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Abstract. Higher rank Virasoro algebras are defined and their properties studied:
triangular decompositions, automorphism groups and finite dimensional
subalgebras.

In the following paper we generalize what has recently been called the Virasoro
algebra. We reluctantly continue to call that algebra the Virasoro algebra, since
in [1] the algebra appears (only implicitly) without the central extension. Such an
algebra was well known to E. Cartan [2] and was extensively studied [3,4,5]
before World War II, on a suggestion of E. Witt, as an example of a simple Lie
algebra (of infinite dimension over C and of finite dimension over F of char > 0).
With the central extension added, the algebra is not simple but its representation
theory is*much richer. The central term apparently appeared for the first time in
[6] with a footnote reference to J. Weis.

The purpose of this article is to generalize the notion of Virasoro algebras of
rank 1 to higher rank Virasoro algebras and explore its algebraic properties like
triangular decompositions, the automorphism groups and the finite dimensional
subalgebras. Six representative examples are described in the last section. A
comprehensive exposition of the rank one Virasoro algebra and its representations
is found in [7].

1. Definitions

In [2] the infinite simple Lie algebra L(Z/<E) with basis elements e^jeΈ) and
multiplication rule

Lej9ek]=(k-j)ej+k (1)

* Work supported in part by the Natural Sciences and Engineering Research Council of Canada
and by the Fonds FCAR du Quebec
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over the complex number field C was defined as an example of a simple infinite
dimensional Lie algebra. Using the same multiplication rule, but indices j running
over the prime field of a field of characteristic /?, a finite Lie algebra L(Zp/<E) was
defined by E. Witt (see [3,4]) providing examples of simple finite dimensional Lie
algebras of prime characteristic p in case p > 2.

In [4] the finite dimensional simple Lie algebras L(M/F) with basis elements
ea(cceM) and multiplication

lea,eβl=(β-*)ea+β (α,j?eM), (2)

generalizing (1) were defined for any finite submodule M of a field of prime
characteristic. By the same calculation for any submodule M of a field IF the
algebra L(M/F) with basis elements eJμeM) and multiplication rule (2) turns out
as a Lie algebra of dimension equal to the cardinality \M\ of M over the field F
that is simple in case M is noncyclic or in case M is cyclic of order > 2.

The central extension F(Z/C) of L(Z/<C) was introduced by J. Weis (see [6]).
It plays an important role in many applications. What role is played by the
universal central extension V(M/(C) of the Lie algebra L(M/<E) corresponding to
the free submodules M of C of higher rank?

We remark that there holds the module decomposition

L ( M / F ) = © F e α (3)
αeM

for any submodule M of any field F which is both a finest grading in the sense
defined in [8] and a Cartan decomposition relative to the Cartan subalgebra F e 0 .
Therefore for any central extension £ given by the exact sequence

(4)

and the condition

[£,*N] = 0 (4b)

it follows that the ε-inverse image

H = ιN + Ff0 (f0e29εf0 = e0) (5)

of ¥e0 is the Cartan subalgebra of fl satisfying

(6)

so that the one dimensional linear spaces F/ α are the root spaces (see [9] 7.1 for
the Virasoro case). Hence we can extend any F-basis of the center N of £ to an
F-basis of fl by means of basis elements fΛ with αeM, where

εfa = ea (aeM). (7)

Thus there holds the multiplication rule

ίLJβi =(β~ «)fa+β + δΛ,_βφ)V (8a)

with c(α) in F. Anticommutativity provides the conditions

c(0) = 0, c ( - α ) = - φ ) , (8b)
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the Jacobi identity provides the conditions

Φ + β) = ( 0 - « ) " ' { - (« + 2β)φ) + (2α + β)c(β))} (α,/?6Aί,α Φ β). (8c)

Together they characterize the 2-cocycles of L(M/F) with trivial action. Well
known examples of 2-cocycles are obtained by setting

c1(α) = α (8d)

or

c2(α) = α3. (8e)

Supposing now that the module M is cyclic Φ 0:

M^Zb, (Oφb.eΨ),

then the conditions (8b), (8c) enable us to compute c(jbγ) uniquely as soon as the
values of c(6x) and c(2b1) are known. This is because

c(0) = 0,

c(-b1)=-c(b1l

c(-2bί)=-c(2bιl

(n + 1)&! = πftj + fej if neΈ>0, n\Ψφ\Ψ

(-rήb^-inbj if neZ>0.

But the F-linear combinations of the 2-cocycles cl9c2 can be used to match any
prescribed values oϊc(b1),c(b2) so that every 2-cocycle is an F-linear combination
of c 1 ? c 2 .

At characteristic 2 we have 2b x = 0 so that F c 2 *= Ψc1, at characteristic 3 we have
2bx = — bλ so that F c 2 = F c x . At all other characteristics the two cocycles cί,c2 are
linearly independent and form an F-basis of the 2-cocycle module.

We remark that the 2-coboundaries are provided by the F-multiples of c1.
Hence we have

Theorem 1. The Virasoro algebra F ( Z 1 I F / F ) corresponding to the Cartan-Witt Lie
algebra L(Έ\F) has the basis elements

e α (αeM), <€ (9a)

for M = Έ\Ψ with multiplication rules

ίea,eβ]=(β-a)ea+β + β*δat_βV (ocJeM), (9b)

|>β,ςf| = O (αeM) (9c)

if the characteristic of F is not 2 or 3.
There holds the isomorphism

F) (char(F) = 2,3). Π

The basic multiplication rules (9a-9c) of the generalized Virasoro algebra
express the fact that V(M/Έ) is given in terms of fine gradings (see [8]) which
happens to be a Cartan decomposition. Its grading group is an abelian group
isomorphic to M.
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Remark. The multiplication rule (9b) can be replaced by any rule

leβ,eβ] = (β- Φa+β + {yxβ + y2β
3)δ*.-fiV (9e)

with constants yί9 y2 in F such that y2 Φ 0. It is customary to use the normalization

le*>eβ] = (β- *)ea+β + Uβ" ~ PίK-β** ( 9 f)

because in this case the elements eo,e-ί,eί form the F-basis of the 3-dimensional
simple Lie algebra isomorphic to s/(2, F) and for natural number arguments β φ 2
we obtain the smallest possible integer expression.

Now let us turn to the case that there is a basis ft1?ft2,...,ftd of the additive
abelian group M with d > 1. In that case the values c(ftx), c(ft2),..., c(bd) suffice to
compute uniquely all other values in agreement with (8b), (8c). This is because

c(0) = 0,

c(-bt)=-c(bt) (l^iSdl

2ft1=(ft1+ft.) + (ft1-ft.) (l<ϊgd),

We observe that cι,c2 are linearly independent over F so that there is a unique
F-linear combination c' of c l J c 2 satisfying

(c-c'){bj) = 0 for ; = 1,2. (9g)

As above the 2-coboundaries are provided by the F-multiples of cί.
We remark that the Jacobi identity implies the 2-parametric formula

(c - c^ξ.b, + ξ2b2 + b) = (c- c'M.b, + (ξ2b2 + ft))

= (̂ 2^2 + ft - { A Γ J(ft - ξ2b2Γ
1(2ξίb1 + £2ft2.+ ft)(2ξ2ft2 + ft)(c - c')(ft)

= (^ft! + ft - ξ2ft2Γ x(ft - ξ1b1Γ
1(2ξ2b2 + ξφ, + ft)(2£A + ft)(c - c')(6)

t (9h)

for ίi > 2. It implies that c = c' in case char(F) Φ 2 so that

Theorem 2. If the field F w «oί of characteristic 2 then the generalized Virasoro algebra
V(M/Έ) corresponding to the simple Lie algebra L(M/F) over a submodule MofΨ
has the basis elements (9a) with multiplication rules (9ft), (9c). But for char(F) = 2
any value assignment ofc(bi),...,c(bd) in F leads to a 2-cocycle c so that the center
of V(M/ΊF) has F-dimension d — 1. •

2. The Automorphism Group of the Generalized Virasoro Algebra
for Characteristic Zero

For the study of the structure and of the representations of the generalized Virasoro
algebras over a field F of characteristic 0 we use the additive orderings of a module
M as a tool. Any total ordering of M with the property that the sum of two
positive elements of M is positive is said to be an additive ordering. We observe
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that α > 0 implies that — α < 0, because α + (— α) = 0. We also observe that additive
orderings only exist if the additive group M contains no elements of finite order
> 1, i.e. M is torsion free.

The positive elements of an additively ordered submodule M Φ 0 form a
halfmodule not containing 0. Conversely, any semimodule S contained in M that
does not contain 0, is contained in a maximal subsemimodule S' of M of the same
kind. Of course both satisfy the cancellation property so that they are halfmodules.
And if the element y of M is not contained in S then by assumption, the
subsemimodule Z>oyv{'E>oy + S')uS' containing both y and Sf also contains 0.
Hence either y = 0 or there holds an equation λy + z = 0 with λeZ>0, zeS'. If also
— y is not contained in S' then there also holds an equation λ\ — y) + z' = 0 with
λ'eZ>0, z'eS' so that 0 = λz' + λ'zeS\ a contradiction. It follows that -yφSf. Hence
Sf is the positivity set for the additive ordering

a> <=>a — beS' (a,beM)

of M. Thus it follows that any semimodule S contained in M that does not contain
0 is contained in the positivity subset of some additive ordering of M. In particular,
every non-zero element of M can be made positive for some additive ordering of M.

We can define an additive ordering of a rankr module M by using an
appropriate Z-basis bγ,b2,...,br of <f}M to which we apply the lexicographic
ordering of M

if and only if for some index j

ξj>ηj and ξι = ηi9 (l^i<j).

Extending the range of the coefficients ξl9ξ2,...,ξr beyond Q to the reals the
r

positive linear combinations ]Γ ξ. x bt define a halfflag of the R-linear space
r = 1

R ( X ) M relative to the basis bί9b2, ..,br.
Q

Definition 1. The halfflag of the ^-linear space M relative to a well ordered basis
bί,b2,... is the union of disjoint halfmodules Hι,H2 ,H3,...

H2: λ2b2+ Σ λibh λ2>0
i>2

H3: λ3b3+ΣWι, Λ3>0
i > 3

D

We realize that the R-linear subspaces R / / 1 , R / / 2 ^ ^ 3 ? generated by the
i/ 1 , i/ 2 , i f 3 , . . . form the flag

corresponding to the R - basis b 1 ? b2, b3,... of M, and that for this interpretation
Hi is an open halfplane of <//,->.
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The halfϊlag remains invariant under positive triangular basis transformations

b{ ->b\ = α,Λ + £ otikbk (α« > 0, αιfceR if i < k).
k>ί

Any other linear basis transformation of M carries the given halfflag into another
halfϊlag distinct from the given one.

For example the numbers α + βί for which either α is a positive real rumber
or α = 0 and β is a non-negative real number, form a halfϊlag consisting of a
halfplane and a halfline. Arbitrary halflags are obtained as the images of
non-singular affine transformation fixing the origin.

We see that the complex numbers a with positive real part are "infinitely larger"
than the purely imaginary numbers b in as much as a > λb for all rational integers.

Two positive elements α, b of an additively ordered module m are said to be
comparable (in magnitude) if there are natural numbers /c, λ such that κa>b,a> λb.
This relation is an equivalence relation. The number of comparability classes is
said to be the rank of the additive ordering. It is at most equal to the rank of the
module M, i.e. to the Q-dimension of <Q(x)M.

Έ

The additive orderings of a rank r module M which were defined above by
means of a Q-basis of the Q-module Q(X)M may be said to be the regular, additive

z
orderings. They are characterized by the equality of the order rank and r.

An example of an irregular additive ordering of a torsion free module of rank
2 is provided by the set of numbers a + by/ϊ (a9beZ) whith natural ordering on
the real line where the module rank is 2, but the rank of the ordering is 1. Essentially
the same situation is provided by the Gaussian integers a + bi (a,beZ) with
"unnatural ordering" a + bi>c + di<=^>a — c + -yjϊib — d)>0.

Irregular additive orderings exist in case r > 1. They are obtained upon using
an epimorphism μ of R(X)M on R 1 X p with peZ, 1 ̂  p < r, such that μ restricts

TL

to a monomorphism on M.
We obtain the corresponding irregular additive ordering of M by retrenchment

of the lexicographic additive ordering of R 1 Xp:

a > b ( , ) μ ( ) , , ,
(ieZ, 0 ^ i < p, ^ e R (i <j ^ ρ\ ξi+1 > 0).

We apply additive orderings of M to the study of finite dimensional subalgebras
of the Virasoro algebra K(M/F) over fields of zero characteristic and to the study of
the automorphism group of V(M/Ψ) over F.

Every additive ordering of M gives rise to a corresponding triangular
decomposition

V(M/Ψ) = K(M/F)+ θ V(M/Ψ)0 θ K(M/F)_

of the generalized Virasoro algebra into the direct sum bf the F-subalgebras

α>0
aeM
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α<0
αeΛί

such that

[K(M/F) 0, F(M/F) ± ] = V(M/¥)±9

[F(M/F)o,F(M/F) o = 0.

The triangular decomposition is a coarsening of the basic grading, but it is not
itself a grading. It is useful in dealing with representations of V(M/¥). In particular
it implies the existence of highest weight representations [10] for the algebra
V(M/¥).

Lemma 1. For any two elements x,y of the generalized Virasoro algebra V(M/¥)
that satisfy an equation

[x, y] = λy

with λ in F, we have either

xe¥c€, λy = 0

or

or
λy Φ 0; x,ye¥e_a + Ψe0 + ΨeΛ

for some <xΦθ of M. •

Proof Let xφψ<g9yφ¥<#. Using an additive ordering of M we present x,y in the
form

x = λ0W + X λteat9 y =

oc1<ct2< <(xpjι<β2<-.<βσ).

Ua1φβί then the lowest term of [x, j;] relative to the additive ordering of M
is λιμι(βί-oLι)eΛι+βι which is not zero. Hence λφθ9 α t = 0 in case α ^ j ? ! .
Similarly λφO, αp = 0 in case ocpφβσ. Hence α 1 = j 8 1 , ocp = βσ in case 2 = 0.
Therefore lx9y-λϊμ^ίx] = 09 where y-λφ~ιx would have lowest term with
M-index > ct1 in case it would not be contained in F # . Hence yeΨx

Next we deal with the case that λ φ 0, y Φ 0. If p = 1 then we have

σ σ

l*>y\ = ̂ i Σ vλβj - *j)e*j+βj = λΣ Wh*

hence

σ = l , ^

It remains to deal with the case that p > 1. Now it is not possible that both
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oιί = 0, 0Lp = 0. Since there is the automorphism

K: K(Λί/F)->F(Λf/F),

κ(ea)=-e_a (αeM),

ic(<jf) = - <€

of V(M/ΊF) of order 2 over F which reverses the given additive ordering of M we
can assume without loss of generality that ccx= β1.

Since [*,)/] = λy it follows that α2 + /?2 =
 αi>/?2 = 0. if αp = /?, then it follows

by a similar argument that βσ_1=0. Hence σ = 3, <xί = j?x < β2 = 0 < β 3 = α0. If
αx > — /?3 then (X1+β3 occurs among the /Ps. This is impossible because
0<a1 + β3 <β3. Hence ot1^—β3. Similarly it follows that ap**—β1. Hence

If α, φ βj then αf + β} occurs among the β's. It follows that either p = 2 or p = 3,
α2 = 0. In any event we have

x, yeFe.a + F e 0 + F e α + Έ<€. Q

We use Lemma 1 to determine the structure of the automorphism group
Aut(K(M/F)). Firstly there is the normal subgroup AutF(K(M/F)) formed by the
automorphisms of (V(M/Ψ) over F . The factor group is represented by the group
Aut (F) r formed by the automorphisms ω' of V(M/Έ) for which

ω'(λV) = ω(Xβ, ω'(λeΛ) = ω(λ)ea (λeF, αeM, ωeAut (F)).

They form a subgroup of Aut(K(M/F)) that is isomorphic to Aut(F) such that

Aut(F(M/F)) = Aut(F) < K AutF(F(M/F)). (10)

Theorem 3.

(a) The center of the automorphism group Aut(K(M/F)) of the generalized Virasoro
algebra V(M/Ψ) over F consists of the automorphisms

forming the one parametric central subgroup

(b) The isomorphisms/:M->F\0 (additive to multiplicative) of the module M onto
the multiplicative group Jί(M/Έ) (a subgroup of the multiplicative group F ) form
an abelian group under Ψ-multiplication that is isomorphic to the normal subgroup
Jί(M/Έ) of AutF(K/F) formed by the automorphisms

κ:V{M/¥)-+V(M/F)

(c) The Ψ-multipliers of M consisting of the elements ζe¥ satisfying (M = M form
a subgroup £f(M/W) of the multiplicative group of F that is isomorphic to the
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subgroup 6f(M/W) of AutF(M/F) consisting of the scale change automorphisms

/c" = κf K(M/F)-F(M/F)

(d) The automorphism group of the generalized Virasoro algebra V(M/Ψ) over the
characteristic zero field F is the semidirect product of^(M/Ψ) over the direct product
of the normal subgroup Jt(M/Έ) with the central subgroup ̂ (AutF(K(M/F))),

AutF(F/F) = y(M/F) x\(J((M/Ψ) x

Proof. Any automorphism ω of V(M/ΊF) over F preserves Eqs. (9b) so that

[ω(έ?0), ω(eα)] = otω(ea) (αeM),

<o(e0) = f(0)ea + λ (/(0),ΛeF0#/(0)) (lla)

ω(eΛ) = f{φg(a)λ (0 Φ /(α)eF, 0 Φ g(a)eM, λeΨO Φ αeM) (1 lb)

according to Lemma 1. Because of the automorphism property of ω we have

where we set g(0) = 0 and g(M) = M, also

/(« + « = /
finally

0(α) = ζα (αeM) (lid)

for some ζ of F, and

C 3 <^ (He)

Hence it follows that ζ is an F-multiplier of M and that / is an additive to
multiplicative monomorphism of M into the multiplicative group of F.

The analysis given here implies (1),(2),(3). Conversely, if/ is an isomophism
(additive to multiplicative) of M into F\0 and ζ is a multiplier and λ is some
element of F then the F-linear mapping ω of K(M/F) on F(M/F) defined by (lla),
(lib) and (lie) is an automorphism over F so that (4) is verified. •

Theorem 3 may be summarized by the remark that the Cartan decomposition
of V(M/Ψ) implied by the rules (9a-9c) is unique in the characteristic zero case
so that Aut(K(M/F)) is the automorphism group of the F-grading of V(M/Ψ)
implied by (9a-9c). The diagonal subgroup is the group ^(M/F), the stabilizer is
the direct product of S?(M/F) and 3T(AutF(F(M/F)).

3. The Finite Dimensional Subalgebras of the Generalized Virasoro Algebras
of Zero Characteristic

Theorem 4. The finite dimensional subalgebras of the generalized Virasoro algebra
V(M/Ψ) over a zero characteristic field F are
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dim 1: Any non-zero element ofV(M/Ψ) generates a one dimensional subalgebra

dim 2: ΨX + F ^ (0 Φ XφΨW)

F{e0 + λV) + Ψea (λeΨ, 0 Φ αeM)

dim 3: F [ e α , e _ J + F<?α + F e _ α (

dim 4: F e 0 + Fea + F e _ α + F ^ (0 # αeM).

Proof. The proof follows from Lemma 1.

4. Realization by Differential Operations

As is well known the Lie algebra L(Z1F/F) is faithfully represented over any field
F by the linear differential operators

which are applied e.g. to the elements of the rational function field F(ί) in the
variable t over F .

The attempt to represent L(M/F) in a similar way depends on a suitable
definition of the power ία for exponents α in M. That can be done in symbolic
terms upon creating symbolic Laurent rings over M, M being the exponent range.

Over the complex number field we define the analytic function ta of the complex
variable t for any exponent αeC setting

ία = exp(αlogί).

However, the logarithmic function is not unique. Therefore we introduce the
variable substitution

t = exp (2πίs)

in terms of which we obtain the faithful representation of the Lie algebra L(M/(C)
by the linear differential operators

exp(2πίαs)d
y(e*) = — ^ r ~ . — T ( α e M )

2πi as
This construction can be used to introduce the higher rank Virasoro loops

and Virasoro-Kac-Moody algebras. From the point of view of representation
theory those Virasoro algebras V(M/<E) are of particular interest for which the
submodule M of C is a vector lattice of the complex plane. Otherwise the Verma
representation spaces either will have infinite multiplicities for some weights or
the weights derived from a given highest weight will not form a discrete set.

Guided by those considerations we have unitary Verma representation spaces
of F(M/C), (cf. [10,12]).
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Definition 2. Let V(M/<£) be a generalized Virasoro algebra with triangular
decomposition (11). The (^-representation space m ofV(M/C) is said to be a Verma
module of V(M/(t) if there is a non-zero element u0 ofm such that

m=U(V(M/(£))_uo + FuOi

U(V(M/<E))ouo = Fuo

U(V(M/€))+uo = 0

and the equation Xu0 = 0 for XeU(V(M/<£))_ implies X = 0. •

It follows that m has a spectral decomposition

m = ®mλ

into the direct sum of eigenspaces mλ of H = <Ce0 + C # such that A is a C-linear
mapping of the Cartan subalgebra H in C and

hu = λ(h)u, (heH,uemλ). (12a)

Among the values λ(e0) there is a highest one, say λ0, such that mλo = ¥u0.
It follows that the mappings λ of H into C are C-linear, they are the weights

of the representation space. It is shown in the customary way that the universal
enveloping algebra U(V) of V{M/<£) has the direct module decomposition

U(V) = U(V)+ Θ ί/(K)0Θ [/(K)_, (12b)

where

U(V)+ has the C-basis elements V^e^e^e^'-e^,

l/(F)_ has the C-basis elements e_ase_as_ι'"e_a2e_aιe
v

0

ι(^V0,

U(V)0 has the C-basis elements ev

o

ι(£vo,

for any given additive total ordering of M. Moreover, any Verma representation
space with highest weight λ0 and proper halfplane P obtained by translation of
the negative halfplane by λ0 is u0 = m(K,P,^) operator epimorphic image of U(V)
subject to the relations

λQ = 0 (12c)

and (lla) for u = uλo. Note that

λ(<f) = λo(<0 (12d)

for all weights λ.

Definition 3. The Verma representation space is said to be unitary if there exists a
positive definite invariant symmetric sesquilinear form

m x m^<E

uxv-+(u,v) (u9veM) (13a)

so that the mapping (12a) satisfies the bilinearity condition:
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(u,v1 + v2) = (u9vx) + (u9v2)9 (13b)

(ξu9v) = ξ(u9v) (13c)

as we// as the symmetry condition

{u,υ\ (v,u) are complex conjugate one to another (13d)

as well as the V(M/<C)-invariance condition

(eau,v) = (u9e-av) (aeΛf) (13e)

as well as the positivity conditions

(uλo9uλo)=l (13f)

(M,M)>0 if M ^ O , (u9υ9uί9u29Όl9v2em9ξeiC). Π (13g)

The decomposition (12a) already implies the unique existence of an invariant
symmetric sesquilinear form (12a) (subject to (13b—13f)) on the Verma
representation space m(V,P,λ0). If there is a unitary Verma representation space
with λΌ as highest weight then the invariant symmetric sesquilinear form defined
on m(V,P,λ0) is non-negative:

£ 0 (iiem). (13h)

Conversely, if (12g) holds for m = m(V,P,λ0) then the elements v of m satisfying

form the invariant subspace m 1 is a unitary Verma representation space with
highest weight λ0. The problem is to determine for which P,λ0, the universal
Verma representation space satisfies the non-negativity condition (13h).

5. Examples

In this section we give various examples illustrating a range of behaviour patterns.

5.1. IF = <C, M = {a + ib\a, beZ} (Gaussian integers) with multiplication normalized
to

!>* + »> * c + J =(c-a + i(d - b))ea+c + i(b+d) + δa+CtOδb+M((c + id) + (c + idf)%

such that <Ee0 + Cβ f + Cβ_ t-^s/(2,C).
Here the multiplier group £f(M/(E) is cyclic of order 4 generated by the

multiplication of M by the imaginary unit. The weights of each Verma module
form a discrete set. The multiplicity of the highest weight λ(e0) always is one. For
any other weight, say λ(e0) + a + ib with (α, b) Φ (0,0), the multiplicity is finite only
if the additive ordering of M is regular and a + ib belongs to the smallest
comparability class.

5.2. F = C,M = {a + ib\a9fceQ} (Gaussian number field).
The multiplier group ^(M/(t) is formed by the multiplication of M by non-zero

elements of M.
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For regular additive orderings of M the weights of a Verma module form a

countable set with accumulation points filling a halfplane of (C. Only the highest

weight has finite multiplicity and that is one.

5.3. F = <C,M = {a + φb\a,beZ} (algebraic integers of ^/

The multiplier group £f(M/(C) is the direct product of the group generated by

the involution of M defined by multiplication by — 1 and the infinite cyclic group

multiplication generated by the 1 + ^Jl. If the natural additive ordering of R is

adopted and the highest weight of a Verma module is real then the weights form

a countable dense subset of a left halfϊne of IR with infinite multiplicities for all

but the highest weight.

5.4 F = C,M = {β + > /

The multiplier group of M consists of the multiplications of M by non-zero

elements of M.

Regarding multiplicities we make the same observations as in 5.3.

5.5. d>l, char(F) = 2.

We obtain a Lie algebra V(M/Ψ) of finite dimension 2 2 d ~ 1 with center of

dimension d - 1 over the field F of characteristic 2. Its faithful irreducible

representations are of 2-power degree depending on a certain parameter set [13].

5.6. d>\ c h a r ( F ) > 2 .

We obtain a Lie algebra K(M/F) of finite dimension pd over the field F of

characteristic p > 2. Its faithful irreducible representations are of p-power degree

depending on a certain parameter set [13].
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