
complete action. With the results of the present paper, the classical part has now
been proven to generate correctly the required moduli spaces. The quantum part,
suggested by some of our results, is still quite tentative. Our results imply an
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(apparently new) cell decomposition of the moduli spaces of punctured Riemann
spheres. Each cell is generated by a different tree level Feynman graph. A complete
understanding of the minimal area problem would possibly extend this result to all
moduli spaces of punctured and unpunctured Riemann surfaces.

Having summarized the main results, let us turn to the detailed contents of this
work. The logical steps in developing our results were the following. There were
theorems by Strebel [St2] showing how to construct punctured surfaces with
quadratic differentials whose characteristic ring domains are just punctured disks,
and no internal annuli. There were also theorems by Jenkins [Je] on how to
construct surfaces without punctures with internal annuli. Here the number of
annuli used can be (essentially) fixed by specifying some curves on the surface
homotopic to the desired annuli. The Strebel construction is modular invariant,
since it requires no specification of curves on the surface, but the Jenkins
construction is not. Since the diagrams of closed string field theory have punctured
disks and intermediate annuli it was necessary to develop a new existence and
uniqueness theorem for quadratic differentials combining both of the above
constructions. This is done in Sect. 5; the resulting quadratic differentials, having
both punctured disks and internal annuli, also need the specification of curves
homotopic to the desired annuli. In order to obtain quadratic differentials that do
not depend on a choice of curves (or annuli) a generalized extremal problem is
proposed (Sect. 7). One searches over all possible choices of a set of curves (an
infinite number), each set furnishing a quadratic differential, and picks the
quadratic differential with largest norm (under the condition that all ring domains
have closed trajectories of length 2π). It will be shown that for Riemann spheres
this extremal problem furnishes a unique quadratic differential, precisely that
defining the string diagram.

This paper is organized as follows. In Sect. 2 various notions necessary for our
proofs are developed. The idea of reduced area, which is a regularized version of
the area of a punctured surface is introduced. It is shown that a metric of minimal
reduced area is unique. This is an essential property which will allow us to show the
uniqueness of the string diagram in Sect. 7. The basic extremal properties of
Jenkins-Strebel quadratic differentials are reviewed for the case of annuli, and
discussed for the slightly more delicate case of punctured disks. Finally the relation
between admissible sets of curves, the structure of Feynman graphs and quadratic
differentials is explained.

In Sect. 3 the quadratic differentials relevant to the field theory of closed strings
are studied. We first review and streamline the basic ideas in the construction of the
classical field theory and the definitions of polyhedra and restricted polyhedra.
Polyhedra associated to punctured Riemann surfaces are called classical poly-
hedra, and polyhedra associated with higher genus punctured surfaces are called
quantum polyhedra. An existence and uniqueness theorem for quadratic differen-
tials is proposed (Theorem 3.2). While its proof is postponed to Sect. 7; it is shown
that it would guarantee the correct covering of the moduli spaces of Riemann
spheres by the classical theory.

In Sect. 4 we review and slightly reformulate for our purposes the relevant
existence and uniqueness theorems of Jenkins and Strebel mentioned above. This
review is necessary to set up the proof in Sect. 5 of the new existence and
uniqueness theorem for quadratic differentials with closed trajectories and both
punctured disks and internal annuli. In Sect. 6 the newly established theorem is



Minimal Area Problem 87

used to explain some simple facts about the lack of overcounting by some special
Feynman graphs. A detailed discussion of the four-punctured sphere is very
illustrative and provides motivation for the generalized extremal problem. It is
also shown why the naive tadpole graph overcounts.

In Sect. 7 a generalized extremal problem that chooses among many candidate
quadratic differentials the one with maximal norm is proposed. It is shown that the
solution of this problem furnishes the unique quadratic differential that satisfies
the conditions of Theorem 3.2 establishing in this way the correctness of the
classical theory. As a by product we learn that the string diagram is actually the
surface of minimal area under the condition that the length of all nontrivial closed
curves be greater or equal to 2π.

In Sect. 8 the possibility that the above minimal area problem also defines the
higher genus string diagrams is studied. Restricted quantum polyhedra are shown
to be necessary to produce the minimal area metrics for some of the surfaces in
Jίg „ for sufficiently high n (at fixed g). The properties of restricted Feynman graphs
are studied. Even though they seem to miss surfaces for higher dimensional moduli
spaces, it is very curious that the restricted Feynman graphs generate automati-
cally the modular region for the one-loop vacuum graph.

In Sect. 9 we conclude with some comments on open problems.

2. Basic Notions and Developments

2.1. Admissible Metrics and Reduced Area

In this section the well-known definition of an admissible metric on a Riemann
surface will be reviewed. Given an admissible metric one can compute lengths of
curves and areas of regions. For the case of punctured surfaces, however, the
computation of area is not straightforward. The main objective of this section is to
introduce a regularized version of an area, the reduced area appropriate for
punctured surfaces. Its key property is that in the same way as one can show that
metrics of minimal area are unique, it will be shown that for punctured surfaces
metrics of minimal reduced area are also unique. In the next subsection it will be
seen that the reduced area, for the case of metrics defined by quadratic differentials,
is nothing else than the reduced norm of the quadratic differential.

A metric on a Riemann surface is denoted by the quantity ρ\dz\ defining the
length element in some local coordinate z( = x + iy). Since ρ is real it cannot be a
nontrivial analytic object. Special ρ's may be the absolute value of analytic objects:
ρ ~ \h(z)\. This is the case for metrics arising from abelian or quadratic differentials,
but it is not the general case. Under analytic maps z-^z, the length element must be
invariant

ρ\dz\ = ρ\dz\. (2.1.1)

It follows from the above equation that the area element dA defined by

Ϊ (2.1.2)
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is also invariant under conformal mappings since

Ί i -=— Ί dz dz i

β -dzΛdz = Q T z T ^

_2 \dz\2 i τ

= QW2dZAdZ>

= ρll-dzATz, (2.1.3)

where use was made of Eq. (2.1.1) in the last step.
The definition of metric used here corresponds, in the physics literature, to a

choice of Weyl factor. This is clear once the metric is written if the form ds2

= gaβdxadxβ = ρ2(dx2 + dy2). The function ρ is the Weyl factor of a flat metric.
Consider an admissible set of curves, namely, a set of nontrivial homotopy and

nonintersecting closed curves γk on a Riemann surface R. To each curve in this set
associate a number Ak>0. A metric ρ(z) \dz\ is called admissible for the set Ak, if

ί Q\dz\*Ak9 (2.1.4)
γ~γk

for any curve γ freely homotopic to γk, and for all k. Namely, in the admissible
metric, the length of any curve homotopic to a given curve γk of the admissible set
of curves cannot be lower than Ak.

Suppose the surface R has some punctures Pj with 7 = 1,2, ...,n. Consider
curves y} surrounding each of the punctures, and associate to each of these curves
the number Aj.2 A metric ρ\dz\ is called admissible for the set Aj if

ί Q\dz\*Aj9 (2.1.40
γ~yj

for any curve γ freely homotopic to y,, for all j . The physical picture of a metric
admissible for the set Aj is that of a surface having a semiinfϊnite tube of
circumference greater or equal to Aj at each puncture. Indeed, if we use a
coordinate Zj vanishing at the puncture Pj9 the metric ρ cannot be finite as z,—•(),
preserving the above length condition. One typically has near Z/=0:

Γ l ) ' (z,-0), (2.1.5)

making it possible to satisfy the length condition near Z/ = 0,

If ρ2 has a singularity stronger than \z\~2 near a puncture, the lengths of closed
curves surrounding the puncture will diverge as one approaches the puncture.
Such metrics, although admissible by definition, are not interesting because they
cannot correspond to a metric of minimal area, as it will be seen shortly. The area
associated with the metric in (2.1.5) is clearly seen to diverge, since for a given r

2 We use the notation of [St 1] in which curves homotopic to punctures are labeled by the index;
and curves that are not homotopic to punctures are labeled by k. The label i is used for both types
of curves
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small enough one has

It is natural to define a regularized version of the area by subtracting this
logarithmic divergence for each puncture.

Definition. The reduced area jtf(ρ) for a metric ρ\dz\ admissible for the set
corresponding to closed curves y,- surrounding the punctures Pj is given by

= lim ( Jf ρ2dxdy+ + ̂ - l n r Σ ^ Y (2.1.8)
r-+0 \R(r) £K J

where R(r) denotes the surface obtained excising the disks \z^\ ^ r from the original
surface JR, and the z/s are a fixed set of local coordinates at the punctures.

For metrics ρ2 of the type of Eq. (2.1.5) the reduced area will be finite. For
metrics with stronger singularities the reduced area will still be infinite. The
reduced area of a region of a surface will be understood to be given by Eq. (2.1.8)
with the integral extending over the region and with the sum including only the
terms corresponding to the punctures that lie inside the region. In this way it
follows that the reduced area of a punctured surface is the sum of the reduced areas
of any set of disjoint regions that cover the surface (with no punctures lying on the
boundaries between the regions). The metric ρ in (2.1.8) may, of course, satisfy
additional length constraints associated with an admissible set of curves.

As is typical in regularized quantities, finite parts can be convention dependent.
The reduced area j/(ρ) has some dependence on the local coordinates at the
punctures. Let Zj be another set of local coordinates vanishing at the punctures and
denote the corresponding reduced area by j/(ρ). The two sets of local coordinates
must be related by f /=α J zJ , near the punctures, with a?s constants. Thus, near the
punctures, disks \zj\ = r, correspond to disks \Zj\ = r/\cij\. It follows then from
Eq. (2.1.8), by a simple calculation that

^ Σ A2 lnl^l. (2.1.9)

Thus under a change of coordinates, the reduced area changes by a metric
independent constant. It follows that the statement that a metric has extremal
reduced area is coordinate independent.

Let us now show the uniqueness of a metric with minimal reduced area. The
following proof is an extension of the proof presented in [St 1, p. 131] establishing
that for metrics of finite area, the extremal metric is unique. Consider a Riemann
surface R with n^O punctures, with an admissible set of curves yk9 and n curves y}

homotopic to the punctures. The associated set of constants A{ includes the
constants Ak associated with the curves yk, and n constants A 3 associated to the
curves yjm We want to show that among all metric admissible for the At\ the one
with minimal reduced area is unique. Assume there are two metrics ρx and ρ2 that
minimize the reduced area, namely ja/(ρ1) = j/(ρ2) = m. Using the definition of
reduced area in Eq. (2.1.8) both for ργ and ρ2, one finds, by subtraction that

lim(||ρ?IUHl02llW = °> (2-1-10)
r->0
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where, for brevity, we have defined

Wρϊhir^ ί ί Qidxdy. (2.1.11)
R(r)

Since both metrics ρx and ρ2 are admissible for the At% we must also have:

f QH\dz\^Ai9 (2.1.12)

for all Γs and for n = 1,2. Consider now the metric ρ = λίρί + λ2ρ2, where λt and λ2

are real constants satisfying λί + λ2 = l. It follows that

J ρ\dz\ = λ1 J ρ1\dz\-\-λ2 J ρ2 |rfz|^(i1 + λ2)Ai = Ai, (2.1.13)

and therefore the new metric ρ is also admissible for the ,4/s. Its reduced area, as a
consequence must be greater or equal to the minimal possible value m;

)=lim (ff (λiei+λ2ρ2)
2dxdy+^-]nr Σ ^ 2 ) . (2.1.14)

Expanding out and using ^{ρ1) = ̂ (ρ2) = m, one finds

, , 1 1 A i\ „ ,ίί ρiρ 2 "^3;+— lnr Σ Aj I.(2.1.15)

Making use of the Schwarz inequality

^MUr^1^ (2.1.16)
R(r)

and of Eq. (2.1.10), which implies that

lim([| |ρf| |Λ ( r ) | |ρil|Λ ( rJ
1 / 2-| |ρ?| |R ( r y) = 0, (2.1.17)

r-*0

one shows that the term in parentheses in Eq. (2.1.15) satisfies

Mm ( if QlQ2dxdy+^lnr Σ Aj) ^m. (2.1.18)

If therefore follows from Eq. (2.1.15) that m^j/(ρ)^m, and as a consequence
s/(ρ) = m. Back in Eq. (2.1.15) this requires that

lim f ff ριQ2dxdy+^-lnr Σ ^ ) =m. (2.1.19)

For the above to hold it is necessary that in the limit as r goes to zero the Schwarz
inequality becomes an equality:

limf[| |ρfL ( r ) | |ρillR ( r )]
1 / 2- fJ QιQ2dxdy\ = 0 . (2.1.20)

The fact that the Schwarz inequality is saturated implies that ργ = ρ2 a.e. (almost
everywhere). Indeed using this last equation and Eq. (2.1.17) one can show that
lim JJ (ρ t— ρ2)

2 = 0, and this finally shows that ρ i = ρ 2 (a.e.), establishing the
r-*0 R(r)

uniqueness of the metric of minimal reduced area.
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2.2. Quadratic Differentials, Annuli and Punctured Disks

In this section after reviewing briefly some notions of quadratic differentials3 the
basic extremal properties of quadratic differentials are discussed. The case of a
regular annulus, namely one with finite modulus, is treated first. Here the metric
associated with a quadratic differential gives the lowest possible area among all
metrics satisfying a suitable length condition. Then we consider in detail the
slightly more subtle case of punctured disks. These correspond to annuli in which
the inner radius goes to zero, making the modulus infinite. Here the appropriate
notion is that of reduced modulus [Te]. Most of our effort will go into showing
that the notion of reduced area introduced in the previous section fits naturally
with that of reduced modulus. It will be seen that, in analogy with the case for
annuli, the metric associated with a quadratic differential is, among all metrics
satisfying a suitable length condition, the one with minimal reduced area. All of the
above ideas will be useful in the later sections of this paper.

A quadratic differential φ on a Riemann surface R is a set of function elements
Φi(Zi), meromorphic in the local coordinates zt( = xt + iyt) with the transformation
property

φi(zi)(dzi)
2 = φJ{zj)(dzj)

2, (2.2.1)

under a change of local coordinates. The function element φ{ is called the
representation of the quadratic differential in terms of the local coordinate zt. To a
quadratic differential one can associate the length element \Φi(Zi)\112 \dzt\. It follows
from Eq. (2.2.1) that the length element is invariant under conformal maps, in other
words, the metric ρ = \φi\1/2 satisfies Eq. (2.1.1). In a similar way one associates to a
quadratic differential an area element dA = \φi(zi)\dxiΛdyi. This area element is
also conformally invariant since the argument given in Eq. (2.1.3) applies. Thus a
quadratic differential defines a metric (the ̂ -metric) which can be used to compute
lengths and areas.

A horizontal trajectory of a quadratic differential is a curve along which φ
(dz)2 is real and positive. Quadratic differentials with closed horizontal trajec-
tories, called Jenkins-Strebel (JS) quadratic differentials, are those for which the
nonclosed trajectories cover a set of measure zero on the surface. A JS quadratic
differential decomposes a surface into characteristic ring domains, the maximal
ring domains swept by the closed trajectories. These ring domains can be annuli
or punctured disks.

Consider now an annulus, as shown in Fig. 1. In the z-plane it appears as the
rectangular region bounded by vertical lines through z = 0 and z = a (identified)
and horizontal lines through z = 0 and z = ϊb. The modulus M of the annulus is
given by M = b/a and is a conformal invariant. The JS-quadratic differential
φ = φ(z) (dz)2 = (dz)2 on the annulus gives rise to a metric for which the rectangular
region has sides of lengths a and b, area ab = a2M, and for which any closed curve,
such as $ has length greater or equal to a. Define the metric ρ\dz\ to be admissible if
for any closed curve y homotopic to γ one has that

f ρ\dz\^a. (2.2.2)

3 For a complete treatment the reader may consult [St 1, Ga], in the mathematical literature.
Explanations that have appeared in the physics literature [GiMa, Ca, SaZw], may also be useful
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(α) (b)

Fig. 1. a An annulus presented as a rectangular region in the z-plane. The height of the annulus is b
and its circumference is a. Its modulus is given by M = b/a. b The annulus presented (in the
standard form) as the region r ^ | w | ^ l . The curve f is a noncontractible simple closed curve

Note that the φ-metric |φ|1 / 2 |dz| = |dz| is admissible. One can show (see, for
example [St 1]) that among all admissible metrics ρ, the 0-metric is that of lowest

area

\\Φ\\R = ^ f f ρ2dxdy.
R

(2.2.3)

The annulus can be mapped into the w-plane as shown in Fig. 1 by the relation
w = exp(2πjz/α). The annulus now extends from |w| = 1 to |w| = r, where r is defined
by ln(l/r) = 2πfc/α. It follows that the modulus of the annulus is given by

M= —-ln(l/r). In the w-coordinates the JS quadratic differential reads
2π

i (2 2 4)

An inequality analogous to that in (2.2.3) holds in this presentation, due to the
conformal invariance of each term.

Let us now turn to the case of punctured disks. Consider the punctured disk Dj
in the z^-plane bounded by the curve Γ and with the puncture at Zj = 0, as
illustrated in Fig. 2. This punctured disk can be mapped into a circular disk of
some fixed radius r,. in the ^-plane if we require that the puncture be mapped to
ζj = O and that at the puncture

# ( z ; = 0 ) = l . (2.2.5)

Under this condition, the radius rp called the mapping radius of Dp is uniquely
determined. The ξ} coordinate is called the natural coordinate. The reduced
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t 6.

(α) (b)

Fig. 2. a A punctured disk Dj given by the region of the z,-plane enclosed by the curve Γ. The
puncture is at z,=0. b The punctured disk is mapped into a circular disk of radius ry The
coordinate ξj is called the natural coordinate for the punctured disk. The puncture is at ξj=0, and
dξj/dzj = l at the puncture

modulus Mj of the disk Dj is defined to be

. , 1 .
(2.2.6)

It is useful to obtain the reduced modulus Mj by a limiting procedure. Consider the
circle \z-\ = r and define M/r) to be the modulus of the annular domain Dff)
bounded by this circle and the curve Γ. Since near the puncture ξj and Zj are related
by Eq. (2.2.5) one has:

(2.2.7)

The image of the circle \Zj\ = r in the £y-plane is a closed curve with ρ< = min \ξj\
\zj\=r

being the shortest distance to the origin, and ρ>= max |6 | being the largest

distance to the origin. It follows from Eq. (2.2.7) that

and therefore

(2.2.8)

(2.2.9)

The image of the domain Dfi ) in the ξj plane is an annular region whose outer
boundary is \ξj\ = Tj and whose inner boundary lies in the region ρ< ̂  \ξj\ ^ρ>. It
therefore follows that the modulus Mj(r), because of monotonicity must satisfy the
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inequalities:

-1- In ̂ - <Mir) < -1- In ̂ -. (2.2.10)

Adding to each term the quantity — lnr one finds
2π

l n + i n r ^ M ^ ) + i n r ^ _ i n _ L + J _ i n r (2.2.11)
2π ρ> 2π ^ J 2π 2π ρ< 2π J

and finally taking the limit as r->0, making use of Eq. (2.2.9) one finds

lim (^M/r)+ ̂ l n r ) =±-\nrj = Mj. (2.2.12)

Thus the reduced modulus is just the limit of the ordinary modulus of the annulus
Dj{r) as the radius r goes to zero, with the leading divergence subtracted away.

Let us denote by Dj(ρ) the annulus ρ^\ξj\^rj in the £j-plane (see Fig. 2). Its

modulus, denoted by Mj(ρ) is given by M}{ρ) = — \n(rjρ). Require now that curves

homotopic to the puncture in this annulus have lengths greater than a. The JS-
quadratic differential

54(4
gives rise to a metric \φ\112 \dz\ which is admissible for the constant a. It follows
from our previous discussion that

\\DM= ί ί | φ μ % = α 2M/ρ)^ M ρ2d2ξj, (2.2.14)
Dj(ρ) Dj(ρ)j

for any metric ρ admissible for the constant α.
We now want to show that the reduced area associated with the metric arising

from the JS differential is just given by the reduced norm, a2Mp of the quadratic
differential (here M7 is the reduced modulus). Consider again the annulus D/r), it
follows that

Jf \φ\d2ξjί ff \φ\d2zjί ff \φ\d2ξj. (2.2.15)
Dj(ρ>) Dj(r) Dj(ρ<)

Using the explicit expression in Eq. (2.2.13) one finds

^ l n ^ JJ \φ\d2z^^\n^. (2.2.16)
2π ρ> Dj(r) 2π ρ<

a2

Adding —- lnr to each term one has
2π

J-lnr,+ ^ l n — < ff \φ\ά2z-Λ ^-lnr< ^-lnr, + ^ l n — , (2.2.17)
2π ' 2π ρ> ~ DJT) 2π ~ 2π } 2π ρ<

and taking the limit as r->-0 one gets, using Eq. (2.2.9),

f J ^\d^+^lnr)=s/(^2) = a2Mj, (2.2.18)
Dj(r) 2.% J
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showing, as we wanted, that the reduced area for the φ-metήc equals the reduced
norm a2M p in complete analogy with the case for regular annuli [in Eq. (2.2.3)].

The next relevant property is that for any metric ρ defined on the punctured
disk and admissible for the constant α, the associated reduced area S$(Q) will be
greater or equal to the reduced area <$/(\φ\1/2) associated with the JS quadratic
differential with closed horizontal trajectories of length a. Begin with the relation
a2M.(ρ)^ ff ρ2d2ξj9inΈq. (2.2.14). For a given ρ the circle \ξ;\=ρ corresponds, in

Dj(Q)

the zrplane, to a closed curve with r<= min \zj\ being the shortest distance to the
origin. It follows that | ξ j l = ρ

a'Mjίρ)^ ff ρ2d2zj. (2.2.19)
Dj(r<)

a2

Adding — lnr< to both sides of the inequality one finds
2π

^ l n r , . + ^ l n ^ ff ρ2d% + ^\nr< . (2.2.20)
Iπ J Iπ ρ Dj{r<) 2 π

Taking the limit as ρ->0, using lim (r</ρ) = 1 (as in Eq. (2.2.9)) one finds that
O

a2Mj^ lim ( ff ρ 2 d 2 ί ,+ ^lnr<)=.fl/(ρ), (2.2.21)
r < - 0 \Dj(r<) ZU /

which was the desired result. Summarizing; the results in Eqs. (2.2.18) and (2.2.21)
imply that

st(\φ\ll2)^a2M^sί(Q)9 (2.2.22)

where φ is a quadratic differential with closed horizontal trajectories of length a in
a punctured disk of reduced modulus Mj9 and ρ is any metric on the punctured disk
admissible for the constant a.

This section is concluded by explaining a composition property for moduli and
for reduced moduli. Consider three non-intersecting simple closed Jordan curves
γa, yb, and yc, with ya enclosing γb9 and yb enclosing yc as illustrated in Fig. 3a. Denote
by My the modulus of the annular domain bounded by the curves γt and y3. It can
be shown [Ah] that

Mac^Mab + Mbc. (2.2.23)

A similar relation holds for reduced modulus. Consider the punctured disk Da

bounded by the curve yω and the punctured disk Db bounded by the curve yb,
enclosed by ya as illustrated in Fig. 3b. Let the puncture be at z = 0. Consider the
auxiliary curve yc defined by \z\ = r. It follows from Eq. (2.2.23) that

Mαc + — lnr ̂  Mab + [Mbc + —- In r , (2.2.24)

and taking the limit as r->0 one finds

(2.2.25)
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(α)
Fig. 3. a If M o denotes the modulus of the annulus enclosed by γt ands γj9 one has, for the above
figure that Mac ̂  Mab + Mbc. b For punctured disks a similar relation holds: Ma ̂  Mab + Mbi where
Mt denotes the reduced modulus of the disk bounded by yf. The dotted curve γc is an auxiliary
curve

where Ma and Mb denote the reduced moduli of Da and Db respectively, and use
was made of Eq. (2.2.12).

2.3. Admissible Curves and Feynman Graphs

An admissible system of curves on a punctured Riemann surface is a set of
nonintersecting simple closed Jordan curves. The curves must not be homotopic to
each other nor to the punctures. The maximal number of such curves in an
admissible system is finite. For a genus g, n-punctured surface this number is equal
to 3(g-l) + n (see, for example [Stl]).

Consider, for example, the case of a four-punctured sphere. Here an admissible
set of curves may have no curves, or one curve. If there is a curve, it must separate
two punctures from the other two. It is clear that one cannot add an extra curve,
because any additional nonintersecting curve would either be homotopic to the
original one, or homotopic to a puncture. There are three ways of separating the
punctures, corresponding to the 5, t, and w-diagrams of field theory. This is not to
say that there are just three inequivalent sets of admissible curves. Suppose a curve
separates punctures 1 and 2 from punctures 3 and 4. One can perform a Dehn twist
across an annulus homotopic to a curve separating punctures 1 and 3 from 2 and 4.
The final curve still separates the same punctures, thus the corresponding
Feynman graph is the same. The final curve, however, is not homotopic to the
original curve. The result is that via Dehn twists, which are generators of modular
transformations, a given Feynman graph corresponds to an infinite number of
different admissible curves. In other words, the Feynman graphs are in direct
correspondance with the possible admissible sets of curves divided by the action of
modular transformations.

While it has been well known that to a maximal set of admissible curves one
can associate a φ3 Feynman graph, if we consider all possible sets of admissible
curves on a surface we obtain the Feynman diagrams of a completely nonpoly-
nomial scalar field theory. This is in fact true even for loops; once we consider all
possible sets of curves we find the Feynman graphs of a field theory that includes
quantum vertices of all genus, and with all numbers of punctures.
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"0,4

Fig. 4. To every closed Riemann surface with punctures and an admissible set of curves one can
associate a Feynman graph. Vertices are denoted by /Vg „, where g counts the number of loops it
carries, and n denotes the number of legs

Given a set of admissible curves on a punctured Riemann surface R the
corresponding Feynman graph is deduced as follows. The surface R is cut along
the admissible curves. One gets a number of surfaces {Rt}9 each one with some
number of holes whose boundaries are the admissible curves, and a number of
punctures. To each surface Rt with pt boundaries and mf punctures we associate a
contact interaction with n^ipi + m^ lines, out of which pt are to be internal, and
the remaining mi are external. For each surface Ri one can compute the genus gf of
the surface obtained by shrinking away the boundaries and deleting the punctures.
If g, = 0, the surface Rt corresponds to a contact interaction of the classical action, it
is a classical vertex denoted as ΫΌ^. If & + 0> the surface corresponds to a contact
interaction of the quantum action (proportional to (h)9), it is a quantum vertex
denoted as ^guni. This is done for all surfaces {Λj. The pair of lines arising from
each admissible curve must be joined; these are the internal lines. The result is the
Feynman graph associated with the admissible set in R. Three examples are given
in Fig. 4.

There is also a simple correspondence between JS-quadratic differentials and
Feynman graphs. The characteristic ring domains of the quadratic differential
consist of annuli and punctured disks; out of each annulus pick a closed trajectory
yt. The set of yf's is the admissible set of curves corresponding to the quadratic
differential, and from it the Feynman graph is constructed using the prescription
given above. It follows that the maximum number of annuli equals (3g — 3 + n),
namely, the maximum number of curves in an admissible set. It turns out that each
punctured disk corresponds to an external line, each internal annulus corresponds
to an internal propagator line, and the critical graphs (whose edges are critical
trajectories joining zeroes of the quadratic differential) correspond to the
interaction vertices.
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3. Closed String Field Theory and its Quadratic Differentials

3.1. The Polyhedra of Closed String Field Theory

In this section the main features of the construction of classical closed string theory
presented in [SaZw] and [KKS] will be briefly reviewed. It will be possible to
streamline somewhat the ideas. A somewhat novel point is that it turns out that the
trivalence condition on critical graphs need not be imposed explicitly as a
condition on restricted polyhedra.

Classical closed string theory was constructed using as a basic tool the
following theorem by Strebel:

Theorem 3.1 (Theorem 23.5 in [St 1]). For any n-punctured Riemann surface (n^l,
except for g = 0, where n^3)4 there is a unique JS-quadratic differential whose
characteristic ring domains are n punctured disks of specified circumferences Aj.

It is convenient to define the notion of the polyhedron corresponding to a
surface [SaZw].

Definition. The polyhedron of a punctured Riemann surface is the critical graph of
the quadratic differential of Theorem 3.1, when all 4̂/s are chosen equal to 2π.

The faces of the polyhedron are the closed critical trajectories homotopic to the
closed horizontal trajectories in every punctured disk. It follows that the perimeter
of each face is equal to 2π. The polyhedron is completely specified by the topology
of the graph, the labeling of the faces, and the lengths of all edges (measured with
the 0-metric).

It is also useful to define the notion of a restricted polyhedron.

Definition. A restricted polyhedron is a polyhedron in which any nontrivial closed
edge-path has length greater or equal to 2π.

We shall also call the (n^3, g = 0)-polyhedra, classical polyhedra,5 and the
(n^l , g^ l ) polyhedra, quantum polyhedra (the same terminology will apply to
restricted polyhedra).

It was argued in [SaZw], using Theorem 3.1, that any n-punctured Riemann
surface could be built as a contact interaction by gluing the edges of n-semiinfϊnite
cylinders of circumferences 2π across the faces of a unique polyhedron. The
polyhedron has some number e of edges, whose lengths play the role of modular
parameters. Given the n face perimeter constraints, the number of unconstrained
parameters is (e~ n). From the Euler theorem for polyhedra we have that

= 2-2g, (3.1.1)

where υ denotes the number of vertices. A simple rearrangement of this relation
gives

(e-ri) = (6g-6 + 2n)-(2e-3v). (3.1.2)

4 The theorem was stated in [Stl] as holding for w^2, however, other theorems in [Stl]
guarantee that it actually holds for n — 1. The reader may consult [Ha], or the detailed discussion
of [SoZw2]
5 One may wish to call a circle of circumference 2π a two-faced (n = 2) restricted polyhedron. To
this polyhedron one can attach two semiinfinite cylinders giving rise to a two-punctured sphere.
This polyhedron is not a critical trajectory, it is just a horizontal trajectory
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The first term in the right-hand side, (6g — 6 + 2ή) is the real dimension άim(Jtg „) of
the moduli space of the genus g, n-punctured surfaces. In order that the number of
unconstrained parameters (e — ή) in the polyhedron equal dim(Jfgn) one requires
that 2e = 3v, which implies that all vertices in the polyhedron are trivalent. This
condition was imposed explicitly in [SaZw]. It will be seen now that the cases when
there are higher valence vertices need not be ruled out explicitly since they
correspond to polyhedra with a lower number of unconstrained parameters.
Denote by vk the number of vertices in the polyhedron with valence k. It then
follows that for any polyhedron one has v = £ vk, and

2έ? = 3i?3+ Σ kvk. (3.1.3)

Using the above, Eq. (3.1.2) can be rewritten as

- £ (k-3)vk, (3.1.4)
fc

showing that if there are vertices of valence greater than three the number of
unconstrained parameters in the polyhedron goes below that necessary to describe
the corresponding moduli space. It does no harm, therefore, to include along with
the trivalent polyhedra all other polyhedra with higher valence vertices. In fact, it
may be necessary to include them to ensure continuity. As some edge on a
polyhedron becomes of zero length two vertices of valence three coalesce to form a
vertex of valence four; this is typically a crossover point into another polyhedron
of different topology. It seems fairly unnatural to remove those special points since
it would ruin the continuity among the various polyhedra.

Since in field theory some of the surfaces arise by Feynman graphs with
internal propagators, and some arise by contact interactions, not all surfaces
should be built using the corresponding polyhedron. After some preliminary
results [SaZw] the complete condition that determines the polyhedra required for
the classical field theory vertices (genus zero n ̂  3 punctures) was arrived at in
[KKS]. The vertices of the classical field theory are the restricted classical
polyhedra. Polyhedra, as explained in [SoZw2], lead to interaction vertices that
satisfy the requisite properties of permutation symmetry between scattering strings
and of hermiticity.

The Feynman graphs of the field theory are constructed by joining restricted
classical polyhedra with propagators, namely, tubes of perimeter 2π. These
Feynman graphs correspond to JS-quadratic differentials with second order poles
at the punctures. All residues are identical and such that closed horizontal
trajectories homotopic to the punctures have lengths 2π. The characteristic ring
domains are punctured disks and annuli, the latter, correspond to the propagators
and also have closed horizontal trajectories of length 2π. For any n-string tree
amplitude (w-punctured Riemann sphere) the number of intermediate annuli or
propagators can go from zero, for the pure n-vertex, up to (n — 3), which is the
maximum number of curves in an admissible set (as discussed in Sect. 2.3) and
corresponds to the case when the Feynman graph is built exclusively out of three
point vertices.

There is a property of restricted polyhedra that will be of utility later. Given
two restricted polyhedra, pick one face in each of them, glue them across these faces
(the gluing must respect lengths!). The result is another restricted polyhedron. The
reader may consult the simple proof given in [KKS]. The result, in fact, holds both
for classical or quantum restricted polyhedra.
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3.2. Proposed Existence and Uniqueness Theorem

In this section an existence and uniqueness theorem for quadratic differentials will
be proposed. Then it will be shown that as a corollary, it guarantees the correct
covering (without overcounting or undercounting) of the moduli spaces of
punctured Riemann spheres by the tree amplitudes of covariant closed string field
theory. The proof of this existence and uniqueness theorem will be given in Sect. 7.

Theorem 3.2. Given a Riemann sphere with n ̂  3 distinguishable punctures there is a
unique JS quadratic differential satisfying the following conditions:

(i) The singularities are n second order poles at the punctures,
(ii) The characteristic ring domains are n punctured disks and k annuli, where 0 ^ k

ύn-X
(iii) The lengths of the closed horizontal trajectories on the punctured disks and
annuli are all equal to 2π,
(iv) Every nontrivial closed critical trajectory has length (measured using the
quadratic differential) greater or equal to 2π.

Let us show that the above theorem guarantees the correctness of classical
closed string theory. Denote the set of all quadratic differentials satisfying the
above properties (for a fixed ή) by SQ. Denote the set of quadratic differentials
constructed by the tree level Feynman graphs by SF. It is clear from the Feynman
rules, which use tubes of perimeter 2π for the propagators and restricted classical
polyhedra for the vertices, that any Feynman graph defines a quadratic differential
that satisfies the above four properties. In fact, condition (iv) corresponds to the
requirement that the polyhedra must be restricted polyhedra. Therefore, SFQSQ.
Moreover, any quadratic differential from SQ can be obtained from some Feynman
graph, since if we isolate the various disconnected critical graphs, they correspond
(because of (iv)) to restricted classical polyhedra. Therefore SQQSF. It follows that
SF = SQ, that is, the set of all Feynman graphs for n-string scattering construct all
the quadratic differentials satisfying the above properties. Consider now the map
from SQ to the space of n-punctured, genus zero Riemann surfaces SR. The map is
one to one; two different quadratic differentials cannot correspond to the same
Riemann surface because this would violate the uniqueness aspect of Theorem 3.2.
The map is also onto; any Riemann surface arises from some quadratic differential
in the set, because of the existence aspect of Theorem 3.2. It follows that the map is
an isomorphism between sets and SQ = SR. Using our previous result SF = SQ, it
follows that SF = SR. In summary, it has been shown that:

Corollary. The Feynman graphs of classical closed string theory generate the
moduli space Jto,n of the n-punctured Riemann spheres.

For any n ̂  3 punctured sphere one has a finite number of distinct Feynman
graphs (four for n = 4, twenty six for n = 5, and so on). These Feynman graphs cover
once and only once JiQi1x, thus they generate a cell decomposition of Jί^n. Each
Feynman graph gives a cell.

4. Extremal Properties of Quadratic Differentials

In this section we explore the extremal properties of quadratic differentials. We will
review results of Jenkins concerning holomorphic quadratic differentials with
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specified circumferences. Here the characteristic ring domains are annuli. What we
need for closed string theory is a theorem for quadratic differentials whose
characteristic ring domains are punctured disks and intermediate annuli. While
the theorem of Jenkins considers the case of no punctured disks, most of the results
of Strebel consider the case where there are only punctured disks. The results of
Strebel useful to us are also reviewed and some of them recast as extremal
problems.

Let us begin with an existence and uniqueness theorem formulated by Jenkins
for holomorphic quadratic differentials on an arbitrary Riemann surface.

Theorem 4.1 (Jenkins [Je]). Consider an admissible set of curves (γt) on a Riemann
surface and an associated set of constants At.

(a) There is a unique JS quadratic differential whose characteristic ring domains are
annuli (some may be degenerate) homotopic to the curves γt such that for the rings
that do not collapse (M f>0) the lengths ai of the closed horizontal trajectories
homotopic to γt satisfy: a{ = Ai9 and for the collapsed rings (M f = 0) the minimal length
at among all closed curves homotopic to γt exceeds or equals Ai9 namely: a^A^
(b) The above quadratic differential is the unique solution to the problem of
maximizing the functional

ϊF=ΣAfMi, (4.1)
i

among all possible choices of disjoint ring domains Rt homotopic to γi9 where Mt is the
modulus of Rt. The characteristic ring domains of the quadratic differential provide
the set of ring domains of maximal (F. The maximal possible value of 3F is denoted as

(For the case g=ί,n = 0 the maximizing domain is not unique).

It is interesting to note that one cannot quite specify the circumferences of the
quadratic differential, some may be realized, if their corresponding rings do not
collapse. For the collapsed rings we known that the circumferences are greater or
equal to the specified parameters. This is just what happens in covariant closed
string theory; propagators are required to have a circumference of 2π, but when
they collapse the length of homotopic closed trajectories grows, as discussed in
[Sa].6 Using Eq. (2.2.3) it follows that for each ring domain that does not collapse
AfMt= $\φ\dxdy, where At is the length of the closed trajectories in the ring.
Adding up the contributions of all the rings one has

P(Φ)=iί\Φ\dxdy=\\φ\\R9 (4.2)
R

that is, the extremal value of 3F is the area of the surface computed with the metric
associated with the quadratic differential.

The above quadratic differential solves another related extremal problem [Je].
Consider the set of admissible curves γt of Theorem 4.1, and the associated set of
numbers At. Note that the above quadratic differential φ gives rise to a metric
admissible for the A/s, since the lengths of closed trajectories homotopic to the
curves yt satisfy the appropriate length conditions. Let the metric ρ(z)\dz\ be
admissible for the Afs. It follows directly from Eq. (2.2.3) applied to each ring
domain that

(4.3)

6 I thank M. Saadi for bringing to my attention this property of the Jenkins construction
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namely, the area measured with any admissible metric exceeds or equals that
measured with the quadratic differential of Theorem 4.1. Thus, the metric that
gives the lowest possible area among all possible admissible metrics, called the
extremal metric, is that associated with the quadratic differential of Theorem 4.1.
This metric is unique.

Let us now consider some results of Strebel:

Theorem 4.2 (Theorem 23.1 in [St 1]). Consider a JS-quadratic differential whose
characteristic ring domains are a finite number of punctured discs Rj9 with punctures
Pj and reduced moduli Mj (with respect to a fixed system of coordinates at the
punctures) and a finite number of ring domains Rk with finite moduli Mk ^ 0. Let a^
denote the length of the closed horizontal trajectories surrounding the punctures Pj
(no punctured disk can be degenerate). Let ak denote, for rings with Mk>0, the
length of the closed horizontal trajectories homotopic to yk, and for rings with Mk = 0,
the minimal length among all curves homotopic to γk.

Consider the reduced norm of the quadratic differential

^=Σ"jMj+Σ"kMk. (4.4)
j *

It follows that for any other competing set of domains Rp Rk of the homotopy type of
7/5 7fc, and with moduli Mj, Mk one has that

Σajttj+ΣalMkύ*. (4.5)

The equality holds only if all domains are identical: Rj = Rj9 Rk = Rk.

(The conventions of [St 1] are followed, annuli are denoted by the letter k,
punctured disks by the letter j , and both by the letter /.) Our main objective in
Sect. 5 will be to address the issue of existence of such quadratic differentials.
Strebel does show the existence and uniqueness of a quadratic differential with
closed trajectories whose characteristic ring domains are just punctured disks (this
is Theorem 3.1 reviewed in the previous section). It follows quite simply from
Theorems 3.1, 4.2, and our discussion in Sect. 2.2 that the quadratic differentials
with only punctured disks solve the following extremal problems:

Theorem4.3. Consider an n-punctured (n^.3 for g = 0, and n^jzl for g^l)

Riemann surface, and consider n disjoint punctured disks Rj around the punctures

with reduced moduli Mj with respect to some fixed coordinates at the punctures. The

folding quantity ^ = Σ A j M j , (4.6)

will be maximized by a unique choice of punctured disks Rj with reduced moduli Mj.
The Rj's are the characteristic domains of a uniquely determined1 quadratic
differential φ with second order poles at the punctures and with closed horizontal
trajectories of lengths Ay Moreover,

Γ(φ)= ΣΛJMj = ̂ (\φ\^2)^^(ρ), (4.7)

namely, the maximal value of 3F equals the reduced area of the quadratic differential
and it is the lowest possible value for the reduced area of any metric on the surface
admissible for the given Ajs.

7 The quadratic differential is, of course, independent of the choice of local coordinate at the
punctures. This will always be the case in the latter theorems too
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Proof. The correctness of the above is argued as follows. Because of Theorem 3.1,
there is a unique quadratic differential second order poles and with closed
trajectories of lengths At. Given that the quadratic differential exist, it follows from
Theorem 4.2 that it must maximize #", which is just what the functional in Eq. (4.4)
reduces to when there are no intermediate annuli. Finally, it follows from
Eq. (2.2.22), used for all punctured disks, that Eq. (4.7) holds.

With this result we can reinterpret the Witten vertex as a solution of the
following extremal problem: Given a three punctured sphere, with some arbitrary
(but fixed) coordinate systems around the punctures, find the set of non-
overlapping punctured disks that maximizes the sum of reduced moduli
(M1 + M2 + M3). Answer: the characteristic ring domains of the unique (up to
scale) quadratic differential with equal residues at the punctures. This is the Witten
vertex, as explained in detail in [SoZw2]. Similarly, the light-cone three point
vertex coupling strings of lengths ll9 Z2, and /3 = /i + /2, is the solution of
extremizing on a three punctured sphere the functional (llM1 + l\M2 + /§M3).
Both quadratic differentials give rise to the metrics with lowest possible reduced
area given the appropriate length conditions for curves surrounding the punctures.

5. Quadratic Differentials with Punctured Disks and Annuli

In this section a new existence and uniqueness theorem for quadratic differentials
with second order poles is established. This theorem establishes that given a
Riemann surface with some punctures and a homotopy class of admissible curves
(yf), one can specify residues of second order poles at the punctures and lengths of
closed trajectories homotopic to the yt (in the sense described below). This result is
obtained using the theorems of Jenkins and Strebel reviewed in the previous
section.

Theorem 5.1. Consider a genus g Riemann surface with n^O punctures (n^3 for
g = 0) with an admissible set of curves γk and n curves ys surrounding the punctures.
Let Λk denote a set of constants associated with the curves yk, and Aj denote a set of
constants associated with the curves yjm

(a) There is a unique JS quadratic differential whose characteristic ring domains
include n non-degenerate punctured disks with closed horizontal trajectories of
lengths Aj and annuli (some may be degenerate) homotopic to the curves yk. For the
rings that do not collapse (Mk > 0) the lengths ak of the closed horizontal trajectories
homotopic to yk must satisfy: ak = Ak, and for the collapsed rings (Mk = 0) the minimal
length ak among all closed curves homotopic to yk must exceed or equal Ak, namely:

k k

(b) The above quadratic differential is the unique solution to the problem of
maximizing the functional

] 2

k , (5.1)
among all possible choices of disjoint ring domains Rj9 Rk homotopic to yyyfc, where Mj
is the reduced modulus with respect to a fixed set of local coordinates at the
punctures, and Mk is the modulus of Rk. The characteristic ring domains of the
quadratic differential provide the set of ring domains of maximal 3F. The maximal
possible value of !F is denoted as #"(</>). (The maximizing domain is not unique for
the case g = l , n = 0.)
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Proof. Let us first deal with the uniqueness of the quadratic differential (part (a)).
The following is a simple extension of the proof presented in [St 1] for the
uniqueness in Theorem 4.1. Let φ and $ denote two different quadratic
differentials satisfying the conditions of part (a). Namely, aj = άj = Aj for the
punctured disks, and ak = Λk if Mk>0, ak^Ak if Mfc = 0, and similarly dk = Λk if
Mk>0,άkϊtΛk if Mk = 0. It then follows using Theorem 4.2, with ίF defined by the
quadratic differential φ that

Σ afMi ̂  Σ aftti ^ Σ Aftti = Σ ti^t > (5-2)

where in the first inequality we have used Theorem 4.2, in the second inequality we
have used at *z Ab and for the equality we have used the fact that for Mk Φ 0, άk = Ak.
Starting the other way around, using $ instead of φ, we would obtain the above
inequality but in the other direction. It follows that all the inequalities in Eq. (5.2)
are actually equalities and therefore

ΣαfM-ΣαfM,. (5.3)

Using now Theorem 4.2, it follows that the two quadratic differentials must have
identical ring domains. Thus they can only differ by a positive constant. This
constant can only be one since the lengths of closed trajectories are also the same.

Let us now address the existence part. For this we show that the maximization
of 2F in part (b) [Eq. (5.1)] gives us the desired quadratic differential. For any
compact Riemann surface the modulus M{ of any annulus (or punctured disk)
homotopic to yt is bounded above. Therefore 3F is bounded above. It follows (by a
normal family argument) that there should exist a set of punctured disks and ring
domains that maximize #\ Moreover, no punctured disk can collapse, because
this makes M-» —oo and as a consequence SF-+ — oo. We now show that the
maximizing set of domains gives rise to a quadratic differential. The basic idea is to
cut out little disks including the punctures and to consider the truncated surface.

Let zx denote a fixed set of coordinate systems around the punctures. Consider
the maximizing set of domains and let ξj denote the natural coordinates around
each of the punctures. In such coordinates the punctured disks appear as circles of

radii r,- and we also have that -j^ (0) = 1. The r} are nothing else than the mapping
aZj

radii of the punctured disks, and therefore the reduced moduli of the punctured

disks are given by M i = — lnrt . We now cut out disks of radii ρ out of every
punctured disk. Namely we excise the regions |ξ/|^ρ, with ρ chosen such that
ρ<Min{r/}. The truncated surface is denoted by R(ρ). Denote by Mj(ρ) the
modulus of the annulus Rj(ρ) that is obtained after excision of the ρ-disk from the

punctured domain. Clearly, M}{ρ) = — In —. We now claim that in the cut surface

R(ρ) the ring domains R;{ρ), and Rk (which are left unchanged) maximize the
functional

= Σ AjMfβ) + Σ A2

kMk (5.4)

th the A's kept constant. Assume this is not
m of annuli with moduli M/ρ), Λ?fc such that

jttjiQ) + Σ A2

kMk. (5.5)

over all possible choices of annuli with the A's kept constant. Assume this is not
true. Then there is a competing system of annuli with moduli M/ρ), Λ?fc such that
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We now show by restoring the ρ-disks to the surface, that this leads to a
contradiction with the initial assumption that 3F had been maximized in the
original punctured surface. From Eqs. (5.1), (5.4) and the relation M^M^ρ)

+ — lnρ, one finds

F-3F — I n A2

2ττ J

Adding -—lnρΣ-4? to both sides of Eq. (5.5) and using Eq. (5.6) one obtains

2π

; ( Λ ? / ρ ) + ^ l n ρ ) + Σ A 2 Λ * * (5.7)

Making use of the inequality in (2.2.25) one has

(5-9)hxQZ

where Mj denotes the reduced modulus of the new punctured disk once we restore
the ρ-disk. The last two relations imply that

^<ΣAJMj+ΣA2

kMk, (5.10)

which contradicts the original assumption that 3F had been maximized on the
punctured surface. Thus because of the maximality of #"(ρ), we have a quadratic
differential φρ on the cut surface R(ρ) obeying the particular conditions of the
Jenkins construction. We know, moreover, that for sufficiently small ρ, the annuli
that correspond to the punctured disks cannot have collapsed. The closed
horizontal trajectories of φρ are actually independent of ρ. This is so because the
intermediate annuli are fixed and do not depend on ρ; and on the annuli that
correspond to the punctured disks the closed trajectories are the lines \ζj\ = const,
again ρ-independent. It follows that the quadratic differentials φρ are just
restrictions on R(ρ) of a single quadratic differential φ on R. This is a quadratic
differential whose characteristic ring domains are punctured disks and annuli. The
punctured domains will have closed trajectories of lengths Aj and the intermediate
annuli will have closed trajectories of lengths Ak for the annuli that do not collapse.

As was the case for holomorphic quadratic differentials, the above quadratic
differential also solves a minimal area problem:

Theorem 5.2. Consider a genus g Riemann surface with n ̂  0 punctures (n ^ 3 for
g = 0) with a set of admissible curves yk and associated constants Ak. Consider also
the constants Aj associated to closed curves surrounding the punctures. For any
metric ρ\dz\ admissible for the Aks and AJs one has

nΦ) = ̂ (\Φ\1/2U^(Q), (5.9)
namely, the reduced area of ρ is bounded below by the reduced area (or reduced
norm) of the quadratic differential φ which solves the extremal problem of
Theorem 5.1 (here lF(φ) denotes the value of the functional 3F in Eq. (5.1) for the
quadratic differential).

This theorem is an immediate consequence of Theorem 5.1 and Eqs. (2.2.3) and
(2.2.22), used for all the characteristic ring domains of the quadratic differential. It
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should be noted that Theorems 3.1, 4.1, 4.2, and 4.3 are particular cases of
Theorems 5.1 and 5.2 derived in this section.

6. Simple Examples Showing No Overcounting of Surfaces

Some examples will be given now that help us understand the meaning of
Theorem 5.1 and also give a qualitative understanding for the lack of overcounting
of surfaces by different Feynman graphs.

Because of the uniqueness aspect of StrebeΓs Theorem 3.1, it follows that the
Feynman graphs containing pure contact interactions (restricted polyhedra)
cannot give any overcounting. Each different restricted polyhedron corresponds
to a different surface.

The condition that pure interactions are given by restricted polyhedra implies
that no Feynman graph containing intermediate propagators (of circumference 2π)
can produce a surface that is described by a classical or quantum polyhedron. The
argument goes as follows. Suppose we have a surface with a quadratic differential
that has some internal propagators. The corresponding annuli are homotopic to
an admissible set of curves that we denote as {γk}. This quadratic differential is
compatible, in the sense of part (a) of Theorem 5.1, with the set of constants At = 2π
associated to the curves surrounding the punctures and to the curves {γk}. Now
assume that the surface can also be represented as a restricted polyhedron. It
follows that all of the curves homotopic to the {γk} in the polyhedron must have
lengths greater than or equal to 2π. Then the quadratic differential associated with
this restricted polyhedron is also compatible with the above set of constants (given
that indeed Mk = 0 and ak^.2π). The existence of two different quadratic
differentials compatible with a set of constants associated to a set of curves is in
contradiction with the uniqueness of Theorem 5.1. Thus the polyhedron equiva-
lent to the Feynman graph with internal lines cannot be restricted and must
therefore have at least one closed critical trajectory of length less than 2π.

The Four-Punctured Sphere. There are four Feynman graphs associated with this
moduli space. Let us now show that no graph overcounts surfaces nor produces
surfaces given by another graph. We also show that any surface must be in one of
these graphs.

Recall the Strebel presentation of the moduli space of the four-punctured
sphere. All surfaces can be presented as a contact interaction which has a
tetrahedron as the critical graph. This tetrahedron is parametrized by its edges,
with variables a9b,c satisfying a + b + c = 2π. Edges opposite in the tetrahedron
have identical lengths (Fig. 5). The space of possible values for a, b, and c is also
shown in Fig. 5 (the antiholomorphically related surfaces [SaZw] have been
omitted, for simplicity). It is important to note that the shaded regions correspond
to the contract interactions. Denote by lnmi the length of the shortest closed path
surrounding punctures n and m. It follows from the figure that:

(6.1)

In the pure interaction region all these lengths are greater or equal to 2π, thus
obeying the condition for a restricted tetrahedron. As shown before there cannot
be any overlap between surfaces produced in the pure interaction and those
produced with intermediate propagators. The necessity of having a tetrahedron
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Fig. 5. a The tetrahedron is the polyhedron corresponding to a four-punctured sphere, b The
decomposition of the moduli space of the four-punctured sphere. The shaded region corresponds
to restricted tetrahedra. The region denoted by 5, corresponds to tetrahedra where a closed curve
separating punctures {1,2} from punctures {3,4} has length less than 2π

type interaction was discussed in [Ka, KaLy], before the polyhedral approach to
classical closed string theory was developed.

Consider now the region of {α, b, c] space indicated by (s) in the Fig. 5. Here
/12 < 2π and both Z13 and Z14 are greater than 2π. It follows that the corresponding
polyhedron does not maximize the functional (£Mj + M12), where M 1 2 is the
modulus of an intermediate annulus homotopic to ί12. The quadratic differential
that maximizes this functional must have an intermediate annulus, thus it must
correspond to an s-channel Feynman graph.

Can a surface be produced two or more times by the s-channel Feynman
graphs? It cannot. The reason is the following. If there is overcounting then we
have two different quadratic differentials for the same surface. Because of
uniqueness they must correspond to two inequivalent admissible curves separat-
ing punctures {12} from punctures {14}. Since both curves give rise to a quadratic
differential with an intermediate annulus they must both have lengths smaller than
2π when seen on the corresponding polyhedron. This, however, is impossible. Take
the one of lowest length. The other curve must be obtained from the first one by a
Dehn twist, but a Dehn twist performed around any of the other closed cycles on
the polyhedron (both of which are of length greater than 2π) must add a length
greater than (4π). As a consequence the second cycle must have a length greater
than 2π. This proves the absence of overcounting within this channel (or within
any other channel).

Can there be overlap between the different channels? No, a surface in the
5-region of {α, b, c] space does not have, in the Strebel polyhedron a closed curve
separating punctures {14} and {23}, appropriate for a ί-channel graph, with length
less than 2π. Thus it cannot be represented as a ί-channel graph.

We have seen that classical closed string theory chooses different quadratic
differentials for the various regions of (α, b, c) space. In fact, we can now see in this
simple example that the chosen quadratic differential is that for which the sum of
all moduli (reduced and ordinary) is maximal. Introducing an intermediate
annulus diminishes the sum of reduced moduli (since the punctured disks must
reduce) but may increase the overall sum of moduli. For a surface R in the s-region
of {a, b, c] space we have shown that there is a unique admissible curve with length
less than 2π. For any other choice of curve the quadratic differential must be the
Strebel one, by uniqueness. Therefore, there are only two candidate quadratic
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Q '

Q'

Q '

Fig. 6. The polyhedron associated with a once-punctured torus. Here a + b + c = π, and the edges
should be identified along the arrows. The points Q and Q are two first order zeroes of the
quadratic differential

differentials for the surface R, a Strebel one, called φs, corresponding to a
tetrahedron with a closed cycle smaller than 2π, and a quadratic differential φb

with an intermediate annulus. It follows that φt maximizes

ct, (6.2)

and that φs maximizes

(6.3)

where cf and cs are some constants. Because of its cycle of length less than 2π, φs

does not maximize Jv Therefore ^{φ^<cb but since φs has no intermediate
annulus «^ (05) = ̂ s(φs) = cs. We therefore have cs < cb and indeed, by choosing to
use φi in the s-region of (a, b, c) space, closed string theory is using the quadratic
differential with the largest possible sum of moduli.

The Once Punctured Torus. This case is also easily dealt with because, as was the
case in the four-punctured sphere, there is at most one curve in any admissible set.
Consider the polyhedron representation of this surface, as shown in Fig. 6. The
sides of lengths a, b, c must be glued as indicated by the arrows (this representation
was explained at length in [SoZw2]). Since the closed horizontal trajectories
around the puncture must be of length 2π, one must have a + b + c = π. The space
{a,b,c}^0 with the constraint on the sum gives all once-punctured tori exactly
three times [SoZw2].

The string amplitude corresponding to a once punctured torus is a one-loop
tadpole. For this string amplitude, the naive Feynman rules lead to string
diagrams that are well known to give serious overcounting of surfaces [ZZ]. The
string diagram corresponds to a JS quadratic differential with one punctured disk
and one annulus, both with closed horizontal trajectories of length 2π. The
overcounting can be explained now. For any once-punctured torus there are
several nonhomotopic closed curves with lengths less than 2π in the corresponding
polyhedron. For example a + b,a + c, and b + c, are the lengths of closed curves
shorter than 2π, since a + b + c = π. Each different choice of a curve shorter than 2π
can produce a different quadratic differential for the same surface giving rise to the
overcounting. It is interesting to note that the number of nonhomotopic curves of
length less than 2π on the polyhedron is finite for every surface, and becomes larger
as the surface approaches degeneration. Thus the naive one loop tadpole does not
produce any (nondegenerate) surface an infinite number of times. One may
calculate, using the above ideas what is the maximal number of times any surface
can appear.
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7. The Generalized Extremal Problem

It was illustrated in the previous section that the quadratic differential chosen to
represent a particular four punctured sphere was that which would maximize the
sum of moduli. It will be seen now that this is the case in general. It will be
established that classical closed string theory solves the following problem for the
particular case of Riemann spheres with n ̂  3 punctures.

Extremal Problem 7.1. Given a genus g Riemann surface R with n^O punctures
(n^.3 for g = 0) and a fixed set of local coordinates at the punctures, consider the set
ΓR = {γ l5 γ2,...}, whose elements γr are all possible admissible sets of curves for the
surface. For each admissible set JΪEΓR one can maximize the corresponding
functional:

^ γ i = (2π)2(ΣM,.+ ΣM fc), (7.1)

where Mj are the reduced moduli of the punctured disks (with respect to the fixed
coordinates at the punctures), and Mk are the moduli of the annuli homotopic to the
curves in yt. The maximum is attained by the ring domains of a unique quadratic
differential φΎi. Denote the maximum value of SFΊi by <^{φΎ). This is just the
(reduced) norm of the quadratic differential φΎi.

In this way we find a collection ΦR = {φΎί, φΎ2,...} of quadratic differentials, and
an associated collection of (reduced) norms ^R = {^{ΦΊ), ^(φΎ2),...}.

The extremal problem consists of finding among the quadratic differentials of ΦR

that (those) quadratic differential(s) of largest norm.

Let us first show that all elements in 1FR are bounded by a single number M,
and therefore the maximal possible norm is not infinity. Consider the punctured
disks, there are n of them and the reduced modulus of each of them is bounded. Let
m denote the largest of those bounds. It follows that £ Mj is bounded by nm. Now

consider the internal annuli. There are at most (3g — 3 + n) of them. It is shown in
[Ga] that the modulus Mk of an annulus homotopic to a curve yk is bounded by
π/l(k), where l(k) is the length (in the hyperbolic metric) of the geodesic homotopic
to yk on the Riemann surface. Let / denote the shortest geodesic on the surface (not
homotopic to a puncture). Then the modulus of every annulus is bounded by π/l,
and therefore £ M k is bounded by π(3g — 3 + n)//. It follows that M = nm
+ π(3g — 3 + n)/l is an upper bound for all the elements in $FR.

It should also be established that the maximal norm is attained by a (various)
quadratic differential(s) in ΦR and is not just the limit of a sequence.8 We will
consider the case when there is such infinite sequence, and show that the limit of the
norm is attained by some quadratic differential(s) in Φ. Consider an infinite
sequence of quadratic differentials and associated norms. By assumption the
quadratic differentials in this sequence are not equal (and actually may vary
greatly from one element to the next) but their norms are going to the limit. Since
each quadratic differential can be associated with a Feynman graph, at least one
Feynman graph must be appearing an infinite number of times in this sequence.
We consider now the infinite subsequence of quadratic differentials corresponding
to this particular Feynman graph. In this subsequence the quadratic differentials

I thank G. Zemba for a discussion on this point
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might still vary considerably from one element to the next, but their norms are
going to the limit. Each element has the same number of internal annuli
corresponding to some curves {yfe}, and the quadratic differential arises by
maximization of ΣMy+Σ^fc Since given a curve system there is a unique
quadratic differential, the infinite sequence of quadratic differentials corresponds
to an infinite sequence of admissible sets of curves all related to {yk} by Dehn twists
(which do not change the Feynman graph, see Sect. 2.3). It follows that in this
sequence of admissible curves the lengths of all the curves cannot be bounded; this
is so because there is only a finite number of sets of curves with all their lengths
bounded. So, at least one of the curves in {γk} must be growing infinitely long.
Assume all of the curves are growing infinitely long, then it follows that £ Mk must
be going to zero, and the norm of the quadratic differentials is converging to
#" = Σ Mj, which is attained by the Strebel quadratic differential corresponding to
the polyhedron associated to the surface. If only a subset of the curves in {yk} is
becoming infinitely long, consider the curves {yk

b)} that remain bounded. They
make an admissible set, and there are only a finite number of such sets, because of
the boundedness. The infinite sequence of admissible curves can now be broken
into a finite number of subsequences, each one corresponding to a {yĵ }. Some of
these sequences may be finite (and irrelevant since they may not attain the limit)
but at least one must be infinite. The norms of the quadratic differentials in this
subsequence converge to the maximal value. But the annuli corresponding to the
curves that are becoming infinitely long must collapse, giving, in the limit a norm
which is just the maximal value of ̂ =YJMj-\- ΣMγ(bh which is attained by the
quadratic differential corresponding to the admissible set yf\ This shows that the
maximal norm is attained by some element of Φ.

It seems plausible, given the examples of the previous section that, in fact, the
set ΦR actually contains a finite number of different quadratic differentials for any
nondegenerate Riemann surface R. Let us now establish some properties of the
quadratic differential of maximal norm in ΦR.

Theorem 7.2. Given a genus g Riemann surface R with n^O punctures (n^.3 for
g = 0) a quadratic differential in ΦR of maximal norm satisfies the following
properties:

(i) The singularities are n second order poles at the punctures,
(ii) The characteristic ring domains are n punctured disks and k annuli, where O^k
^3g + n - 3 (k=\ for g = n = 0),
(iii) The lengths of the closed horizontal trajectories on the punctured disks and
annuli are all equal to 2π,
(iv) Every nontrivial closed critical trajectory has length (measured using the
quadratic differential) greater or equal to 2π.

Proof Note that the above conditions are almost the same as those of Theorem 3.2
for the classical theory, namely Riemann spheres. Here in the present theorem, we
do not discuss uniqueness. Conditions (i), (ii), and (iii) are clearly satisfied by all the
quadratic differentials in the set ΦR due to the way the functional #" in Eq. (7.1) are
defined. Condition (i) is satisfied because the functionals include n reduced moduli,
condition (ii) is satisfied because the maximal number of admissible curves is
3g + n — 3, and condition (iii) is satisfied because all functionals have Ai = (2π)2 for
all moduli.

Condition (iv) is the nontrivial one and requires that the quadratic differential
be one of maximal norm. It implies that every critical graph is a restricted
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polyhedron (classical or quantum). Imagine that condition (iv) is violated, namely,
there is some closed yw path on a polyhedron whose length is smaller than 2π.
Denote by {γk} the set of curves homotopic to the propagators. It is clear that the
Feynman graph maximizes the functional 3F ~ (£ Mjf + £ Mk). However, the extra
curve yk, is compatible with the curves {γk}. It follows that the given Feynman
graph does not maximize the functional 3F + Mw corresponding to the admissible
set of curves including {γk} and yk,. This is in contradiction with the assumption
that the quadratic differential maximizes 3F for all possible choices of admissible
curves. It follows that no closed path on a polyhedron can have length smaller than
2π, and therefore all polyhedra must be restricted and condition (iv) is obeyed. This
concludes the proof of this theorem.

The physical implication of the above result is that all surfaces (including
unpunctured higher genus ones) can be constructed by the naive Feynman rules of
a closed string field theory that includes all restricted polyhedra (classical and
quantum). This is so because, by definition, the naive Feynman rules construct all
quadratic differentials satisfying properties (i) to (iv), and, due to the above
theorem, to any surface we can associate at least one quadratic differential (that of
maximal norm) satisfying properties (i) to (iv).

Let us now turn to the case when the Riemann surface is a sphere with three or
more punctures, and consider the extremal problem 7.1. We will show that in this
case there is a unique quadratic differential in ΦR which has maximal norm, and
that this quadratic differential defines a string diagram which is nothing else than
the string diagram constructed by classical closed string field theory. We will
establish this by giving now a proof of Theorem 3.2.

Proof of Theorem 3.2. (a) The existence is now a simple consequence of
Theorem 7.2. Take a quadratic differential of maximal norm in ΦR9 where £ is the
punctured Riemann sphere (n^ 3). The properties listed in Theorem 7.2, become,
for this case, those listed in Theorem 3.2.
(b) We now show that any quadratic differential φ satisfying the conditions of
Theorem 3.2, is unique. This proves the uniqueness part of Theorem 3.2, and also,
due to (a), that the above extremal problem, that of choosing the quadratic
differential of largest norm, furnishes a unique quadratic differential for the case of
punctured Riemann spheres. The uniqueness does not rule out the possibility that
two different admissible sets do give rise to the same quadratic differential φ with
maximal norm.

The idea will be to show that all candidate quadratic differentials solve the
same minimal area problem. The uniqueness of the extremal area metric will allow
us to show that the quadratic differentials are actually the same.

Consider a quadratic differential satisfying the conditions of Theorem 3.2. We
know that all closed curves homotopic to those in the associated admissible set
have lengths greater or equal to 2π. We have seen that all closed critical trajectories
also have lengths greater or equal to 2π. It now follows that any homotopίcally
nontrίvial curve on the surface will have length greater or equal to 2π. The reason is
that the remaining nontrivial curves must go through annuli joining disconnected
critical graphs, as shown in Fig. 7. Imagine collapsing all the involved annuli,
namely letting T->Ό in all those propagators. In doing this the curve becomes
shorter and turns into a closed curve on the single critical graph obtained by the
collapse of the various disconnected critical graphs involved. Since the original
disconnected critical graphs were restricted polyhedra, the collapsed graph is also
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Fig. 7. In a tree level Feynman graph the closed curve indicated above must satisfy /^

a restricted polyhedron, by the continuity argument of [KKS] (reviewed in
Sect. 3.1). Since any closed curve on a restricted polyhedron exceeds length 2π the
original curve must also exceed length 2π, as stated.

The fact that any closed curve has length greater than 2π has enormous
implications. It follows that the above quadratic differential is the solution to the
following generalized minimal area problem: given a punctured Riemann sphere
find the metric that minimizes the (reduced) area given that all nontrivial
homotopy closed curves have lengths greater or equal to 2π. A priori, there is no
reason why the solution to this problem should involve a quadratic differential.
We know that specifying minimal lengths for curves homotopic to some
admissible set leads to an extremal metric given by the quadratic differential
(Theorem 5.2). But the set of all nontrivial closed curves on a surface is not an
admissible set! Even though one is not guaranteed a priori that the solution is a
quadratic differential, one may try it. The idea is the following. Pick an admissible
set, all curves homotopic to them must have lengths greater than 2π. Under this
condition, a quadratic differential gives the lowest area metric. One is not
guaranteed that other closed curves are longer than 2π, but if the quadratic
differential satisfies the conditions of Theorem 3.2, it will happen, as was shown
above. Then the metric given by the quadratic differential actually minimizes the
area under the condition that all curves be longer than 2π. Suppose this is not true,
then there would exist another metric giving smaller area but still being compatible
with the particular admissible set, in direct contradiction with the fact that the
quadratic differential gives the lowest possible area for a metric compatible with
the admissible set.

It has been shown that a quadratic differential which satisfies the conditions of
Theorem 3.2 actually solves the problem of finding the minimal area metric for
which any closed curve in the surface has length greater than 2π. As we have
shown in Sect. 2.1, this extremal metric must be unique. This implies that if two
quadratic differentials φ and ψ are solutions of the extremal problem, we must
have \φ\ = \ψ\ almost everywhere. Since quadratic differentials are analytic objects,
one must have \φ\ = \ψ\ everywhere.9 Moreover, since they have equal absolute
values they must be (locally) of the form φ(z) = eίθ(z)ψ(z). Then θ(z) must be purely
real, and can only be a constant. Thus the two candidate quadratic differentials
could only differ by a constant phase. This phase, however, must be zero because
we know both quadratic differentials have second order poles with identical
residues (real residues, in fact, since otherwise there would not exist closed
horizontal trajectories near the punctures). Thus φ = ψ and this shows the

9 I thank K. Strebel for clarifying to me the above delicate issues
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uniqueness of the solution. This finishes the proof of Theorem 3.2. In proving
Theorem 3.2 we have also established that:

Theorem 7.3. Consider an n-punctured Riemann sphere. The metric of lowest
(reduced) area under the condition that any nontrivial homotopy closed curve in the
surface have length greater or equal to 2π arises from a unique JS-quadratic
differential satisfying the conditions of Theorem 3.2.

8. On Higher Genus String Diagrams

In this section we try to learn as much as possible about string diagrams for higher
genus using all the tools developed so far. The problem is to find a canonical
definition for those string diagrams. As we will see, the basic idea is to take the
string diagram to be defined by the surface of minimal area under the condition
that all nontrivial closed curves be longer than 2π. We postpone here, to some
degree, a discussion of how these diagrams could arise from a field theory.
Actually, the discussion below is quite reminiscent of the approach to loops
discussed by Sonoda and the author in [SoZw 2], but no effort will be made here to
establish a connection. A different approach to loops, based on subtracting
counterterms has been explored by Saadi [Sa].

The naive Feynman rules of field theory would indicate that we could build all
higher genus punctured Riemann surfaces by gluing restricted classical polyhedra
with tubes (propagators) of circumference 2π. It could be expected that every
surface would be produced once and only once. This does not happen. It is well-
known, from the study of the one-punctured torus [ZZ, GM] that the naive
Feynman rules overcount. We have seen in Sect. 6 that the naive Feynman rules
based on the classical action eventually undercount because of the necessity of
adding the restricted quantum polyhedra. In fact, the naive Feynman rules, using
all restricted polyhedra, classical and quantum, will not miss surfaces as shown
after the proof of Theorem 7.2. For any surface there is at least one (and possibly
several) naive Feynman graphs. The problem, of course is that while they do not
miss surfaces, the naive Feynman rules using all polyhedra do overcount.

For fixed genus g^ l , there exist restricted quantum polyhedra when the
number of punctures is large enough. It is simple to see that there are no one-
punctured restricted quantum polyhedra. This is so because one has a single ring
domain and given that there should be some identifications along its edge, which is
of perimeter 2π, closed cycles representing handles will have circumferences
smaller than 2π. Similarly one can see that the (n = 2, 3; g = 1) restricted quantum
polyhedra vanish too. Finally it is possible to convince oneself that for g = 1, and
sufficiently high n (say ~ 25) there exist restricted quantum polyhedra.

It is convenient to define restricted Feynman graphs.

Definition. A restricted Feynman graph is a Feynman graph built with restricted
polyhedra (classical and quantum) in which any closed curve has length greater or
equal to 2π.

For tree amplitudes every Feynman graph is automatically a restricted one,
but this is not the case for loop amplitudes. Since restricted Feynman graphs are
built from propagators and restricted polyhedra, closed curves homotopic to ring
domains and closed critical trajectories automatically satisfy the length condition;
therefore only a small set of curves needs to be checked. These are curves that
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V
Fig. 8. In a higher genus string diagram a restricted Feynman graph must have all loop curves,
such as lc longer or equal to 2π

correspond to the closed loops in the Feynman graph representation of the string
diagram. An example is the curve lc shown in Fig. 8. Let us call these curves loop
curves. Thus a restricted Feynman graph is a Feynman graph with all the loop
curves longer or equal to 2π. Restricted Feynman graphs are clearly a well defined
notion for vacuum graphs.

Properties of Restricted Feynman Graphs. Let us now show that restricted
Feynman graphs have the following significant properties:

(a) Restricted Feynman graphs construct the surfaces of minimal area under the
condition that any nontrivial closed curve be longer or equal to 2π.
(b) Restricted Feynman graphs do not overcount punctured higher genus
surfaces.
(c) Restricted vacuum Feynman graphs (with critical closed trajectories and loop
curves satisfying the strict inequalities for length) do not overcount higher genus
surfaces without punctures.
(d) Restricted Feynman graphs define a system of factorizable quadratic
differentials.

Let us see why part (a) is true. A restricted Feynman graph defines a JS
quadratic differential giving the minimal area metric under the condition that
some curves be longer than 2π. But since the Feynman graph is restricted, all
curves are greater than 2π and therefore the metric arising from the quadratic
differential solves the generalized minimal area problem. In particular, restricted
quantum polyhedra correspond to minimal area metrics. The correctness of (b) is
an immediate consequence of (a) and the uniqueness of the minimal area metric.
Given two different quadratic differentials one must have \φ\ = \ψ\. As argued in the
previous section, the two quadratic differentials can only differ by a phase. For the
case of punctured surfaces the phase is zero and the quadratic differentials must be
identical, showing the absence of overcounting of punctured surfaces.

Let us now consider (c). For surfaces without punctures we need a more
detailed argument. Assume there are two different quadratic differentials φ and ψ
for the same surface. The non-degenerate ring domains of the two quadratic
differentials must arise from different sets of admissible curves denoted as yφ and yψ.
We will assume that the Feynman graphs are definitely restricted, that is, all closed
critical trajectories making the polyhedra and all loop curves are greater than 2π.
Now, since the admissible sets of curves differ, at least some curve y in one of the
systems must be homotopic to either a critical trajectory or to a loop curve in the
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Fig. 9. Upper left: a JS quadratic differential φ on a genus two surface without punctures. The
heights of the three annuli are π and the circumferences 2π. Upper right: The same surface admits
another quadratic differential ψ = — φ with equal heights and circumferences. The corresponding
admissible set of curves are shown below

string diagram corresponding to the other system (this is true even if one set of
curves is a subset of the other). Since the metrics are the same, curves homotopic to
f have to be longer than 2π, contradicting the fact that there should exist an
annulus homotopic to y with closed horizontal trajectories of circumference 2π.
This proves that all the curves in γψ should be homotopic to those in γφ, and as a
consequence the two quadratic differentials must be identical. The condition that
the inequalities must be satisfied is necessary in order to show that the quadratic
differentials are identical, otherwise they may indeed differ by a phase. An example
of this situation is presented for a genus two surface in Fig. 9. This surface is built
using three cylinders each of circumference 2π and height π. The closed critical
trajectories of two quadratic differentials φ and ψ are shown in the figure. The two
quadratic differentials are related by φ=—ψ, and both have closed horizontal
trajectories of length 2π. The corresponding sets of admissible curves are shown
below, and in fact they correspond to the same Feynman graph configuration. The
surfaces produced when closed critical trajectories or loop curves are equal to 2π
belong to (lower dimensional) boundaries of the regions of moduli space generated
by restricted Feynman graphs. Thus any overcounting here has no physical
relevance, in fact the above example would not correspond to any overcounting at
all because the Feynman graph, and the parameters defining it are the same for
both φ and ψ, and therefore the Feynman rules would construct it once.

Finally, consider property (d). Factorization is of fundamental physical
interest. It was known that the tree level string diagrams of classical closed string
field theory defined a system of factorizable quadratic differentials over the moduli
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spaces of the punctured Riemann surfaces [SoZw 2]. The quadratic differentials of
all the restricted Feynman graphs form a system of factorizable quadratic
differentials over a much larger space. In addition to including the complete
moduli spaces Jί^^ they exist over a subspace of every moduli space of the higher
genus surfaces with and without punctures. Factorization is the result of sewing, or
in other words the use of propagators that include infinitely long tubes in the limit.
Degenerate surfaces should only be obtained when tubes become infinitely long.
This clearly holds for restricted Feynman graphs, given that all closed curves must
exceed 2π, one cannot ever find degenerate surfaces due to the existence of short
geodesies in this metric. All degenerations happen because of long tubes. Given a
set of string diagrams it is simple to check for factorization. One simple picks a
propagator (annulus) in the Feynman graph, cuts it (say along a closed horizontal
trajectory), and each of the tubes is then separately extended to infinity. This
procedure of degeneration gives either a single surface with one less handle or two
separate surfaces. In both cases this operation induces quadratic differentials in the
new surfaces. One has a system of factorizable quadratic differentials if the induced
quadratic differentials obtained by degeneration are precisely the quadratic
differentials that have been assigned to the corresponding surfaces. This does
happen for the restricted Feynman graphs, the result of this operation of
degeneration gives either a single surface or two surfaces that correspond to
restricted Feynman graphs. This is so because as the result of opening up a handle
one cannot possibly introduce a curve shorter than 2π in the resulting surfaces.
Rigorously speaking, in order that the restricted Feynman graphs define a
factorizable set of quadratic differentials one must add a quadratic differential for
the twice-punctured sphere. This is obtained by factorization of the one loop
vacuum graph. Thus we assign to the two punctured sphere a quadratic differential
with two second order poles of equal negative residues making the closed
horizontal trajectories of length 2π. This is just an infinitely long tube of
circumference 2π. One may wish to think of a circle of circumference 2π as a two-
faced restricted polyhedron.

It seems clear, however, that restricted Feynman graphs are not the complete
story for higher genus surfaces. It has not been established that the restricted
Feynman graphs produce all surfaces. It is extremely curious that restricted
Feynman graphs produce exactly the correct one loop vacuum graph (one-loop
cosmological term). Given a cylinder of circumference 2π length / and twist angle
— π^θ^π, the condition that closed paths be of length greater or equal to 2π on
the torus obtained by gluing the two boundaries of the cylinder requires I2 4- θ2

^ (2π)2. Given that τ = {θ + il)/2π, and that the angle condition gives —1/2 ̂  Re(τ)
gl/2, the above length constraint which implies | τ | ^ l , is precisely the missing

condition that singles out the modular region. Despite this encouraging result for
the vacuum graph, it seems to follow from the explicit results of [ZZ], that
restricted Feynman graphs do not produce all the g = n = ί Riemann surfaces. In
particular we seem to be missing the once punctured τ = i torus! Presumably all the
missing higher genus surfaces should be represented by string diagrams defined by
metrics solving the generalized minimal area problem. It is not clear that the
minimal area metrics for these surfaces will arise from JS quadratic differentials
although it would seem somewhat odd in view of the results in this paper if they did
not. This important question should be answered. Some unsuccessful attempts by
the author have led him to believe that perhaps one may have first order poles in
the quadratic differentials. A first order pole in a quadratic differential does not
correspond to a semiinfinite tube (as punctures do). It corresponds to a curvature
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singularity in which there is a defect angle of π. These poles would have appeared
had we tried to give canonical metrics to the once-punctured and unpunctured
Riemann spheres. For the one punctured sphere one must have one second order
pole and two first order poles. This would correspond to a semiinfinite cylinder of
circumference 2π with the circle which is not at infinity closed off, creating in this
way two singular points that correspond to the first order poles. In fact, a path
integral on this surface is really what one means in closed string field theory for the
operation of J Ψ which associates to a string state a number (all this in complete
analogy with the case for open strings as defined in [Wi]). Finally for the sphere
with no punctures one may use a cylinder of circumference and height 2π closed off
at both boundaries. This would correspond to a quadratic differential with four
first order zeroes, located at positions whose cross-ratio is (—1).

9. Comments

In this paper the possibility that a generalized minimal area problem is the
geometrical basis of covariant closed string field theory has been explored. The
most important issue to resolve at this stage appears to be that of finding the
minimal area metric for the surfaces that are not generated by the restricted
Feynman graphs. This would enable us to address conclusively the quantum part
of the string action. It would furnish us with a set of completely factorizable string
diagrams which could be helpful in establishing the finiteness of perturbative string
theory. On the mathematical side, it may allow to extend the cell decomposition
found for the moduli spaces of Riemann spheres, into a cell decomposition for all
moduli spaces of the higher genus punctured and unpunctured surfaces.

There are a few additional questions that have been left open. One concerns
establishing if for any surface R, the set ΦR, defined in Sect. 7 contains a finite
number of different quadratic differentials. If this is the case it would imply that the
naive Feynman rules never produce a surface an infinite number of times. We have
also not tried to give a proof of factorization from the minimal area problem
directly, our arguments were heuristic (see [Zw]). For the case of restricted
Feynman graphs it was simple to prove factorization because the metrics arise
from quadratic differentials. Finally, we have not studied which is, for any g, the
lowest value of n for which there is a restricted quantum polyhedron.

As this work has confirmed, the nontriviality of string field theory lies in that it
captures the information about all Riemann surfaces in an action principle. In this
action principle, the nature of the interactions is dictated by the Riemann surfaces,
while the kinetic operator Q and the arguments of the string field are dictated by a
conformal field theory. A string field theory should be capable of a nonperturba-
tive definition of quantum gravity in two dimensions [DS, GrMi, BK] where
Riemann surfaces play a prominent role. One way of making progress toward a
nonperturbative formulation would be formulating the theory in a background
independent way (a recent discussion of this problem, for the classical closed string
theory, can be found in [Se].)

The elegance of the minimal area problem underlying the perturbative string
field theory suggests that there should be a deep geometrical significance to the
series of interactions defining the theory. Since actions are minimal principles, it is
tempting to speculate that the minimal principle for the Lagrangian of closed
string field theory could be related to the minimal principle defining its string
diagrams.
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