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Abstract. We present a new method of analyzing the gas of hard core spheres. We
investigate analytic properties of the thermodynamic function over the circle of
convergence of the cluster expansion and describe the way in which phase
transition occurs.

1. Introduction

Our aim is to investigate the analytic properties of the thermodynamic function
when intensive variables take values on the positive axis not only in the circle of
convergence of the Mayer expansion or spectral radius of Kirkwood-Salsburg
operator. We use the explicit form of Mayer series coefficients patterned on the
cluster expansion [2] and find furthermore their new formulas for the case of hard
core gas. We formulate an identity for operator valued generating function and
apply it together with an analytic version of Fredholm alternative. Next we explain
how the phase transition can occur. We find new regions of analyticity for a
thermodynamic function. Our method may be utilized in statistical mechanics and
Euclidean field theory.

2. New Form of Mayer Coefficient

In the case when the interaction is a translation-invariant Mayer expansion
coefficients have the following form:
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summations are carried out over all # such that 5(i) <i and #(i) is a positive integer

for i. Here: .,
W(an—l)zl Z Siwee Sj—10(y;— ¥
Si<j=Zn
do,_=ds,...ds,_,,
n—1
f(r’aon—l)=_l=_lzsi—lsi—2"'Sﬂ(i)5 n>2,
fn,0,)=1.
Substituting
W=x;+...+x, k=1,..,n
we obtain:
(=p !
b,= X | do,_y [ dx),-,flk,0,-)
n k[0, 1101 RI-1)
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where k is a positive integer value function such that
0<k(i)<i—1
and
Wo,_,)= i S+ ..+ X)),
1Sigjsn
n—1
f(kao'n—l)=.1:[251'—15:'—2---5k(i), n>2,
flk,oy)=1.
Let
ux)=vx(x), ©)

where y is a characteristic function of the sphere of volume one.
If v— o0 then the potential will approach the potential of hard core spheres
model. For an illustration let us consider the coefficient b,

by=38 [ s, [ ds [P [TW0) 5,0+ ]

x exp — BLs,0(x) + 5,0(y) +515,0(x + )] - )]

We substitute (3) to b, and try to find the limit when v goes to infinity. Let t; =s,0,
t, =s,v in the first term and ¢, =s,v in the second term. Then
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x exp — Bt x(x) +vsox(y) +tisox(x +y)]. )
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The integrands of these two terms are dominated by

x(X)x(v)exp — BLt; +t,]1,
tx(x)x(x+y)exp —2pt, .

Therefore the assumptions of Lebesgue’s Dominated Convergence Theorem are
fulfilled.
In the general case we first make the change s, —»t;. Next in the expression

(6)

n—1

[T v+ ..o+ X i) @)

i=1
we identify a potential with the smallest index i such that i —k(i)>1 and change
s;—t;. Then we look for the new smallest index i’ such that i’ — k(i") > i and make a
change s, —t; and so on.

To justify the correctness of the limiting procedure for b, we should show
integrability of the dominant function. We sketch the proof.

Let j be the greatest index for which we have changed s;—t;in some term of b,,.
We can write part of integrand of this term which depends on x; and ¢; in the
following way:

X6 g X)) e XX+ X — 1)
X(Sjpy oo Sjm1) oo (Sjmpy - Sj— 181 -+ Sjr1—2)
X exp — BLa(X; g, + oo FX)Sj g, oon S gt
F (Xt X 1= 1)Sj kg S 1 iSjat e Sjar—1] -
Integrating by t; we obtain
P [X(xj_k1+ ...+Xj) ...X(xj'_kl'l‘-..+xj'+l_1)(Sj_k1 “‘Sj—l)"‘
o (S Sj— 1841 o Sja1-2)]
XS gy oee Sjm1t oo Sjmpyeee Sjm 1Sy e Sjei—g 1t 8)
We can estimate this factor depending on s by a constant integrating this with

respect to s;,;_; ... S;;; successively. We can repeat this consideration for the next
parts of the term.

3. Analytic Continuation of Mayer Series

In this section we consider analytic continuation of Mayer series.
Let k-component denote one of the terms labelled by k in Eq. (2).

Lemma 1. Assume we have changed variables with indices i€{p,,...,p;} in a
k-component and let the potential v(x;+ ...+ X ;) belong to the same k-component.
Let at least two indices from the set {p,, ..., p,} be contained in the interval [i — k(i), ],
then this component vanishes for v— 0.

Proof. After the change of variables in the component of b, we get

—(ky+...tkn-1—(n—1
v~ k1 1—(n )),

where k; denotes the number of indices in each potential for which this change was
effected. If at least one k; is greater than one, then the integral tends to zero for
v— 0.
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Theorem 1. Assume that for a certain component of the sum (2) which is different
from zero there exists j such, that 1<j<n—1.

k()=0, k(j+1)=0.
Then

n—1
lim fdoyy [ Ao 1f (kG- [T 005t et i)

voo [0,1]n-1
x exp —fW™(a,,)
3 j
= llm j . dO'l Q_‘;j d(x)]f(k, O'J) ‘l=—[1 v(xi + cee + x,— —k(i))

v [0,1}

x exp — W) o;_,)- lim [ doy_j_5 [ dx)p-j-3

v [0,1]7-F"3 R3M=j-3)
n—j—3 .
X flk, 04— j-3) 'H1 vX;t X i) exp — W Ne, _;y). 9)
i

Proof. Under our assumptions we should change variables s;—t;, 5;. 1, t; ;. Then
in the exponent all expressions which contain s;and s; . ; will tend to zero for v— 0
because of

tt.
_ Lttt
USiSjp1=—"—"—.

If the expression on the left-hand side of (9) includes a potential depending on x;
and x;, , simultaneously, then by Lemma 1 this expression equals zero so we can
separate variables which completes the proof.

We introduce a new notation. For i,k=>1,

a=006+ X4 14 o F X )Sit 1 e Sk
X €xXp — BLo(X; 4 1)Si 4k T 00X+ oo+ X4 0)S1 - Sip]
and for k=0, i=1,
a¥=uv(x;) exp — PLo(x)s; + ... +v(x; + ... +X;)8; ... 5] (10)
h denotes the integral over all variables x;, t, s; after limiting procedure. Then:
h(aiibyalis)V ... afid P =h(afQyald), ... alty V) Vi

so we can omit indices (i).
In this notation we can rewrite Theorem 1 in following way:

=h(ayo)A1) - - Hmy@0) - MAp(0)p(1) - -+ Cpny) - (11)
We notice that
(= B)'nb,=hlag(ag+ay)...(ag+... +a,)]. (12)

Let us formulate the following theorem:

Theorem 2. Let of = {a,}, -, denote a free nonabelian algebra over € and h: of >R+
be a linear operator with an additional property, let u;=0 and u;, =0, then

ha,,...a,a,,,...a,)=ha,, ...a,) ha,,, ...a,
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Then we have the following identity in the circle of convergence

z+h[z2ay+23ag(ag +ay) + ... + 2 lag(ag+a,) ... (g + ... +a_ ;) +...]

where

Cp= ; (01(0)41(1) - Oy - 2)a0)a nz3,
C,.=;h(az<o)azm e Qogy), n23, (13)

ci=hay), ci=1, c;=c4,=0.
We sum up over all functions I such that I(i) <1, l(i) is natural number and there is no
such j that I(j)=0, I(j+1)=0.
Proof. The theorem comes out from the following identity:

v L (L)

n=1

We will consider instead of the pressure p(z), a density o(z)
d
o0)=2-p(0).

By Theorems 1, 2 for the gas of hard core spheres we obtain
Z (—=2)c,
Z (—=2)c,

Therefore we have shown that g(z) has an isolated singular point for z, <0 and |z,|
is equal to the radius of convergence for the series g(z). It is known [5] that
12|z,|=e~ 1. But from the physical point of view the singularities on the positive
axis only are interesting. It is clear that the function on the right-hand side of (14) is
an analytic continuation of the series g(2).

ol2)= (14)

4. Analytic Properties of Density

We should investigate properties of the following series:

Y.z, Y.z'c,. 15)

At first we notice that a function I(i), 0 <i<n can be written in the following way:
1) i<k,

()= L(i—ky) kléiékZ, (16)

Li—ky-r) k,Sisn
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where all [, have the same property as the function I(i). So we can write

hayo) - Gyn) = M(@1,(0) -+ A1, 0 1200) -+ Biatha =k -+ B1p(0) -+ Wiy - 1)) -
We observe that each function g (... a; () depends on some of the variables
appearing in the expressions a;, ,)---ay,, ) a0d @, _ o). @, _ ) Thus
functions q, , ... @, my ATE kernels of integral operators.
For an illustration let us consider an explicit example. We can compute:
X0 )x(xy +x5) (1= x(x,))
h(aga,aga a,a,)= dx
( 0%¥1%0%1%1 1) Qjo 017 @ (1+s2)2 1
< | X0e3)x(x3 + x4) (1 —x(x4))
a5 (1454+5,0(x, +x3))?
X(xa +Xs)x(xs +x6) (1 — x(x6))s4
(1(xs) + 54+ 56+ x(xX4 + X5+ X6)5456)*
X dxdx sds,ds,dsedx,dx,dxg . 17
Remark 1. The form of a function a; g, ... @y, in the limit depends on [, and [, _,.
Let us denote the integral kernel by

A, - alp(m)((xs)i(xs) i)

where (xs);=x, ... X;s; ... s; are variables the same as those in

A, y0) - G, Lo ((x8)(x5);)

and (xs); in ay, gy -+~ @1, , ) ((X5){X3),)- _
Let h(ay,0) - - - a1, omy((X3)(x3);)p(xs);) denote the corresponding integral operator
which acts on a function ¢(xs); where

D(xs)j=(xy ... x;81...5) j=1.
We notice that the quantity of variables j depends on [, only.
Remark 2. We have the following inequality:
a0 - al,,(m)((xs)i(xs)j) 20d;,0) - alp(m)((xs)i’(xs) ;) (18)
ifi<i. A
Let E denote the space of sequence ¢ ={¢(xs);} ;5 o, Where @(xs), 1<i<nisa
measurable complex-valued function on #* x [0,17’, ¢,€% and the norm

o 1

l¢llg=sup - sup lp(xs)al,  {>1 (19
nz0 C (xs)neZ3n %[0, 17

is finite, then E is a Banach space.

Let us define the operator
ﬁ(a,p(o) oo Ay omy((x5)(x5);)) - E-L*(#* x [0,17)
in the following way:
ﬁ(alp(O) az,,(m)((xs)i(xs) ))ég = h(az,,(O) e alp(m)((xs)i(xs) )P(xs))), (20)
and the operator A(a, - @, ) : E-E as follows:
ﬁ(atp(O) .. alp(m))(ﬁ = {ﬁ(alp(O) coe O my((X5)i(x5);) $}i; 0- (21)
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Theorem 3. The operator ﬁ(alp(o) <+ G gmy) is compact in E.
Proof. We can write the operator

h(ay, o - - @1, m((X5){(x5),)) : L°(#* x [0,1]) > L=(#* x [0,1]") 22
as a sum of operators which are the tensor product of the operators K,, S,
p=1...r.

(Kpf)(xp—uq’xp—uq+19 “"xp—l)
=Xyt Xp—ugr 1t o FXp) o XXy, + . +xp)x(xp)
'X("'+xp+j—1+xp+j)f(xp+19' ) p+1)dx p+j’

where 1 Su, <u,...<u,=i, and

(Spg)(sp—uqa Sp—uq+ls cees Sp— 1)

Wp+1oWp+2 +
— Sp¥1Sp¥2 - Spijj

= |
10,19 (Sp—uSp—ugt 1 -+ Sp—1F oot Spouy o Spr F L) (S o154 )™

Xg(sp+1 p+1)ds 'dsp+ja

where w, are natural numbers.
We illustrate this on an explicit example. We multiply (17) by

[1—x(x3+x3)] + x(x2 + x3),
[1—x(xs5)]+ x(xs),
[1—x(xq+ x5+ x6)]+ (x4 + x5+ X6)

and we get desired representation.

We show that K, and S, are compact, hence the operators (22) are also
compact. The kernel of Spis continuous with respect to the variabless,_, ...s,_;
and summable so S, is compact. We change the variables in the operator

K, L°°(@3’)—>L°°(923“q) as follows:
Vi=Xp—y T+ X4,
y2=xp—u2+"'+xp—u1+1’

yq=xp_uq+...+xp_uq_l+1,
so K,,: L(#*)—L*(#>%. We notice that the kernel
K(yla R ] y(p xp+ 1> "'9xp+j)

is of compact support and the convergence of the sequence {@,(yy,...,y,)} in
L*(%37) implies the convergence of the sequence

{DnXpus oo F Xy s Xyt o+ Xy py)) in L2().

Thus it suffices to show the compactness of K),: L*(Q)—L*(Q%, where Q is
compact and

SUPPK (V1 - ees Vg Xpt 15 oees Xy JCRIX QI
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We have
I(K,f) (y);_(Klf) (y)ql é ”f ||L°°(!)J')"K((y):p xp+ 15 %% xp+j)
_K((,V)q, Xp+1> ""xp+j)"L'(Qf) >
so we should prove that

v(y)qegq( ),lin;l) ”K((y):p Xp+1s-22s xp+j)_K((y)q: xp+ 15 ""xp+j)“L1(Qf)=0’
Vg (Y)q
(23)

then from the Ascoli Theorem we obtain compactness of the operator K'.
Observe that the difference

/ !
K(yls~-~’yq,xp+19'~',xp+j)_K(yl>”-,yqa xp+1) --'axp+j)

tends to O for y),...,¥;—>y;,...,y, a.c. Hence, from the Lebesgue Dominated
Convergence Theorem (23) follows.

Hence E(a,p@ oo Oy my((x5)(x5);)) is compact. Let us consider the bounded
sequence {9}, ||, <& Since the operators

ﬁ(azpw) e atp(m)((xs)i(xs) ;)
are compact, by applying the diagonal method we can choose a subsequence ¢,
such that sequence _
E(atp(O) e alp(m)((xs)i(xs)j)¢l’)

is convergent in L*(%>' x [0, 17%) for all i. To finish the proof we should show that
for each ¢>0 there exists a natural n such that

||ﬁ(atp(0) ‘e az,,(m)) ($k - (51)”13 <e¢ forall k,I>n, $k’ $1 € {$1} . (24)

Indeed, for each >0 there is n, such that for n>n,,
1 ~ A
C—" I E(azp(O) ee az,,(m)((xs)i(xs) 1)) (Dx— D) Lo

1 !
= 2C'C7 | ﬁ(az,,w) e O my((X8)(x5) ) | Lo S '§7 <e

by Remark 2. So we have
[ ﬁ(“z,w) .. at,,(m)) (d;k - $l)”E

1 ~ A
Smax {SUP C_" [ ﬁ(al,,(O) e alp(m)((xs)i(xs) ) (Dx— D) Lo 3} .

n<no

By exploiting the property of convergence of the sequences

ﬁ(alo(O) ‘e at,,(m)((xs)i(sx) j)az)

we can find such a natural number [, that for k,[> 1, (24) is fulfilled.
The operator series

K@= ¥ =¥ Wy (o - Qrgm) (29)

where I are the functions such that I'({) <i and there is no such j >0 that I'(j)=0, are
convergent for small z by Remark 2 and the fact that we sum over a subset of
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functions (13). Hence (25) is an operator-valued function and by Theorem 3 K(z) is
a compact operator for z belonging to the domain of analyticity of K(z). We have
the following identities for small z:

I1—K@) '()=1+ ¥ c,z",
n=1
I(1-K@) '(w)=1+ L s

where IT¢=¢,, (1)={1,1,...},

1 1 1
(w)= 13 b b PR .
145 1458, +5;5, 14+5;+5;5,+5,5,83

From the analytic version of the Fredholm alternative [3,7], (1—K(z)) ™! is
invertible on the whole domain of analyticity of K(z) but is a discrete set and is a
meromorphic function of z because it is invertible for small z. Hence
II(1—K(z))~ *(1) and II(1 — K(z))~ !(y) are analytic continuations of (15). We can
write

_1-I(1-K(=2)"'(1)

&= i —K(—2) )’ @)

Proposition 1. If z belongs to the domain of analyticity of K(z), then the density o(z)
is an analytic function of z for zZ=0.

Proof. The numerator and denominator of (26) are the meromorphic functions of z.
Analyticity of g(z) arises from the fact that g(z) is an increasing positive and
bounded function of z>0 [5] so it cannot be equal to zero and infinity.

In the one-dimensional case we can calculate the exact activity as a function of
the density [4]

_ e 4
Z__—I——QeXp—i—Q’

where v(x)= oo for |x|<1 and v(x)=0 for |x|>1.

We note that g has an isolated singularity for z= —e~! and ¢ becomes infinite
at this point. Hence it is compatible with (14). The density g is an analytic function
of z on the positive real axis. In one-dimension many terms in the coefficients ¢, and
¢, vanish, for instance h(aoa,a,q;, ...a,)=0 for an arbitrary function /. In
dimensions greater than one these terms do not vanish. Hence it is expected that
analytic properties of K(—z) are different than in the one-dimensional case.

An analysis of the formula (26) may suggest that one of the following
alternatives holds:

a) K(—z)hasasingularity on the positive axis and it is infinite at this point. Then a
phase transition occurs for ¢ =1/2.

b) K(—z)has a singularity but it is finite at this point. Then a phase transition can
occur for another value of g.

c) K(—z)is analytic at all points of positive axis so any phase transition does not
occur as in the one-dimensional case.

From numerical experiments (for example [1]) it seems that the first possibility
holds.
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