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Abstract. We present a new method of analyzing the gas of hard core spheres. We
investigate analytic properties of the thermodynamic function over the circle of
convergence of the cluster expansion and describe the way in which phase
transition occurs.

1. Introduction

Our aim is to investigate the analytic properties of the thermodynamic function
when intensive variables take values on the positive axis not only in the circle of
convergence of the Mayer expansion or spectral radius of Kirkwood-Salsburg
operator. We use the explicit form of Mayer series coefficients patterned on the
cluster expansion [2] and find furthermore their new formulas for the case of hard
core gas. We formulate an identity for operator valued generating function and
apply it together with an analytic version of Fredholm alternative. Next we explain
how the phase transition can occur. We find new regions of analyticity for a
thermodynamic function. Our method may be utilized in statistical mechanics and
Euclidean field theory.

2. New Form of Mayer Coefficient

In the case when the interaction is a translation-invariant Mayer expansion
coefficients have the following form:

n η [o, i ] n - 1 m^n-\)

x "ff Φ , +1 ~ 3 W e x P -βWin\σn- x) (1)
i 1



44 M. Gorzelanczyk

summations are carried out over all η such that η(ί) ̂  i and η(i) is a positive integer
for i. Here:

dσn-1=ds1...dsn-l9

n-ί

Π

Substituting

J>fc = Xi+ . . . + * * , k=l,...,

we obtain:

x " π « ( ^ + ••• + * i - * ( o ) e x p - j 5 ^ ( π K - i ) , (2)

where fc is a positive integer value function such that

and
Wn(σn.1)=

f(k,σn_ί)=

Let

ι<x) = »Z(x), (3)

where χ is a characteristic function of the sphere of volume one.
If ί;->oo then the potential will approach the potential of hard core spheres

model. For an illustration let us consider the coefficient b3,

b, =i/? 2 )ds1 ί ds21 d3x $d3y[{v(x)v(y) + Slv(x)v(x + j,)]
0 0

x exp - /?|>iφc) + s2v(y) + sίs2v(x + y)~]. (4)

We substitute (3) to b3 and try to find the limit when υ goes to infinity. Let t1=sίv,
t2 = s2v in the first term and tί=s1v in the second term. Then

63 = \β2 \dh ϊϊ
-β[tl

x χ(x)χ(y)exp -β[tlX(x) + t2χ(y) + ί1ί

+ j/>2 J }
0 0

x exp - βlta(x) + ̂ 2χ(j;) + t^χix + y)] . (5)
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The integrands of these two terms are dominated by

(6)

Therefore the assumptions of Lebesgue's Dominated Convergence Theorem are
fulfilled.

In the general case we first make the change s1->t1. Next in the expression

. + Xi-Ki)) (7)

we identify a potential with the smallest index ί such that ί — k(i)> 1 and change
sf-> tt. Then we look for the new smallest index ΐ such that ΐ — k{ΐ) > i and make a
change sv-*tv and so on.

To justify the correctness of the limiting procedure for bn we should show
integrability of the dominant function. We sketch the proof.

Let j be the greatest index for which we have changed S/-•£/ in some term of bn.
We can write part of integrand of this term which depends on Xj and tj in the
following way:

...χ(xj_kί + xj)...χ(xj-kι + ...+xj+ι_1)

X (Sj-ki ' Sj- l) (Sj~kι Sj~ltjSj+ 1 * Sj + l-2)

-ki+ ..+Xj)Sj-kί...Sj-1tj+...

+Xj + l-l)Sj-kι '" Sj-ltjSj+l '•• Sj + l-1J -

Integrating by tj we obtain

"'ίxiXj-k1+ ~' + Xj) — X(Xj-ki + '~+Xj+i-i)(Sj-kl~>Sj-i)~.

'" (Sj-kι "' Sj-lSj+ί ••• Sj + l-2)Δ

xlSj_kί...sj-ί + ...+sj-kι...Sj-ίsj+1...sj+ι_1γ-1. (8)

We can estimate this factor depending on s by a constant integrating this with
respect tosj+ι-1...sj+1 successively. We can repeat this consideration for the next
parts of the term.

3. Analytic Continuation of Mayer Series

In this section we consider analytic continuation of Mayer series.
Let fc-component denote one of the terms labelled by k in Eq. (2).

Lemma 1. Assume we have changed variables with indices iε{Pi,...,Pι} in a
k-component and let the potential v(xt + . . . + xfc(i)) belong to the same k-component.
Let at least two indices from the set{pu..., pt} be contained in the interval [i — k(i), ί]9

then this component vanishes for i -xx).

Proof. After the change of variables in the component of bn we get

where kt denotes the number of indices in each potential for which this change was
effected. If at least one fcf is greater than one, then the integral tends to zero for



46 M. Gorzelaάczyk

Theorem 1. Assume that for a certain component of the sum (2) which is different
from zero there exists j such, that l^j<n — l.

Then

n-l

lim J dσn_γ J
y->oo [O.l]"- 1 «3(n-i) i = 1

x exp-/»**>„_ J

= lim J Ax, f <*(*)/(£, σ, ) Π tfo + + Xi-fc(i))
t>»oo [ O 1 ] J a 3 ί i = l

^-lim f dσn.}.3 J

^ ^ - , . ^ ) . (9)

/ Under our assumptions we should change variables Sj^>tp sj+15 tj+ v Then
in the exponent all expressions which contain Sj and sj+ ί will tend to zero for v-> oo
because of

vsjsj+ί- ~

If the expression on the left-hand side of (9) includes a potential depending on Xj
and xj+1 simultaneously, then by Lemma 1 this expression equals zero so we can
separate variables which completes the proof.

We introduce a new notation. For i,fe^ 1,

x exp - β[v(xi+k)si+k + v{xx + . . . + xi+k)sί... si+k]

andforfc = 0, i ^ l ,

a^=v(xt) exp - j8[tfa)s, + . . . + v(x1 + . . . + xi)sί... s j . (10)

h denotes the integral over all variables xhtbsi after limiting procedure. Then:

• al(n) — nKal(0)al(l) ''' al(n) ) l l

so we can omit indices (i).
In this notation we can rewrite Theorem 1 in following way:

'"ap(n))

= % O ) « ί ( l ) <ll{n)aθ) ' MβjKoAKi) ap(n))

We notice that

(-βrnbn = hlao(ao + ai)...(ao + ...+an)l. (12)

Let us formulate the following theorem:

Theorem 2. Let si = {ak}k=0 denote a free nonabelian algebra over Ή and h\stf-*0t+

be a linear operator with an additional property, let wt = 0 and uί+i=0, then

h(auι... aUiaUi+ι... aj = h(aUί... au) h(aUi+ί... β j .
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Then we have the following identity in the circle of convergence

Σ
n = ί

where

^ = 1 ^ / ( 0 ) ^ 1 ) <*/(„- 2)*θ) > * ^ 3 >

< = Σ M%»β/<i) <*,(„- 2)) > n ̂  3 , (13)

c1=h(a0), c\ = ί, c2 = c'2 = 0.

We sum up over all functions I such that l(i) ^ i, l(ϊ) is natural number and there is no
suchj that J(/) = 0, Z(/ + l) = 0.

Pmo/ The theorem comes out from the following identity:

1 Jί zV =
1— L Z Cn k

n= 1

We will consider instead of the pressure p(z% SL density ρ(z)

Q(z) = z—p(z).

By Theorems 1, 2 for the gas of hard core spheres we obtain

Σ (-«

Therefore we have shown that ρ(z) has an isolated singular point for z0 < 0 and \zo\
is equal to the radius of convergence for the series ρ(z). It is known [5] that
1 ^ kol = ̂ ~ 1 ^ u t from the physical point of view the singularities on the positive
axis only are interesting. It is clear that the function on the right-hand side of (14) is
an analytic continuation of the series ρ(z).

4. Analytic Properties of Density

We should investigate properties of the following series:

At first we notice that a function /(/), O^i^n can be written in the following way:

(16)
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where all lq have the same property as the function l(i). So we can write

h(am ... am) = h(ah(0)... ah{kι)al2{0)... ah{kl_ki)... alpi0)... alp(n^kp_0).

We observe that each function alp(0)... alp(m) depends on some of the variables
appearing in the expressions alp+ιi0)...alp + ί(mΊ and alp_m...alp_ί(mΊ. Thus
functions at ( 0 ) . . . ax ( m ) are kernels of integral operators.

For an illustration let us consider an explicit example. We can compute:

ί
l

(X(*5) + s4 + sβ + χ(x4

x dx3dx5ds2ds4ds6dx2dx4rdx6. (17)

Remark ί. The form of a function α^ ( 0 ) . . . α ί p ( m ) in the limit depends on lp and lp_v

Let us denote the integral kernel by

where (xs)i = x1... xis1... st are variables the same as those in

and (xs), in αZp + l ( 0 ) . . . alp + ίimΊ((xs)/xs)r).
Let /z(α/p(0)... aιpim)((xs)£xs)j)φ(xs)j) denote the corresponding integral operator

which acts on a function φ(xs)j9 where

φ(xs)j = φ ( x 1 . . . Xfr ...Sj) 7 ^ 1 .

We notice that the quantity of variables j depends on lp only.

Remark 2. We have the following inequality:

aιP(0) %(m)((xsUxs)j) ̂  alpi0)... alpim)((xs)v(xs)j) (18)

Let E denote the space of sequence $ = {φ{xs)j}j^φ where φ(xs)h 1 ̂ ί^n is a
measurable complex-valued function on ^?3l'x [0,l] f , ΦQEW and the norm

^ s u p Iφ^J^ C > 1

is finite, then E is a Banach space.

Let us define the operator

tfK(θ) %a(xsUxs)j}): E^L°°(^ 3 ί x [0,1]*)

in the following way:

#flip<o) %(m)((xsUxs)j))$ = h{alpi0)... alpim)((xsUxs)j)φ{xs)j), (20)

and the operator /Γ(αZo(O)... αZ p ( m )):E->E as follows:

%(m))$ = {R%(0) αip(m)((^)i(^s)j) ̂ }i^ 0 (21)
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Theorem 3. The operator H(alpi0)... alp(m)) is compact in E.

Proof. We can write the operator

h(alpi0)... alpim)((xsUxs)j)): L° °(^ x [0, l ]^L°°(^ 3 ί x [0,1]1) (22)

as a sum of operators which are the tensor product of the operators Kp, Sp,
n = 1 ... r.

where 1 ̂  u1 < u2 ... < uq = i, and

+i ...sp+j)dsp+1 ...dsp+j9

where wk are natural numbers.
We illustrate this on an explicit example. We multiply (17) by

[1 - χ(x4 + x5

and we get desired representation.
We show that Kp and Sp are compact, hence the operators (22) are also

compact. The kernel of Sp is continuous with respect to the variables sp-Uq...sp_ί

and summable so Sp is compact. We change the variables in the operator
Kp:L

a3(3l3J)->L«>{gi3uή as follows:

y<l = XP~uq + + Xp~uq- ! + 1 •>

so X L ^ ^ ^ ^ L 0 0 ^ 3 ^ ) . We notice that the kernel

•••j)7^ Xp+D -->Xp + j)

is of compact support and the convergence of the sequence {φn(yu .,yq)} in
Π°(^i3q) implies the convergence of the sequence

Thus it suffices to show the compactness of K'p:L™(Ωj)-+U:>(Ωq\ where Ω is
compact and
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We have

\{K'f){y)'q-{K'f){y)q\^

so we should prove that

V(3/),eΩ9 lim \\K((yyq,xp+1,...,xp+J)-K((y)q,xp+1,...,xp+j)\\LHΩJ) = 0,
<*-<* ( 2 3 )

then from the Ascoli Theorem we obtain compactness of the operator K'.
Observe that the difference

tends to 0 for y\, ...,)>g->)Ί, -.-,yq a.e. Hence, from the Lebesgue Dominated
Convergence Theorem (23) follows.

Hence ft(alp(Oj...at (m)((xs)£xs)j)) is compact. Let us consider the bounded
sequence {φ}, \\φt\\^C. Since the operators

are compact, by applying the diagonal method we can choose a subsequence φv

such that sequence

is convergent in L°°(^?3ί x [0,1]*) for all i. To finish the proof we should show that
for each ε > 0 there exists a natural n such that

% ( ) % ( ) I I E ^ ε for all k,l>n, φk, fae{$v}. (24)

Indeed, for each ε > 0 there is n0 such that for n>n0,

S2C- \\fi(alp{0)... a^ixsUxs)^^^ ~ ^ε

by Remark 2. So we have

\\R%(0)'-%(m))(fa-fa)\\E

S m a x < sup — || fi{alp{0)... aMm)((xsMxs),.)) ( 4 - fa) \\ L«>, ε >.

By exploiting the property of convergence of the sequences

£K(0) aιp(m){(χs)i(sx)j)$ι)

we can find such a natural number /0 that for kj>lo (24) is fulfilled.
The operator series

Σ Σ ( , «r(m)), (25)
m= 1 /'

where ϊ are the functions such that Γ(ί) ̂  i and there is no such; > 0 that /'(/) = 0, are
convergent for small z by Remark 2 and the fact that we sum over a subset of
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functions (13). Hence (25) is an operator-valued function and by Theorem 3 K(z) is
a compact operator for z belonging to the domain of analyticity of K(z). We have
the following identities for small z:

Π(ί-K(z))-\ί) = ί + Σ c'nz\

where Π$ = φ0, (1) = {1,1,...},

1 1
(v)= i.

From the analytic version of the Fredholm alternative [3,7], (1—J^(z))"1 is
invertible on the whole domain of analyticity of K(z) but is a discrete set and is a
meromorphic function of z because it is invertible for small z. Hence
77(1 -K(z))~ι(\) and 77(1 -K{z))~\ψ) are analytic continuations of (15). We can
write

l - 7 7 ( l - K ( - z ) ) " 1 ( l )
Q{Z) ~ 2 - 77(1 - K( - z))" \ψ)'

Proposition 1. If z belongs to the domain of analyticity of K(z), then the density ρ(z)
is an analytic function of z for z ̂  0.

Proof The numerator and denominator of (26) are the meromorphic functions of z.
Analyticity of ρ(z) arises from the fact that ρ(z) is an increasing positive and
bounded function of z > 0 [5] so it cannot be equal to zero and infinity.

In the one-dimensional case we can calculate the exact activity as a function of
the density [4]

Q

1-ρ 1-ρ

where v(x) = oo for | x | ^ l and v(x) = 0 for | x |> l .
We note that ρ has an isolated singularity for z = — e~* and ρ becomes infinite

at this point. Hence it is compatible with (14). The density ρ is an analytic function
of z on the positive real axis. In one-dimension many terms in the coefficients cn and
c'n vanish, for instance h(a0a1a2ah... alk) = 0 for an arbitrary function /£. In
dimensions greater than one these terms do not vanish. Hence it is expected that
analytic properties of K( — z) are different than in the one-dimensional case.

An analysis of the formula (26) may suggest that one of the following
alternatives holds:
a) K( — z) has a singularity on the positive axis and it is infinite at this point. Then a
phase transition occurs for ρ = l/2.
b) K( — z) has a singularity but it is finite at this point. Then a phase transition can
occur for another value of ρ.
c) K( — z) is analytic at all points of positive axis so any phase transition does not
occur as in the one-dimensional case.

From numerical experiments (for example [1]) it seems that the first possibility
holds.
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