
Commun. Math. Phys. 135, 547-580 (1991) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1991

BRST Cohomology and Highest Weight Vectors. I

Bong H. Lian1 and Gregg J. Zuckerman2*
1 Center for Theoretical Physics, Yale University, New Haven, CT 06520, USA
2 Department of Mathematics, Yale University, New Haven, CT 06520, USA

Received April 18, 1990

Abstract. We initiate a program to study certain recent problems in non-compact
coset CFT by the BRST approach. We derive a reduction formula for the BRST
cohomology by making use of a twisting by highest weight modules. As
illustrations, we apply the formula to the bosonic string model and a rank one
non-compact coset model [DPL]. Our formula provides a completely new
approach to non-compact coset construction.

0. Introduction

In recent years, much effort has been focused on studying aspects of conformal
field theory models, 2D gravity, string theories and their mutual relations. These
theories are often accompanied by rich algebraic structures from which many
physical quantities (correlations, critical exponents, string susceptibilities, etc.) can
be drawn. A single algebraic structure playing one role in a given model can often
play entirely different roles in others. For example, the Virasoro algebra is the
constraint algebra in string theory, but becomes a symmetry algebra in CFT. And
yet, it is part of a "hidden symmetry algebra" (via the energy momentum tensor)
in any theory with a current algebra structure. Table 1 gives a list of problems
incorporating the above three roles of algebraic^structures. Although the problems
have quite different origins, each of them involves solving a system of first class
constraints. This point of view therefore suggests to us a unified method to study
these problems - the BRST approach.

In this approach, one starts with a quantum state space ^ which carries a
representation of (usually) a large "hidden" symmetry algebra, ,̂ of the problem.
Due to the presence of constraints, one introduces in a natural way some auxiliary
degrees of freedom - the ghost states, J fgh. Then the constraints, which form a
subalgebra of ,̂ can be imposed simultaneously on the enlarged space 2tf ® Jfgh
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Table 1.

Phy. Problem [ref] Hidden Symmetry Constraints Symmetry

1. (Super) strings (super) Heisenberg Vir(Vir ε) Wigner little group
[GSW]

2. Non-compact su(p,q) ύ(l)@su(p)@su(q) N = 2 super-
coset models conformal algebra
[DPL, Ba, KS]

3. 2D gravity Virtxs)(2,R) Vir x rc_ —
[KPZ, HPV] ^

4. Quantum Hamiltonian Vir ιxsϊ(2,R) π_ Vir
reduction. [BO, FF]

Vir ex s/(rc, R) ή_ F^-algebra

via a square zero BRST operator Q. The resulting quotient space Kerβ/Img is
the space of physical states. This space can carry symmetry of its own, namely,
any algebra represented on J^f® ^gh that is BRST-invariant becomes a symmetry
algebra of the quotient space itself.

Our goal in this paper is to initiate a program to study problems of the kinds
in Table 1 via our unified approach, and to explain the scope of our method. Our
results will be reported in a series of investigations. Although the BRST approach
is a common theme in physics, its associated mathematical tools - the theory of
semi-infinite cohomology - is less well-known. One of our purposes of this paper
is to develop and to illustrate the tools suitable for our problems. To illustrate the
main ideas, we will focus first on problems of type 2 in Table 1. We will show in
detail (Chap. 3), an application to the case sw( l , l ) [DPL] by a completely new
approach to that problem. Our on-going work is to generalize to higher-rank
algebras. This work will be reported elsewhere.

Let ̂  be a graded (super) Lie algebra. The theory of semi-infinite cohomology
is the study of the functor (or its relative versions) W-^H^(^, W) (Chap. 1) from
a suitable category (9 of ^-modules to the category of graded vector spaces. Certain
foundational results for non-super Lie algebras have been established in [Fe, FGZ].
In this paper, we expand the results in these references and study the above functor
for general Lie superalgebras for the first time. (See however [Fe].) Analogues of
the results in [Fe, FGZ, Zu, LZ1] will be proved. Our primary goal, however, is
to initiate a program to study a twisted version of the above functor, namely, the
composite functor:

PF-> W® c F->#* (̂ , W® V).

We will begin the program by studying semi-infinite cohomology in the case when
& is graded by an abelian subalgebra Jtif, V is a highest weight module, and W
is ffl -diagonalizable. The reasons for our assumptions are

(1) they hold in one of the most physically relevant cases [DPL, Ba, KS];
(2) they have several technical advantages over others because the highest

weight modules, V, are relatively well-studied. Thus to initiate our program, this
is a good place to start. Note however that W need not be a highest weight module.
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This paper will be the first in a series of our investigations of the above twisted
semi-cohomology functor. We note here that E. Frenkel and B. Feigin have recently
studied semi-infinite cohomology in connection with flag manifolds and
representations of affine Lie algebras [FF]. The cohomology with coefficients in
a tensor product module was briefly alluded to in [Fe, FGZ].

We now summarize the organization of this paper. The readers who wish to
defer the technical details may skip Chaps. 1 and 2, because applications in Chap. 3
illustrate most of the main ideas, (particularly Theorem 3.5) in a very concrete
setting. We hope that the list of symbols given in Chap. 1 will help those readers
identify the notations in Chap. 3 without going through all of Chaps. 1 and 2.
Theorem 3.13 will be the main result in Chap. 3. It illustrates how unitarity of
the"s<9(2, l)/w(l) coset module" follows from our general BRST approach. The idea
is to use the reduction formula (Theorem 2.13) to identify the coset state space
with the BRST cohomology. The unitarity of the latter can be studied using general
principles in cohomology theory. Part of the proof also relies on Wallach's method
of deforming a module in the parameter space of modules (Remark 3.15).

In Chap. 1, we introduce the notations and construct the BRST (semi-infinite)
complex and its relative subcomplexes. The readers who are already familiar with
the language of semi-infinite cohomology but who are interested in the general
results may want to use Chap. 1 as a notational guide and begin on Chap. 2. Here
we begin by introducing the notion of a reduced complex. (For the experts, this
is essentially the associated graded complex with respect to the filtration in
Proposition 2.12.) This new complex will play an important role in deriving the
reduction formula, our fundamental result (Theorem 2.13). Following from it is
Corollary 2.19, a strong version of the Vanishing Theorem. Corollary 2.30 gives a
sufficient condition on the weight λ for the weight space W\_λ~\ (of a ^-module W)
to decompose into the space of highest weight vectors and a canonical complement.

1. Definitions and Notations

Notation 1. Let Γ be an abelian group. Let M be a complex Γ-graded vector
space, M = @ Mα with dim Mα < + oc for all α. The following notations apply:

(a) M' = @M'a\ the restricted dual of M.
y.eΓ

(b) 0 M*: the restricted antidual of M.
αeΓ

(c) If {<}?lmΛ is a basis of Mα, K}?^* is its dual.
(d) Λ (M) or Etr(M): the exterior algebra of M.
(e) v (M) or Sym(M): the symmetric algebra of M.
(f) If M is Z2-graded, M(0), (M(1)) is the even (odd) subspace of M.
(g) < x', y > = x'(y) for x'eM', yeM defines the natural bilinear pairing between

M' and M.

Notation 2. The following is a list of symbols frequently used throughout this
article:

(a) :̂ a complex Lie superalgebra
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(b) 3?Q\ an ad-diagonalizable abelian subalgebra of ^ with dim 3?Q = I + 1
(c) ^α: an eigenspace of Jf 0 (see A l below).
(d) Δ09Δ±: the roots of tf 0 (see Al, A2) in 0.

(e) Γ a <&'Q: an abelian group of rank n + 1 = dim^0 (see paragraph after A5)

(f) Γ = fn^f '0: a subgroup of rank / + 1 (see A2)
(g) σ:^-»^: an involution (see A3)
(h) I I : a height function (see paragraph after A5)
(i) I(*]: (see Remark l.l(ii))
(j) Spec^^0: (see Remark 1.1 (iii))
(k) deg: (see Remark 1.1 (v))
(1) β^X ), ι(-): (see paragraph after Remark 1.4)

(m) '.^(eζMeί): normal ordering (see Definition (1.6))
(n) β: (see Proposition 1.8(ii))
(o)/ deg: (see Remark 2.8(i))
(p) W[OL], W[OL,J#"Q]: weight spaces (see Remark l.l(iii))
(q) M(Λ), L(Λ): Verma module and its irreducible quotient.
(r) radM: (see Definition 1.14(ii))
(s) W^+\ $ + -in variant elements of W.
(t) [J: graded commutator (see Remark 1.7(iii)).

(u) chq9 sign^: Definition 1.14.

Let ^ be a Lie superalgebra with an ad-diagonalizable nontrivial abelian
subalgebra j^0 c= ̂ (0). We make the following assumptions on :̂

Al: Let ^α = {xe^: [Λ,x] = <α,/ι>x V/zeJf0} for αeJT0, and let 40 =
^α 7^ 0}. There is an abelian group Γ ^ Jf r

0 of rank 1+1= dim Jf0 < + oo, such
that Δ0 ^ Γ. For all αez!0, dim ̂ α < oo.

A2: There is a set of generators {αj| = 0 of Γ such that αez!0 =>α = 0 or αe.Γ+ , where

Γ±=Σz±*i.SetΔ±=Δ0nΓ±99
(«>= ^ ^κ).

ί = 0 αezl ±

A3: There is an antilinear involution σ, such that σ(^α) = ̂ _α. Denote also the

induced involution on <&' by σ. Note that for X'G^', ye^, <x;,^> = < σ(xr), σ(
A4: ^0-J^00cent.(^).
A5: We will consider only the case when ^(

0

υ = 0. (Neveu-Schwarz type algebra).
The case ^(

0

υ Φ 0 (Ramond type) will be dealt with elsewhere.
^ n

We embed the abelian group Γ in f = £ Zα^ ̂  ̂ '0, where {αj"=/+ x is a basis
ί= 1 _

of cent.(^0)'. We define an integer grading | | on f by \Σnicti\ = Σn{. We introduce
a partial ordering on 3#"Q by setting λ^μiϊλ — μeΓ+.

Remark 1.1.

(i) The above class of ̂  includes all (super) Kac-Moody [Kl, K2], (super) Virasoro,
Vir and u(ϊ) algebras (see Eq. (3.3)).
(ii) We will write Δ(«> = {oceΔ± \&™ /O}; I[κ) = {!,..., dim &™} for aεΔ(£\ and
denote a Z2-graded basis of &™ by {4}.e/(1) for αezl(

0

0) and {/ί}.e/(1) for
(iii) Let FF be any '̂0 -graded vector space"- i.e.

(direct sum).
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W[λ] is called a ^-weight space of weight λ. Let Spec^0 - {λ\ W[λ]ϊQ}. We
note that when W is ̂ -graded, it is also Jf7' -graded, for any subspace J f c <^0. That
is, for μεJΓ, if we let JF[μ, Jf'] - £ [̂/ί], then W = Σ

is a direct sum. The set of Jf '-weights is denoted by Spec^ J f. Of particular
importance in our discussion will be Spec^ Jf 0, where J f 0 is an abelian subalgebra
of &. We will sometimes write the Jjf '0-weight spaces as W[μ] rather than

(iv) Now let W be a Jtf"0 -graded vector space. We call W ^f0-bounded above, if
K

there are λί9...,λκeJtf"0 such that Spec^Jf^^ (J (Λt + .Γ_). We have a similar
i= 1 ^

definition for ^-graded spaces where jΓ_ is replaced by JΓ_. It is easy to check
that if W is ^-bounded above, then it is Jf Abounded above. Note that the
converse need not be true even though ̂ 0 = J f 0 © Cent(^). This is because Cent(^)
need not act by constants in W.
(v) When W is Jjf0 -bounded above, we define a Z-grading deg on W as follows:

m

Fix a minimal set of λ1 ~λmEJ#"0 such that Spec^ Jt? 0 £ y (λ + Γ). For ι;

0, set degi; = |α — λt\eZ, where αe^ + /"; deg is well-defined because
the sets (/^ + 7") are mutually disjoint. We will write deg W = {neZ\Wn Φ 0}, where
Wn = {veW\degv = n}. We note that because W is Jf Abounded above, deg H^ is
also bounded above as an integer subset.

(vi) The above remarks (iii), (iv), (v) apply to any ^0-diagonalizable ^-module
M=Σ MM> where ^o acts by a weight λε&'0 on M[/l].

Definition 1.2. ^ denotes the category of all ^Ό-dίagonalίzable Z2-graded ^-modules
such that for Ve(9.

(91. the Z2-gradίng of V is consistent with that of *&;
02. V is ^Q-bounded above. Thus V is also bounded above as Z-graded space;
(91.forxe$a, degx = |α|, i.e. x(Kπ)c 7π + |β,.

Definition 1.3. Let Φ0 be the subcategory of (9 such that

(94. Each Ve&0 is $ Abounded above.

Remark 1.4. (9 and (90 are closed under tensor products, direct sums and quotients.
Furthermore, if V is in 0 or (90 so are its submodules.

We now define a special ^-module Ω^ = Ω^ in (90. Let J> = ̂ + + ̂ 0 (Borel-
subalgebra). Let Λ ̂  = Λ 00^

(0) be the Z2 © Z-graded vector space: Λ ,, = Λ (^(0)/ φ
). It has a canonical basis of the form

ω is even (odd) if n + me2Z(e2Z + 1) and degω - - Σ αί + Σ I A l Let Voo =
= 1 = i

V 00

<^(1) = V (<^(1)/ © ̂ j0). It is a Z2-even, Z-graded vector space. It has a canonical
basis of the form

ω:=fί\ v '•• v fί v fjβ\ v '•• v /^'
« m

and degω= — Σ l α ΐ + Σ l A I We note that the Z-gradings in both Λ ^ and
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V ^ are Z-valued. Let Ω^ = Ω^ = f\^(Q]® Vo c^
( 1 ). Ω^ has an obvious

Z2© Z-graded structure. We note that Λ 00^
(0) is the space of semi-infinite forms

introduced in [Fe] and [FGZ]. We now define a ^-action on Ω^. First we
extend the pairing <,>: ̂ 'x^^C to <,>: (&' ®<$) x (0'®0)->C by letting
<#',0'> = 0 = <^> and <α,x> = <x,α> for αe^, xeST Let

Define

ε(u) ω = uΛxί Λ ... Λ X ^ ® } ^ ! v ... vj;m,

n

ε(x) ω= £ (- I f 'X^Xfc)^
k = l

ε(j;) ω = x1 Λ ••• Λ xn®y v yl v ••• v ym,

ε(z) ω= X
k= 1

ι(a)-ω= X (-l)k'\a,xkyxl Λ •• xk
k= 1

z(fc) ω = ^ A x1 A • « • A x n ®y! v ••• v ym,

ι(c)-ω= - X
k = l

The (anti)-commutation relations and gradings of these linear operators are
summarized as

Proposition 1.5. For x
(i) {ε(x),z(0)} = <x,f l>,

(ii) [εM,z(fe)] = <3;,&>,
(iii) v4// other (antϊ)- commutations are zero,
(iv) ε(x), ι(a)(ε(y)9 ι(b)) are Z2-odd (Z2-even).
(v) deg ε(x) = deg ε(y) = - | α | ,

Definition 1.6. For xe^ and some fixed j3e^'0, define the linear operator

η(x)= Σ X :ε«)ί([<,x]):
ae/io ie/(°)

- Σ Σ :ε(/i')ι([/i,x]):
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where

:ε(^>(0:=-'«K4') if β<0

= ε(̂ ),(<) if β>0

= i(ε(4W<)-;(<)ε(4')) tf β = °
and

p if β<0

= ε(/iK/l) if β>0

Note that because &^ = 0, we need not consider the case β — 0.

Remark 1.7.
(i) In view of the (anti)-commutation relations in Proposition 1.5, the above normal
ordering is well-defined. In fact, it is necessary in the expression of η(x) only when

(ii) η(x) is well-defined, i.e. only finitely many terms act on each ωεΩ^. The normal
ordering ensures that :ε(<^')z([<^, x]): ω = 0 = :ε(/^)z([/^,x]): ω for all but finitely
many αeZi0.
(iii) [,] here really denotes the Lie super bracket of .̂ We will use the same
notation for graded commutators.

Proposition 1.8. [cf. FGZ]:
(i) There exists a two-cocycle γ (depending on the choice of β) such that

[_η(x\ η(y}~] = η( [x, y] ) + γ(x, y)

for x, ye^, and γ(&Λ9 &β) = Ofora + βϊQ.
(ii) if y is a coboundary, then there exists a choice of β such that y = 0. In this case
(Ω^,η) is a ^-module in ΦQ.

Proof.
(i) It follows from a long but straightforward computation that the operator
[_η(x\η(y)~] — n([x>y]) is a multiple of ldΩ . Denote it as y(x,y)Idβχ. The cocycle
properties of 7 follow from its definition. One can also check that y(^α, ̂ β) = 0 for
α + β + 0.
(ii) Suppose for some fixed β — /I, y is a coboundary, say γ(x, y) = ζλ([x, y]) for some
linear map Cλe^ Partji) implies that CλE^o Denote by ηλ the η in Definition
1.6 corresponding to β = λ. Let η(x) = ηλ(x) +_<Cλ? -

x) f°r x^ Then one has
[rι(x),η(y)'] = f/([Xy]). Thus if we now choose β = λ H- ζλ, then the corresponding
γ is zero. It follows that (Ω^ή) is a representation of .̂ Proposition 1.5(iv), (v)
imply that deg^(x) = |αj_for xe^α and that η(x) has a consistent Z2-grading. Note
also that Specβχ ^0 ̂ β+ Γ_. Thus (Ω^η) defines a module in β?0.

Remark 1.9.
(i) In latter applications, we can explicitly determine β. For example, recall that the
second cohomology H2(^, C) = 0 for an affίne Kac-Moody ^[F]. Let ehfi9 α.v,
i — 0, . . . , / , be a set of Chevelley generators of ,̂ where <αί? α^v > = atj is a Cartan
matrix of .̂ Then it follows from direct computations that γ — 0 provided that
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This gives <j8,α.v> = αίί for ΐ = 0,. . . ,/. Thus it is enough to choose β = 2p,
where <p,α. v > = %au.
From now on, we will assume that βe^'0, can be chosen so that 7 = 0.
(ii) Recall that [FGZ] Λ0 0^

( 0 ) has a unique hermitian form such that
OJΆ -. . Λenό,iy = l,ε(xγ= -ε(σ(x)) and ι(aγ = - ι(σ(a)) for xe^(0)', αe^(0),
where (4 , . . , en

0} is a fixed basis of ̂ (

0

0)'. Similarly, there is a unique hermitian form

on V 00^
(1) such that < 1, 1 > - 1, ε(x)1" = - ^ϊε(σ(x)) and z(α)1" - - ^Ίι(σ(a))

for xe^(1)/, αe^(1). The space Ωao= Λ ^ ® V ^ is then given the tensor product
of the two forms. One can check that if y = 0 (Proposition 1.8(ii)) for some choice β =
λ, then y = 0 for the new choice β = ~(σ(λ) — λ\ We will always use the latter so

that σ(/J)= -β. It then follows that (Definition 1.6) η(x)* = - ( - ^^\)sη(σ(x)}
for xe«(s), s = 0,l.

Definition 1.10. (cf. [Fe], [FGZ]) For (K, π)e0, feί C^^, K) - V ®Ω^ and define
the linear operator d on C^($, V) by

= Σ Σ
αezlo ie/(0)

+ Σ Σ π(/l)ε(/l')
αe^lo i e/(i)

-J Σ Σ :«([β
^α,/ϊe^o ί6/<°)jε/(0)

+ Σ Σ :<[<./i
α,/?ea0 ie/<°)je/ (1)

- Σ Σ K[/l,/

Again, the normal ordering ensures that at most finitely many terms in each sum act
on a given ωeC^^, V). The last sum needs no normal ordering because the operators
in the term commute.

Proposition 1.11.
(i)d2 = 0.

(ii) IfV has a sesquilinear form <, >F such that < π(<z) , >κ = — ( — χ/^T)s< , π(σ(ά))-yV9

for aey(s} and (V(0\V(1)yv = Q, then with respect to (,yc -<,>F(x)<,>β , we have

<dv>Ce = <-,*>Ce.

Proo/.
(i) Since the detailed computation is quite long, we will only sketch how it is done.
By breaking up and regrouping the terms, one can rewrite d in the form:

fe/ί0)

where

Ά = - Σ Γ Σ <[<,e'-jw<XO+ Σ
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where dQ has the same form as d with £ , ]Γ replaced by £ , £ respective-
αezlo a,β ΔQ <xeΔ+ <x,βeΔ +

ly, and the normal ordering removed. One can now compute {d, d} using the above
decomposition ofd and show that the terms in this anticommutators cancel exactly.
(ii) Let u,veV(s\ and fix se{0, 1}. Let vMeΛ^, xe^(0)': Then we have

More generally, for xe^(s)', αe^(s) we have the hermiticity properties:

<ε(x)v> = < ,-(v^ϊ)s6(σ(x))>, (1)

<ι(fl)v> = <S-(N/^NΦ))>, (2)

<π(α)v> = < ,-(-y=Ί)sπ(σ(α))>, (3)

<ι/(α)v> = < , -(- ̂ ϊ)sη(σ(a))y. (4)

Using (1) through (4), and the expression for d in part (i), we get
<dv> = < ,d >.

Definition 1.12.
(i) For (V, π)e&, let θ(x) = π(x) + η(x)for xε%. Note that (€„(&, V\ θ)εθ.
(ii) Let L/eEndc CJ&, V) be

tf= Σ Σ :«W<): - Σ Σ :ε
αe4o ie/(°) αezio f e / ( 1 )

L7^ Z5 cα/feά? the ghost number operator [GSW].

Proposition 1.13. For
(i) [<Uα)]

(ii) [d,θ(α)]
(iii) [i/,<a)]

(iv) [l
(v) [E

(vi) [/ is diagonalizable with Specc^ U = Z.
TTien nίΛ eigenspace has the form €"„(&, V) = V®Ωn^, where

Ω^ = Span{ω = e^ Λ - Λ <-p Λ ̂  Λ ... Λ e£

(See definition of basis vectors after Remark 1.4.)

Proof.
(i) can be obtained using the expression of d in the proof of Proposition 1.1 l(i).
(ii) follows from (i).
(iii) Break up the sum in U using the definition of the normal ordering. Then
[[/, z(α)] = — ι(a\ [C/,ε(x)] = ε(x) can be seen by inspection.
(iv) is a direct consequence of (iii).
(v) is obtained from (i), (iii) and (iv).
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(vi) Recall that the vectors of the form ω above constitute a canonical basis of
Ω^. By (iii), it follows that the vectors of the form v®ω,veV are eigenvectors of
U. Thus V ® Ωn^ is the eigenspace of U with eigenvalue n = p — q'+ r — s.

Propositions 1.11 and 1.13(iv), (vi) imply that (C* (̂ , V\ d) is a cochain complex.
Its cohomology groups H^(&, V] are called the semi-infinite cohomology of ̂  with
coefficients in V. This theory was introduced by Feigin [Fe] and further developed
by Frenkel, Garland and Zuckerman [FGZ) for general Z-graded Lie algebras.
Several important special cases were also studied in the past [LZ, Zu and references
therein].

Definition 1.14.
(i) if V is a ^0-graded vector space with dim Kα < + 00, we write chqV = ]Γ

'

(ii) If , furthermore, V has a sesquίlinear form with < Fα, Vβy = Qfor α ̂  β, then we
write

sign gF = £ signK~α<f,
αe^ό

where sign V~a is the difference between the number of positive signs and the number
of negative signs in the diagonalizedform < , > | F α x F α . Let rad V = [vεV\(v, F> = 0}.
//radF = 0, we call V a hermitian vector space.
(iii) // (K, π)e$ has a non-degenerate hermitian form < ? > κ such that

π(α)f = — ( — ^J — \}s π(σ(α)) for αe^(s), then V is called a hermitian ^-module.

Proposition 1.15.

(i) X chqΩ™% = 2*™«*q-t γi (1 + g*)2dim^0) (l - ^)-2dim^1}.
meZ <xeΔ+

(ii) Σ(-lΓcΛ,ί2^ = 0.
meZ

Both are results of straightforward computations.

We note that Propositions 1.13 (i) and (ii) imply that for any subalgebra j/ c ̂ ,
there is a relative subcomplex given by

C* (#, rf; V] = {ωeC* (#, F): /(fl)ω = 0 = 0(α)ω, for all αe^/}; d0 - ^I^(^,,/;F)

Of particular interest is j/ = ̂ 0. We will study this case with coefficients in
V =V1® V2. Our main focus will be for F2 belonging to the Verma modules of
,̂ their quotients or their submodules.

Definition 1.16. The cohomology groups of the subcomplex (C^(^, ̂ 0; F), d0) are
denoted by #* (̂ 0; F).

Remark 1.17.
(i) In the course of the following discussion, we will encounter several different
(co-)chain complexes and their (co-)homology groups. Given a (co-)chain complex
(Cχ,d) (or (C*9d)) we will generically denote its (co-)homology groups by H#(C,d)
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(or H*(C,d)). When the context is clear, we may drop the d. We will also reserve
the notation such as that in Definition 1.16 for special cases,
(ii) Note that d0 in Definition 1.16 is given explicitly in the proof of
Proposition 1.11.

2. Relative Semi-Infinite Cohomology with Coefficients in Vλ ® V2

We note here that the relative cohomology with a tensor product module as
coefficients was briefly alluded to in [Fe, FGZ]. The case of ^ = Vir was also
studied by one of us [Zu].

The main result of this section is the "reduction formula" (Theorem 2.13). This
formula establishes a connection between the classical and the semi-infinite
cohomology. First we will define a "reduced complex." This will be the bridge
between the above two objects. We will then show a few important consequences
of the reduction formula. In particular, we will prove a strong version of the
Vanishing Theorem (Corollary 2.26) and derive a necessary and sufficient condition
for unitarity of the cohomology group. We will also obtain a "decomposition
formula" for modules in (9. Some applications of these consequences will be
discussed in Sect. 3.

2.1. The Reduced Complex. In this section, we will always asume that V+9 V _ are
^-modules in (9. We first state a theorem.

Theorem 2.1. Let Sf = ̂ (0) ® J^(1) be a Lie super algebra and U^ be its (Z2-graded)
universal enveloping algebra. Let Cn = Σ ϋ^ ® ^P^(Q}® V q^(l\ Define
ά'.Cn^Cn_v by « = P + «

d(u®xl Λ ••• Λ xp®yι v ••• v yq)

= (-!)" Σ (~ l)i + 1 X i ' M ®
l^i^P

+ Σ jv"®*ι Λ ••• ^χ

Pi ^i^q

-(- 1)" Σ (- i) ί + < / w
1 ^Kj^p

+ (-!)" Σ (-l) 'w®
1 ^i^p

where(-\)uistheZ2-gradingofuεU^,x1 Λ ... Λ xp

Let S'.CQ^C be the augmentation map. Then the sequence

C: C I I ΛC I I - 1 ->C 0ΛC->0

is an ^-free resolution of the trivial ^-module C. In fact, there is a contracting
homotopy for the complex (C^d).
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This is a generalization of a theorem in the classical theory of Lie algebra
homology (a good exposition is given in [HS]; consult also [Le]). The proof of
this case of a Lie superalgebra requires only a slight modification of the ordinary
case. We note that the theorem holds if we replace U£? by any «£?-free module.

Definition 2.2. Let (F+,π + ) ( K _ , π _ ) be^^-modules in Θ. Let C*d - C*d(^0;
V+ ® V_) = V+ ® F_ ® ί2*(^τ%) and 30 be a linear operator on C*ed defined by
dQ = d+ -f d_, where

d±= Σ Σ Φ>±(<)+ Σ Σ ε(/>±(/ )
αezi+ je/(0) aeΔ± i6/Π)

-* Σ Σ β(<>(^>([<,̂ ])

+ Σ Σ «
a,βeΔ± ίe/(θ)J6/(i)

4 Σ Σ t ι ι
ιe/α jelβ

A direct computation gives

Proposition 2.3. ά\ = d2_ = d+d_ + d_d+ = 0. Hence d^ = 0.

Remark 2.4.
(i) Note that rf0 is really a reduced form of rf0 (see Remark 1.17(ii)). Normal
ordering is not required here because the terms in each sum in J0 (anti-) commute.
From the expressions of d±9 it is obvious that [t/,d + ] = d±. Thus (C*ed,d) is a
cochain complex, which will be called the reduced complex.
(ii) Observe that there is a canonical isomorphism of cochain complexes

where

C(<Z±,V±)=V±®Ωa

By convention, we set the weight of 1 ® Ieί200^_ to be /?, and that ofl(χ)le/2 0 0 ^ +

to be 0. Then the isomorphism above, which maps t ; + ®ι;_(χ) l(χ) leF + (χ)F_(χ)
Λ J$™® V J3™ to (v+ ® 1 ® 1)® (ι;_ ® 1 <g> l)eC(^ + , F+)® C(^_, K_), is weight
preserving.

(iii) We note also that the cohomology of (C*(^_, F_), d_) (cf. Theorem 2.1 and
Definition 2.2) is precisely the classical (Cartan-Chevalley-Eilenberg) homology of
the subalgebra ^_ with coefficients in F_. We will denote the cohomology of
(C*(^ + , V±\d+) by H*(&±, V±). When passing to cohomology the isomorphism
of complexes above gives

Proposition 2.5. (Kύnneth formula). There is a canonical isomorphism of^
vector spaces:
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(see [HS], Chap. 5).

Proof. Recall that the isomorphism in Remark 2.4(ii) preserves the ^-weights and
that in Definition 2.2, d±, d0 all carry weight 0. Thus JΪ*(Cred,d0), H*(&±, V±) are
all ^Q-graded spaces and the induced isomorphism on the cohomology groups is
weight preserving.

Remark 2.6. Besides the natural Z-graded structure (i.e. ghost number) that the
space Cred has as a complex, there are two other important graded structures. The
first one is the ^-graded structure inherited from its factor spaces F±,/200^±,

Thus we can write as a direct sum

Cred W = Σ V+ M ® V-
λ=a+β+γ+δ

Since J0 carries ^-weight 0, each (Cred[A], J0) is itself a complex. This gives

Lemma 2.7. For eαc/z ΛeSpecCred^0, there is a canonical isomorphism

H*(Cred(<y,#0; V+ ® V_\

Remark 2.8.
(i) The second graded structure, /deg, on Cred is canonically induced by the
isomorphism Cred(^, ̂ 0; K+ ® F_) ̂  C(^ + , K+)(χ) C(^_, F_) as follows (cf. [FGZ]).
It is enough to define / deg on C(0 + , K+),C(^_, 7_) separately. V±,ΩJS± are
by definition ^^-graded vector spaces. Hence they are also 3tf ό-graded (Remark
1.1 (iii)). This means that they have the Z-graded structure deg, defined in
Remark l.l(v). Extend deg to C(^±, V±) = V± ®Ω^±. Let ω±EC(^±,K±) be
homogeneous elements. Define

/degω± = + degω±,

/degω+ ®ω_ =/degω+ +/degω_.

We note that / deg on Cred = Cred(^,^0; V+ ® 7_) is compatible with the
^-grading. We will write, for geZ,

(ii) The grading / deg plays two important roles. The first one is given by

Proposition 2.9.
(i) For each μ£SpecCred^0, there is a Z-graded structure /deg, naturally induced

on Jff*(Cred[μ],5o) and #*(Cred,5o)[μ],

(ii) One /zαs similar statements for the complexes (C*(^±, K+), d±).

Proof, (i) The first isomorphism follows trivially from the observation that d0

preserves /deg on each Cred[μ]. The second isomorphism follows from Lemma
2.7 and the fact that the /deg grading and ^-grading are compatible.
(ii) The same argument applies to (C(^±, V+\d+).
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Remark 2.10. We note that by definition

(See remarks preceding Definition 1.16.) Thus /deg defines a grading on C^ as
well. It turns out that it defines a filtration on the complex (C*,d0)

 such tnat

(C*ed[0], dQ) is the associated graded complex of (C* , d0). This is the key role played
by /deg. Hence we let, for

= {ωeCred[0] = CJ^o; V+ ® V.)

0]* (2.1)

(2.2)

Lemma 2.11. Let Cred[0, jf '0] be the zeroth 3tf"0-weight space o/Cred(^, ̂ 0; F+ (x) F_).
Γ/zen the set o//deg values on Cred[0, 34? '0], /degCred[0, Jf '0], is bounded above
and below.

Proof. By definition,

Cred[0,^/

0]= Σ ^[α,^](χ)7_[A^o]®^oo[7^o], (1)
α + /J + y = 0

where α,^,]^ ranges over Specκ+ Jf'0, SpecF J*f'0, Spec^J^Q respectively. Since
V+ε&, the set det K± are bounded above by some N > 0 (Definition 1.2). Recall
that (Remark 1.1 (v)) to define deg on F+, we fixed some minimal finite subsets

"^J#"0 such that
SpecF +^0^U

μεA

veB

Recall also that SpecβocJf0 <^β + Γ_. Thus for every α,/?,y in the range of
summation in Eq 1. there are unique μ(oc)eA,
such that (see Remark 1.1 (v))

α - μ(α) + λ^α),

By definition (see Remark l.l(v)), for v+,v_,u in 7+[α, JΓ0], ^-[jS^Όl
respectively, we have

deg?;+ = |A!(α) | 5

In Eq. (1), α + β + 7 = 0 implies that

v(jB) + β= - (λ^) + λ2(β)

Since the left-hand side varies over a (finite) subset of A + B + jβ, we have a uniform
bound X > 0 such that

1 1 )̂1 + 1^08)1 + I A 3 ( y ) | | < X (2)
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for all α, /J, γ in SpecF+ J^0 Specκ_ Jf 0, Specβ3c Jf 0, respectively, with α + β + y = 0.

(Reminder : for AeΓ, A = Σl = o ̂ t^l^l ^ Σ nι ) Now let ω = v+®V-®x /\ a®yv

freCred[0, Jf"0] be a homogeneous element, with z;+eK+[a, J'f' ], z;_eF_[/?, Jf JJ*
X Λ α(x)j; vbe/^Cy,^], α + β + y = 0. Then

/degω = — degι;+ + degι;_ — degx + degα — deg 3; + degδ. (3)

Recall that deg x, deg α, deg y, deg ft are non-positive (see paragraph after Remark
1.4), and that degu+ ^N as mentioned earlier. Therefore,

d e g t > _ = | A 2 C 8 ) | < J V ,

deg x A f l ® 3 ; v i > = | /3(y) | ̂  0.

Thus (2) and (3) imply that

/ deg ω ̂  — deg υ+ + deg v_ — deg x — deg α — deg y — deg b

Similarly
/degω ̂  — degt;+ + degt;_ + degx

+ deg α -f deg y 4- deg b

= - ^WI + U2(«I + I^)I
> - X - 2ΛΓ.

Hence /degω| ^K + 2N for all homogeneous elements ωeCred[0, J^'J.
We are now ready to prove (Eq. (2.1), (2.2))

Proposition 2.12. {Bq}qeZ is α finite filtration of the complex (C*(^,^0; V+ ®
- i q+ 1 c J?« £g c J5« απrf ίter^ exists such that

qe

d0) - i.e. Bq+ 1 c J?«, d0£
g c J5« απrf ίter^ exists qQ, ql9 such that

B* = CJ(<S,<$ύV+®VJ for q^q0,

Bq = Q for q^q^

Proof. Bq+ 1 c Bq is obvious.
Using the proof of Proposition 1.11 and combining it with Definition 2.2 we

can write d0 as

d0 = d+ +d_+(5 0 , (1)

where

«50= X X M<M<)+ Σ Σ M/l) ε(/i')

+ (4 + , π _ replaced by Z l _ , π + ) + £ ϊ ~ Σ
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It is easy to check that d±Bq^Bq and δ0B
q <^Bq+1. Thus d0B

q c Bq. To prove
finiteness of {Bq}q€Z, it is enough to show that the subset of integers,
/deg CQO^, ̂ 05 ^+ ® V_] is bounded from above and below. By Remark 2.10 and
Remark 1.1 (iii) we have

€„(<#, ^0; 7+ ® 7_) = Cred[0] CΞ Cred[0, ̂ 'J.
Thus

/deg(CJς=/deg(Cred[0,^'0]).

Now, the boundedness of /deg(C00) follows from Lemma 2.11.

2.2. Main results. Having defined the reduced complex, we are now ready to use
its properties to prove our main result. The proof will be done via several lemmas.
In this section we will always assume that F_ = M(Λ) is the Verma module of ̂
with highest weight Λe^'0, and V+ = W is any ^-module in Θ. We will sometimes
abbreviate C*d(^,^0; W®M(A)) as C*d. B

q,Dq in Eqs (2.1), (2.2) are now spaces
defined in terms of M(Λ) and W.

Theorem 2.13. (Reduction formula). There is a canonical isomorphism Jfί^(^,^0;
W-®M(-β-λ))^H*(& + 9 W)[λ]for each λe^f

0. (See Remark 2.4(iii).)

Lemma 2.14. For each ΛE&Q, there is a canonical isomorphism H*(C^ά(^^Q\
W®M(Λ)))^H*(& + 9W) such that H*(CΓJ[μ]-»#*(^ + , W)\_μ- A -β^for all
weights

Proof. By Theorem 2.1,

Hn(&-.,M(Λ)) = Q for n^Q

^CvΛ®l®l for n = 0,

where VΛ is a highest weigh t_ vector of M(A) having weight A, and
1 ® le Λ ̂ (0)® V ̂ } has weight /?. Composing the isomorphism of Proposition
2.4 and the above, we have

® i ® i)] M

]̂.
Lemma 2.15. For eαc/z Ae^, ί/zer^ is at most qeZ such that H*(% + , W)[λγ^Q.
(See notation in Proposition 2.9.)

Proof. We note that

SpecHt(y+ίW)JV0 c Spec^Jf o + Spec^prJf 0 + SpecΛ^υ'^f 0. (1)

Let λeSpecHt(9+tW)&0. Then A| j r oeSpecH» (^+ > ̂ ^Q. By definition, Spec^^f 0 c
m

y /Ij + 7", for some /l/se J'f r

0, where the λj + 7" are mutually disjoint. Also SpecΛ^(θ)'

J fo ^ F_,Specv^(+i)' J^o E /^-. Thus by (1), for fixed λ, there are f ^mand α,jβ,
such that

λl^^^ + α + jS + y. (2)

Because the λj + /" are mutually disjoint, such an i is unique.
Now if ψεH*(& + , W)[λ~]q and ψ ^0, then ^ is represented by some cocycle
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+ , of the form ω = ̂ vl®xj®yk with/degω = — degi/ — degxj —
Ijk

deg jr = q. But the middle sum here is precisely the integer — | /l( ̂  o — /I; . Thus we
have g = — I λ\ ̂ Q — λt\. Since λt is unique and λ is fixed, g is also fixed.

Lemma 2.16. For fixed λe&'Q9 let Dq = Cred(^,^0; W®M(-β- λ))[0]q (cf. Eq.

(2.1)) /or geZ. T/ierc #*(!>«, d0)^fί*(^ + , MOM*. ΓΛws ί/zere is αί mosί one geZ
such that H*(Dq,d0)^0.

Proof. Lemma 2.14 for Λ = — β — λ, gives

H*(cred(#, ̂ o; w® M( - β - λ))920)[oγ * H*(^+, w)tλγ.
By Proposition 2.9(ii), the left-hand side is just H*(Dq,d0). By Lemma 2.15 the
right-hand side is non-zero for at most one qeZ.

We are now ready to prove Theorem 2.13.

Proof. (Theorem 2.13). As in Eqs. (2.1), (2.2), we let

Bq= Σ Dp = Dq + Bq + 1.
p^q.

Then by Proposition 2.12, for F_ =M( — β — λ\ V+ = W, we have a long exact
sequence

• -> H"- \D\ d0) -> Hn(Bq+1,d0) -> H"(B«, d0) -> H"(Dβ, d0) ̂  - (1)

For qeZ such that //*(D9, J0) = 0, we have

H*(Bq+\d0)^H*(B\d0). (2)

If H*(Dq, d0) = 0 for all g, then we set p = 0. Otherwise, there is a unique p such
that H*(DP, d0) / 0, by Lemma 2.16. Thus in both cases, Eq. (2) holds for all q^p.
By finiteness of the filtration {Bq}qez, we have

for q>p, (3)

β-λ)) for q^p. (4)

Now the reduction formula follows from Lemma 2.16 and Eq. (4).

Corollary 2.17.

# ,̂̂ 0; W®M( - β- λ)} ̂  W^+ lλ].

Proof. A simple calculation shows that H0($ + ,W)^W^ + , the space of
& + -invariant vectors in W.

2.3. Important Consequences. We now proceed to an important consequence of
the reduction formula (for the case of a Hermitian ^-module W) which relates
FΓ^+[/l]/rad with a zeroth relative cohomology group (Theorem 2.25). In some
special cases, the space W^+ [Λ,]/rad is known as the "physical Hubert space" (see
Sect. 3 for examples.) From now on we will only consider weights Λe^'0 that satisfy
the reality condition σλ = — λ.

Lemma 2.18. Let (B*,d) be a subcomplex of a cochain complex (A*9d) such that
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Hn(Q = Ofor C = A,B or A/B,n^U. Then there is an isomorphism
H°(A)/i*H°(B)9 where ί* is induced by i: B cn_> A If, furthermore, A has a sesquilinear
form such that (d ,-) = (-,d ) and BC ϋ rad ,4, then the isomorphism is an isometry.

Proof, The short exact sequence

where p is the canonical map, gives a long exact sequence. But since this sequence
collapses we get the desired isomorphism. The second part is a trivial exercise.

Remark 2.19.
(i) To apply the lemma, we define a hermitian form on Ω^ = Ωao(

($/($0). Recall
that Ω^ = Λ (^'θ^)® V (<&(lγ®<&(v\ A hermitian form is uniquely defined

by letting < 1 ® 1, 1 ® 1 > Ωχ = 1, φc)f = - (^l)sε(σ(x)) and ι(aγ = - (^
/for xe^(s)/, a^(s\ We note that <,>| „ m is zero when α^β or rc + ra/0,

j i j_ J_Ί Ω Ύ\β \® Ω Λ.β}
and non-degenerate otherwise.
(ii) When (F, π)eθ is given a sesquilinear form < , >F, we will always assume that

for ae$(s\ and that <F(0), F (1)> = 0. Then it is easy to check that the relative
subcomplex (C*(^,^0; F),d0) has a form <,>C y given by restricting <,>κ® <>> β y .
to the subspace CJ(^,^0; F) g K(χ)ί2* (#/^0). Furthermore, < d 0 v > C x =
<'»^o >Cx (cf. Proposition l.ll(ii)). Note also that if <,>F is non-degenerate, so are
< ? > l C n x C ; n f o r all n.

(iii) We will- need the following observation later: U ϋ rad V then
CJ^^o ^gradCJ^^o K) as complexes. The same is true when "g" is
replaced by " = ".

Corollary 2.20. Suppose (V,π)e& has a sesquilinear form and U c rad V is a
submodule. IfH"^, ^0; K) = 0 for K = V, U or V/U n φ 0, then there is an isometry

H^, ̂ 0; 7/17) ̂  H°^, ̂ 0; 7)/ΐ*/f^(^, ^0; C7).

Proof. It follows from Lemma 2.18 and the observation made in Remark
2.13(iii).

Lemma2.21. (cf. [FGZ, Theorem 1.1 2]) If V+, V_e(9with V+ her mitian and ̂  _ -free
andά\mV+[_tt\< + ooVαe^0, then Hn

jo(
(^^0;V+®V_) = Qfor n^O.

Proof. Let Dq,Bq be defined by Eqs. (2.1), (2.2). By Proposition 2.5 and Lemma
2.7 we have, for Ae^Ό,

Σfl"(Cr.dMVo)= Σ [tf^ + ,K+)®//- f l(^_,F_)][/]. (1)
geZ n-b-a

Note that for Cred[0]9 = Dί (Eq. (2.1)). By hypothesis, K* ̂  F+ is ^_-free. Thus
applying Theorem 2. 1 to Cn = C ~ (^ _ , K* ), n ̂  0, we have a contracting homotopy
Σn\Cn^Cn + 1 such that d_^n + Σ 1

n _ 1 r f _ = 1 for n > 0. Using the natural hermitian
pairing between C""(^_,F*) and Cn = C"(^ + , 7+) for each n, we can define a
homotopy σ^ C^^C""1, such that d+σn + σ π + 1 r f + = 1 for n > 0. Thus Hn(^ + , V+) =
0 for n > 0. Equation (1) now implies that Hn(Dq, d0} = 0 for qeZ,n> 0. From the



BRST Cohomology and Highest Weight Vectors 565

long exact sequence

•••-^H"-l(Dq,d0)-+Hn(Bq+ί,d0)

^Hn(B\dQ] -+H»(D<9dQ)-*... (2)

we conclude that for n > 0, there is a diagram

Hn(Bq+1)-^Hn(Bq)->U (3)

for each q. By finiteness of {Bq}qeZ, it follows that HnJ&, ^0; F+ (x) K_) = 0 for rc > 0.
We now interchange the roles of V± and define a similar filtration {#'9}qeZ,

Dfq = B'q/B'q+i and the induced differential d'0 on D'q. We obtain

(4)
qe Z n = b — a

The fact that K+ is ^_-free implies that //~ f l(^_, K 4 ) = 0 for all a > 0. As before,
using the finiteness of the filtration, we conclude that H^(^, ̂ o; K+ ® ΐ7-) = 0 for
n<0. M

Lemma 2.22. Suppose Wε(9 is hermitian, % _-free and dim W[oi] < oc Vαe^'0. T/zen
/or eαc/z AE^Q, ί/iβre is an isometry

Hn

oo(^^0',W®M(-β-λ)) = Q for n^Q,

^W'*+[λ'] for n = 0.

Proof. The vanishing part follows from Lemma 2.21. One can check that the
composed isomorphism given by the proof of Corollary 2.17 and Theorem 2.13,

β-λ))9 (1)

is given by
® 1], (2)

where [ ] denotes the cohomology class. This is obviously an isometry.

Lemma 2.23. (Poίncare duality). Suppose (C*,rf) is a cochain complex with
dimC* < + oo and a nondegenerate hermitian pairing < , > : C " x C ~ " - + C for each
77, such that d^ = d. Then there is an induced nondegenerate hermitian form <,>:
HnxH~n-+C for each n.

The reader may refer to [LZ, Lemma 3.1] for a proof.

Lemma 2.24. Let We(9,Ae^'Q, //dim W[α] < + oo for all αeSpec^0, then the
vector space C00(^, ̂ 0; W ®M(A)} is finite dimensional.

Proof. In Remark 2.10, we noted that

CJ^o; W®M(Λ}} = Cred(^0; W®M(Λ))[Q-] = Cred[0]. (1)

By definition Cred - W ® M(Λ) ® Ω^, where ί̂ ,, = Ω^/%0) (Definition 2.2). Thus

[7]. (2)

Here α, ft 7 ranges over the subsets Spec^0, SpecM(Λ)^0, Specβ.y^0, of
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respectively. Because Wε(9 (instead of in @0) we have little control over the set
SpeCj^Q. Fortunately, SpecM(Λ)^0 and Specβχ^0 are well under control.

As a ^Q-graded space, M(Λ) is isomorphic to U(&_)®CvΛ, where υΛ is a
highest weight vector. Thus

SpecM(Λ)^0^Λ + Γ_. (3a)

(Note: If the reader wonders why it is A + Γ _ and not A + Γ_ on the right-hand
side, recall that ,̂ which satisfies conditions A1-A5 in Sect. 1, is graded by the

ί n

sublattice Γ= Σ ^αι — ̂  not Γ = £ Zαf itself. This is important because the
i = o i = o

following finiteness argument depends crucially on this fact.) Similarly,

0 c=β + Γ_. (3b)

By construction, each of the ^'0-weight spaces M(Λ)[/Γ|5ί200['y] is finite
dimensional. Using also the assumption that dim W[oi] < + oo, we see that each
summand in Eq. (2) is finite dimensional.

Therefore, it is enough to show that the summation in Eq. (2) admits only
finitely many pairs (/?,y)eSpecM(Λ)^0 x SpecβQc 00» for then there are only finitely
many admissible a= — β — yeSpec^0. By Remark 1.1 (iii), the right-hand side
of (2) is a subspace of

Σ Wίμ,X"0-\®M(Λ)\v,tf'0-\®Ωa)\_p,je1^, (4)
μ+ v + p = 0

where μ, v, p range over

μeA

0 c A \ ̂ 0 + Γ_ <Ξ jT0,

0 c β\^Q + Γ_ c jf 'Q, (5)

^4 being a finite subset of Jtf"0. Equations (5) and μ + v + p = 0 imply that there
are only finitely many triples (μ,v,p) admissible in Eq. (4).

Comparing Eqs. (3a), (3b) and Eqs. (5), we see that elements of SpecM(Λ)Jf 0

and SpecM(Λ)^0 are in one-to-one correspondence. Similarly for Spec^Jf 0 and

0. This means that there can be only finitely many (/?,y)eSpecM(Λ)^0 x

0 admissible in Eq. (2). This completes the proof of the lemma.

Theorem 2.25. Let WE& be hermίtian, $-free and dim W[ci] < -f oo for all
^0. For each /le^"0, there is an isometry

-β-λ)) = 0 for n^Q

^W^ + [/l]/rad for n = 0,

where L( — β — λ) is the irreducible quotient of M( — β — λ).

Proof. First apply Lemma 2.21 to V+ = W and K_ = M, radM, M/radM, where
M = M(-β-λ). Then Corollary 2.20 implies that

H^y, ̂ 0; W ® (M/rad M)) ̂  H0^, ̂ 0; W ® M)//*//^(^, C^0; ̂  ® rad M) (1)

is an isometry. Now J/Γ® (M/radM) is hermitian. Thus by Remark 2.19 (ii), there



BRST Cohomology and Highest Weight Vectors 567

is a hermitian pairing between C^ and C~n

9 where C* = C* (0, ̂ 0; FF ® (M/rad M)).
By Lemma 2.24 C*(<^,^0; W®M(Λ)) is finite dimensional. Thus Lemma 2.23
implies that the left-hand side of Eq. (1) is hermitian. It follows from Eq. (1) that

j*/f £(0, ̂ 0; w ® rad M) = rad #° (0, ̂ 0; PF ® M). (2)

Now by Lemma 2.22, Eqs. (1), (2) give the desired result.

Corollary 2.26. (Vanishing Theorem). For W as in Theorem 2.25,

#U^o;^)^^ + [-/?]/rad for n = 0

= 0 for n = 0.

Proof. L(0) = C.

Corollary 2.27. For FT fls w Theorem 2.25 and Λe^'0,

(i)

dim(W*+tλ]/τad)JchqW'chqL(-β-λ)q-~β fl (1 -^)2dίm^0)(l +^)"2dim

L α e z i +

(ϋ)

=
L

(-β-λ)q-t f] [(1
αezl+

[ ]βo — constant term of [ ] .

Proof.
(i) By the Euler-Poincare Principle, for characters, and Theorem 2.25, we have

* + M/rad) = £ (- I

πeZ

0) . (1)
πeZ

A simple computation shows that

(2)
πeZ αε/l +

(ii) Now apply the Euler-Poincare Principle, for signatures, and Theorem 2.25:
+ M/rad)-

neZ

= \signqW'signqL(-β-λ) ^signqΩ
n

oΰ(^/^0)\ . (3)
L n _\qo

Computing the third term in the brackets gives

= 9~f Π [(l-4«)(l+<Π]dim^dim^'). (4)
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Corollary 2.28. ("No-ghost Theorem') H^^^W), ΐ^+[/Γ|/rad are unitary
(positive definite) iff

= [sign, W q - f Π EC 1 - <f)(l + <f )]dim^'-dim!"'1 V
αe 4 +

Proof. Use chqL(U) = q° and apply Theorem 2.25 and Corollary 2.27.
We now consider another special case of Theorem 2.13.

Proposition 2.29. Let We(9, AeSpec^0. IfM(-β-λ) is irreducible, then

β-λ))=^0 n Φ 0

Proof. We know that M( — β — λ) is ^_-free. By hypothesis, it is also hermitian.
Set V+ =M( — β — λ) and 7_ = W. Then Lemma 2.21 gives the vanishing part.
The isomorphism is just given by Corollary 2.17.

Corollary 2.30. For the same hypotheses as above,

where I is the maximal proper ideal of £7(0 _). Thus W[λ~\ = W^+[λ] +(I'W)[λ]
(direct sum).

Proof. By interchanging the role of W and M( — β — λ), we can define a second
filtration {B'q}qe% as we did in the proof of Lemma 2.21. A similar argument as in
Theorem 2.13 shows that

H* (#, ̂ 0; W®M(- β- λ)) ^ H*(^_, W}[_β + λl (1)

Now Proposition 2.29 and Eq. (1) imply that

λ]. (2)

But this right-hand side is precisely (W® 1 ® l/(I-W}® 1 ® !)[/] with the
convention that 1 (x) 1 e Λ ̂ (Q]® v ^(l} carries the weight β. Thus Eq. (2) gives a
canonical isomorphism

W*+lλ]^(W/I W)ίλ]9 (3)

where ωκ->ω + /• W. This means that we have a direct sum decomposition as given
above.

3. Examples

In this section, we present a few applications which play an important role in
string theory and recently, conformal field theory.

First, we will recover a result which has been known to physicists for quite
some time - the No-ghost theorem of the so-called bosonic Fock space in D
dimensions, as well as its superstring analogue [GT, Tl, LZ, FGZ]. We will show
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how the no-ghost condition is closely related to the unitarity of some Verma
modules over Vir (Theorem 3.5).

Unitary conformal field theories are a very important class of conformal field
theories. Recently Dixon, Peskin and Lykken have demonstrated that the unitary
representations of the N = 2 superconformal algebra for c> 3, can be obtained
from a "coset construction" using the sό(2, 1) current algebra and its ύ(l) subalgebra.
They have identified the "unitary domain" in the parameter space of the sό(2, 1)
representations. Later in this section, we will show that the ύ(l) + -in variant subspace
(or "50(2, !)/£/(!) coset module" as the authors called it) is precisely a zeroth
relative cohomologv group; and that the description of the unitary domain is a
result of our No-ghost theorem corollary 2.28. We will make use of the Kac-
Kazhdan determinant formula (in a different way than Dixon et al.).

We now briefly review some notations for the free bosonic string theory [GSW].
Consider a Heisenberg algebra over C, spanned by {α^, μ = !,...,£), «eZ}u{l},
with the Lie bracket

where gμv is the Lorentz metric. Define the fock module F(D, p) of this algebra:

D oo

K(D,p) = sym© ©Cα1n. (3.2)
μ= 1 w = l

The vacuum of V(D,p) is denoted by vp, pecent', where Decent acts by

x ι>p = <p,x>tV (3.3)

We will assume that </?,!> = 1, that <p,*> 7*0 for some xφCl, that </?,αg>eR
for all μ, and that D ̂  2. The Virasoro algebra Vir is given by

neZ

[Lm, LJ = (m - n}Lm + n + ~(m3- m)δm, _ „,

[z,Vir] = 0. (3.4)

For m,tteZ, set 0 - Vir, ̂ 0 - CL0 + Cz, jjf 0 - CL0, Γ - ZL7

0. Then clearly ^ is
7"-graded. V(D, p) is a ^-module whose properties are summarized as follows.

Proposition 3.1. [GSW,FGZ].

(i) V(D,p) is a $ -module in $0, where the action is given by π(Lw) = - ^ :αm α n _ m ; ,
2meZ

π(z) = D Idv. Here <*„<*„ = a^oζg μv and: αm αAZ;- αw α, if n^m and =α Λ αm

oί/zerwise.
(ii) F(D,p) is hermίtian with

(iii) SpecF(D;p)^o = <Dz' + n + -L' , w/zβre p p -
C \ ^ / J neZt

(iv) dim F(D,/?)[/l] < + oo /or all /leSpecF(D p)^0.
(v) 7(Ap) is & --free.
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Remark 3.2.
(i) Because the central element z acts by a constant, it is customary to use the
eigenvalues of — L0 alone as the set of weights, i.e. one identifies SpecK(D p)^0 with

p p]

(ii) The Verma module of highest weight czf + hL'Q is denoted by M(c, h). Its
irreducible quotient is denoted by L(c, h). As in (i), one uses the eigenvalues of
— LO as the ^Ό-weights °f tne module.

We now summarize some well-known results about <$ — Vir, Λ^^ and the
^-action η on Λ ̂ .

Proposition 3.3.
(i) (cf. Proposition 1.8) H2($) = Q.

(ii) σ(Ln) = — L_ n σ(z) = — z defines an antilinear automorphism.
(iii) ( Λ „&, η) is a $ -module ifβ=- 26 zf - L'0. Note that σ(β) = -β. Thus Λ «<8
is hermitian.
(iv) Spec Λ χ4?Q = { — 26z' — L'0 -f nL'0}ΛeZ+ «5 before, we will identify this set with
(1 — n}neZ+, i e. ί/ie eigenvalues of — L0.

Proposition 3.4. FΓiί/i ίfie above identifications:

(i)dimF(D,p) -n-— < + o o ,

(ii) chqV(D,p) = qp p/2φ(qΓD, where φ(q)= l\(\-qn\

(iii) signίK(D,p) = ίp |>/2^)"I)+1 Π (l+^F1-
n > oo

The reader may consult [GSW] for detailed derivations. Recall that for a
(non-super) Lie algebra $,Ω^=/\aQ

(g and Ω^/^Q) = ΛJ^/^o). When
^ — Vir, the normal ordering defined in Definition 1.6 coincides with that in
[GSW], where they use the notation ε(L'n) = <:_„, ι(L'n) = bn, neZ.

Theorem 3.5. Let D ̂  2, heζ^ + Z+ :

(i) There is a canonical isometry

V(D, pf+l- h]/rad S <(̂ , ̂ 0; K(D, p) ® L(26 - D, 1 - h)).

(ii) T/z£ above space is unitary for each p iff (D, /z) ία/ces ί/ze following values

D = 26, h=\ or 26>D^2, ft^l.

number h is called the "Regge slope" in the physics literature.)

Proof.
(i) We remind the reader of the convention that V(D, p) [ — h] is the eigenspace
of — LO with eigenvalue — h. Then (i) is simply a direct application of Theorem 2.25.
(ii) Now by Corollary 2.27 and Proposition 3.4,

dim V(D,pf+ [ - A]/rad = qp'p/2. Π (1 - qn}~D + 2chqL(26 ~D,\-h}\ ,
L neJV J^o

sign F(D,pf + [ - /0/rad - g<"/2)-1 Π (1 - 4TD + 2 sign?L(26 - D, 1 - h)
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Thus V(D9 pf+l- Λ]/rad is unitary for all p iff chqL(26 -D,l-h) = sign, L(26 - D9

1 — h\ i.e. iff the Verma module M(26 — D, 1 — h) is positive semi-definite. The
latter is equivalent to precisely the conditions on (D, h\ as given above.

Remark 3.6.
(i) Since Theorem 2.25, Corollary 2.27 and Proposition 3.4 cover the case of Lie
superalgebra as well, the super analogue of Theorem 3.5 also holds. In particular,
it turns out that β= — 10z' — ^L'0 when ̂  is the super Virasoro algebra Vir 1 / 2. Thus

Theorem 3.5 can be restated for ^ = Vir 1 / 2 by replacing he l-Z + with

/ϊG^ + -Z + , 26 with 10,1 -h with \-h etc. For details of the notation, the

reader may consult [LZ].
(ii) Theorem 2.25 can be applied to a general class of string theories, known as
the "compactified" string models in a Minkowski background. These models are
described by modules of the form V(D,p)®W, where We(9 and z acts by
(26 — D)Idw. Many such theories have been constructed (see [GW], [Gl], for
example). Given such a theory, one postulates that the "particle spectrum" be given
by the cohomology classes of//^(^,^0; V(D,p}® W). Thus the tools discussed in
Sect. 2 can be powerful methods for analyzing some of the properties of the
compactified strings. For example, by Corollary 2.26, we have

(V(D9p) ® Wf+ [ - l]/rad ̂  tf° (#, #0; V(D,p) ® W).

Corollary 2.27 then gives us the dimensionality of physical space in such a theory.
Now using Corollary 2.28, we can determine whether this model is ghost-free. It
turns out that the physical space is ghost-free if chqW = sign, W, i.e. if W itself is
a unitary ^-module. As expected, the unitarity condition for the compactified
superstring is precisely the same. For detailed discussion of the latter, the reader
is referred to [LZ].

Next we discuss the 80(2, l)/l/(l) "Coset construction" of Dixon, Peskin and
Lykken using the tools we have developed in the previous section. We begin by
a brief review of the notations. Since the following discussion is motivated by
[DPL], we will try to follow the notations used by those authors.

Let G = so(2, l)c = s/2(C) denote the Kac-Moody Lie algebra given by
G = £ Gn + Cd + Cz, Gn = CJ + + CJ~ + CJn

3, with the Lie bracket:
«eZ

±
— " rt + m'

| , Ί
— ± J

[d,J»~] = nJa

n,a= ±,3, n,

[z,G]=0. (3.1)

Two important subalgebra are

GO = CJ0

+ + CJ- + CJ3

0 = so(2, l)c (3.2)
and

^ = Σ CJn +Cd + Cz = ώ(l). (3.3)
neZ



572 B. H. Lian and G. J. Zuckerman

We will first focus on .̂ Let

^ — Γ 73 4- Cd 4- C?<y 0 v-/t7 o ' "̂  Vx^,

Γ±=Z±df, (3.4)

Thus 0 is Γ-graded with ^± = £ CJn

3 and Δ± = {nd'\ ± >ιeN} g Γ±.
± n > 0

Proposition 3.7.
(i) σ(J*) = — Jlπ,σ(z) = — z αra/ σ(d)=—d defines an antίlinear automorphism
of<$.
(ii) // β = μJ^ + vd', for μ,veC, ί/zerc 7 = 0 (cf. Proposition 1.8). Thus (f\^,η)
is a hermitian ^-module if μ, veR.

(i) is easily checked.
(ii) Definition 1.6 gives

Thus |>(J3), ^y(J^)] = 0. To get γ =__0, it is enough to choose <^S, z> = 0. By Remark
1.9 (i), (f\^,η) is hermitian if σ(β) = - β. Thus we need μ, veR.

Remark 3.8.
(i) For convenience, we will always assume that /ί= 0.
(ii) From now on we will consider ^-modules WE Θ in which the central element
z acts by kΊdw for fceC\0, and dim W[μ} < + oo for all αe^.
(iii) We observe that any Verma module M(λ) of & = ύ(l) such that </l,z> / O
is irreducible. Together with Corollary 2.30, this will give us a further structure
on W(the $ module in (ii) above). This structure was implicitly assumed in [DPL,
cf. Eq. 3.19], in one of the examples that the authors gave.

Proposition 3.9. // WE® satisfies Remark 3.8(ii) then W=W'*+ +I-W^+ (direct),
where I is the maximal proper ideal of^ί(^-). If .furthermore, W is hermitian, then
we have an orthogonal decomposition. In particular, < 5 >|^ f xw ̂  is non-degenerate
in this case.

Proof. Suppose W satisfies Remark 3.8(ii). Then for any /eSpec^^0, <λ,z> / O
and M(—λ) is irreducible. Since j8 = 0, Corollary 2.30 implies that

W^[λ] = ^+[;j+(/-WOW (1)

(direct sum). Thus it is enough to show that chql W^+ = chql W. It is clear that 7
has a canonical basis of the form

PL = (J*-ι)h(J*-2f2'~ with 0< Σ li< +00' (3)
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where L= {/ ι ,/ 2 } Let {wί}ίεZ be any basis of W^+. Then the vectors PL'v^i are
linearly independent. For if ΣaLιPL Wi = Q, then we get, for each J,

L,i

^aLισ(Pj)PL \Vi = CjYjaJι\vi = Q, for some CjeC\0. This implies that aJτ = 0.
L,ί l ί
Therefore, we have

chqI W*+=chqI'chqW*+=chqW*+( -1+ Π (1-tfT1 (4)
\ αe4 + /

Now using Proposition 2.29, the Euler-Poincare Principle, and the fact that

αezl +

we get
chqW

9+= Π (l~q*)chqW. (5)
αezi +

Thus (4) becomes

chql- W's+ = - chqW^+ + chqW. (6)

But by (1), the right-hand side of (6) is just chqI W.
The fact that ^W9 +

 9I'Wy+yw = OM[ov/s from &+-W*+ =0.

Proposition 3.10. For W as in Remark 3.8(\\\ there is an isometry

Proof. This is an immediate consequence of Proposition 2.29.

We now return to the algebra G = so(2, l)c and discuss an important class of
G-modules - the induced modules. Let H = Cd + Cz. Suppose N is a left G0-module
(G0 = so(2, l)c). Turn it into a left J3-module N(λ) as follows, where 5 is the
subalgebra £ Gn + H. Fix /le//' and let f/ act by the weight A; let each GM5 n > 0,

n ^ O
act trivially. Now take the right β-module U(G) and form the tensor product:
Ind%($N(λ)= U(G)®v(B)N(λ). This is a left G-module called the module induced
by N(λ).

Remark 3.11.
(i) We will be primarily interested in G-modules induced by (semi)-unitary
G0-modules.
(ii) In [DPL], the authors have reviewed the construction of all irreducible
unitary G0-modules, which basically come in four families (for details, consult
[DPL]):
Gl. The trivial module C.
G2. / < 0:^_(/) - X C(J-)nv09 with J + v0 = 0, J*v0 = Iv0.

G3. ί > 0:0+(i) = X C(J0

+)«ί;0, with J~υ0 = 0, J^0 = Iυ0.

G4. μe[0,l), v>μ(l -μ):®0(μ,v)= Σ <TOX+ Σ C(J0

+)V with
«>0

QI>O = μ^0? where ί2 = ̂ (J^J^ + ̂ ^^O

f ) ~~ (^o)2 ^s tne quadratic Casimir of G0.
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For future convenience, we will include in each of the families G2, G3, G4
those possibly reducible G0-modules. Namely, ^_(/), /^O; ^_(/), /^O; and
@0(μ, v), v^μ(l — μ) respectively. We will refer to these (enlarged) classes as Gl,
G2 etc. in the future. Note that in G2, G3, Ω= -1(1 ± 1)1 d respectively is
determined by /, while v is independent of μ in G4.

(iii) To define the induced modules, we will always assume that H = Cd + Cz
acts by the weight — /cz', keR. We will denote the induced modules in Gl, . . . , G4
respectively as V = V(k\ K_ - K_(/,k), V+ = V+(l9k)9 V0 = V 0 ( μ 9 v 9 k ) . Note that as
vector spaces, they are isomorphic respectively to t/(G_), ί/(G_)(g)^_(/),
t/(G_)(g)®+(0,t/(G_)(8)®o(^v), where G _ = £ Gn.

n<0

(iv) Observe that each of the W = V, V±, K0 has a unique sesquilinear form
<,) such that

for neZ. Also each of these spaces is irreducible as a G-module iff this form is
nondegenerate. Equivalently, W is irreducible iff given a basis for each weight
space W[_λ], the (Shapovalov) determinant of the form is non-zero.
(v) We will argue that the K+(/,k) are essentially Verma modules over G and
that V(k) is a quotient of a Verma module.
G2: Set α^ = -2Jo + z,α1

v =2J*,a0= - J% + d\oc1 = J*'. Then one can check
/ 2 — 2\

that α0,α1 are the simple roots of G, and that «α ί,αj/» = ( is the

Cartan matrix. In this presentation of G, one can show that K_(/,k) is the Verma
module M(λ) over G with highest weight λ = /J^ — kz7.
Gl: Now using the above presentation of G, we find that V(k) is a module with
highest weight λ— — kz'. Thus it is a quotient of F_(0,k).
G3: Set α^ = 2Jo + z, αt

v = — 2J^, α0 = J% + d',o^ = — JQ'. Then in this new
presentation of G, F+(/, k) is the Verma module M(λ) with λ = IJ% — kz'.
(vi) We will now consider K, V+, V0 as modules over ^ = ύ(l). Since
^0 = C/3 + Cd + Cz, they are clearly ^-graded with finite dimensional weight
spaces. Thus they satisfy the condition in Remark 3.8(ii). Recall that J^0 = Cd.
Thus (cf. (iii) above) Spec^^f0, for W=V9 V±9 V09 is a subset of Γ_ =Z_d'.
Hence F, F+, V0e@. In fact, K, K+ are ^-bounded above and thus are in Φ0.

Proposition 3.12.

(i) cl
(ii) ci

(iii) cl
(iv) cJ
w/z^r^



BRST Cohomology and Highest Weight Vectors 575

Proof. Using Eq. (3.1), we have for /ιe^0, neZ,

This gives chqU(G_) = ψ(qΓ\ where G_ = £ (CJίn + CJIn + CJ3_J, chqD±(l) =
n > 0

<?~/α(l -q + *)~1chqD0(μ,v) = q~μa £ gn^ Now the observation in Remark (iii) gives
ne^

the desired result.

Theorem 3.13. Let W^ + be the subspace of $ + -invariants in W, where W is one of
V(k\ V+(l,k) or VQ(μ, v, k). Then precisely for the following values of the parameters,
W^+ is positive definite:
case Gl: fe > 2,
case G2: k> 2, fe > - 21 J < 0,
case G3: fe > 2, fe > 21, 1 > 0,
case G4: k> 2, v > μ(l — μ).

We will return to the proof later. The result is also obtained in [DPL], using
a different approach.

Proposition 3.14. For the parameter values given in Theorem 3.13, we have
(i)

(ii)
(iii) sign, V+(l, ̂  =
(iv) sign, F0(μ, v, k) = q~μ*χ(q)φ(qΓ \
where

nεN

Remark 3.15. These signature formulae are intuitively clear from the commutation

relations (3.1), with z = — k and fc-> + oo ("classical limit"), i.e. we replace -[,] by
k

[,] in Eq. (3.1), and we get for "fc-> + oo",

But for a rigorous proof, we will invoke the Kac-Kazhdan [KK] formula and a
method of Wallach's [W].

Lemma 3.16. For k>2, V(k) is irreducible.

Proof. Let Ω be the generalized Casimir of G = sl2.
If veV(k) is a G + -in variant with weight λ — nα0 — mα 1 ? /l = —fez' (see notation

in Remark 3.11(v), G2), n, meZ + , one has

Ωυ = (λ-β + 2p\λ- β)υ = (λ + 2p\λ)v.

Simplifying this, we get

- n(k -2) = (n- m)(n - m + 1) ̂  0
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for n9 weZ +. Thus for k > 2, (n, m) = (0,0), (0,1) are the only solutions. That is, the
only weight spaces of V(k) with G + -invariant are F(fc)[/ί] and V(k)\_λ — oq]. But
the former one is the highest weight space of V(k)\ the latter is zero.

Lemma 3.17. For the parameter values given in Theorem 3.13, the Shapovalov
determinant of W in each case is non-vanishing.

Proof.
Case Gl: This follows from Lemma 3.16.
Case G2, G3: Recall that (Remark 3.11(v)) both V±(Γ9k) are Verma modules. Thus
one can use the Kac-Kazhdan formula to check that, indeed, for the given
parameter values, the determinant is non-zero.
G4: Similarly, this follows from the determinant formula for F0(μ, v, k) given in
[DPL].

Remark 3.18.
(i) Let v(nθ9m0) = (J+)no(J-)mov0 be a basis of C, ®_(/), 2+(ϊ) or ®0(μ9v)9 where
(n0,m0) ranges over (0,0),(0,Z+), (Z + ,0) or (Z + ,0)u(0,Z+) respectively (see
Remark 3.11). Fix /,μ,v. Recall that V(k\ F_(/,fc), 7+(/,fc) or V 0 ( μ 9 v 9 k ) has basis
vectors of the form:

u£k) = (Jl1)
ll(Jl2)

h...(Jll)
mi(J-^

00

where / ί,n ί,m ίeZ+ with |/| = £ (/f -f nt + mt ) < + oo and / denotes the index

sequence {li+i.n^m^i^Q. Given m,NeZ, we call such an 7 admissible if

OO

Z_^ \ i i ι/ '
ί = l

CO

Σ
, .

V ί ί'/
i = 0

Note that in this case,

(ii) The matrix

where /,/' ranges over the admissible index sequences (for given m,ΛΓeZ), is the
Shapovalov matrix. Note that this matrix is finite in all four cases.

Lemma 3.19. In each of the four cases G1,...,G4, for /,/' admissible, we have
(i) lim <Wj(fe), Uj(k)yk~^ = cl9for some non-zero constant ct.

(ii) lim <M /(fc),M r(fc)>fc~ ( l / l + l / / l ) / 2 = 0, where I^Γ.
/c-> + oo

Proof. It is obvious from the commutation relations that the matrix elements are
polynomials in k. Let 0(kp] denote an arbitrary polynomial in k of degree at most
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p. We will only sketch the argument, leaving out the straightforward inductive
argument. By induction on |/ |, one can show that

<M /(fc),M /(fc)> = <ι;K,m0),φ0,m0)> f j l.lm^l ( — } (ik)mi(ikγ* + Θ(k^~1).
i = l \ 2 /

Thus (i) follows. To prove (ii), first let n = \ I \ φ Γ\ = p. By induction again, one has

where Aι,...,Ane{Ja

n a= ±,3,n>0} (annihilators) and Cl9...,CPε{Ja

n\a= ±,3,
n < 0} (creators). This implies that

Thus (ii) follows in this case. To consider the case \I\ = \Γ , / // ' , one writes
<w/(fc), ur(k)) in the form

< ι;(n0, m0), A1 AmCm - - C^v(n'^ m;

0)>, m - |/1 .

Here the X's and the C's are annihilators and creators as before. Then using the
fact that AvφC\ for some ί (because / //') one can show that the above inner
product is Θ(km~1}. Thus (ii) also holds in this case.

Lemma 3.20. For the same assumptions as in Lemma 3.17,

sign FmjN(k) = Σ sign cj9

where the sum is over all admissible /, and cI is given in Lemma 3.19.

Proof. Let M(fc) be the matrix whose elements are <(uj(k)klll/2, w r (fc)fc~ l / / i / 2 >. Thus
sign FmtN(k) = sign M(fc) for fc > 0. By definition sign M(fc) is the sum of the signs
of the eigenvalues of M(fc). These eigenvalues are continuous functions of fc at least
in the region fc > 2. Lemma 3.17 implies that they never vanish under the conditions
of Theorem 3.13. By Lemma 3.19, the c/s are the limits of these eigenvalues, as
fc -> + oo. Since all cl / 0, we have sign M(fc) = Σ sign Cj.

Proof of Proposition 3.14. We will do only sign^ V(k\ The other three cases are
very similar. By definition,

signgF(fc) = Σ Σ s iβn Fm,jv(fc)4~Λ M~ l l ι α~λ> (1)
JVeZ- meZ

where δ = d', α = J^', λ = — fcz'. Recall (Proof of Lemma 3.19) that

Using (2), Lemma 3.20 and the notation in Remark 3.18, we can write

signqV(k) = q-λ Σ ΣΣ^(-l)Σ£ι^Σr=ι^ (3)
NeZ-. meZ

oo

where Σ' sums over all admissible / — { / i + ι , 7 W i , w j .> 0 with N = — Σ (h + mί + ni)'^>

CO

m = Σ (π/ ~~ mΐ) an(^ 'i»m/' ni^Z+ for z > 0. In the case V(k\ (m0, n0) = (0,0). Thus
ι = 0
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(3) becomes

as given in Proposition 3.14. In each of the other cases, G2, G3 or G4, one has
an extra fact or q~l*(l - q*)~ * , q~ l*(l -g'T1 oτq~μa £ q™. It corresponds to the

neZ

range (0,Z+), (Z + ,0) or (Z + ,0)u(0,Z+) of (n0,m0).

We are now ready to prove Theorem 3.13.

Proof of Theorem 3.13. Using the Euler-Poincare Principle and Proposition 3.10,
we have (see also Corollary 2.27)

ye/U ,-/

= cft ίW Π(l-9 5 % (!)
γe/1 +

where FT is in one of the four classes, and Δ+ = {nδ,neN} is the positive roots of
^ - ύ(l). Similarly,

sign, W*+ = sign, W Π (1 + <ly). (2)
γeΔ +

Proposition 3.12(i) and Eq. (1) give

chq V(Kf+ = qkz> Π (1 - ̂  + β)(l - ^~α), (3)q
neZ

which is identical to sign, V(kf+, following Proposition 3.14(i) and Eq. (2). Cases
G2, G3 and G4 are similar, i.e.

in all four cases. This establishes that the parameter values given in Theorem 3.13
are sufficient to guarantee unitarity.

To see that these values are necessary, it is enough to give $ + -invariants in
W that require these parameter values. One finds that in V(k\

v1 =

are $ + -invariants with

Thus unitarity requires fc > 2 in case Gl. Similarly, in case G2,
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are ^ + -invariants in K_(/,fc) and

<^ι^ι>= -2/<t;0,t;0>,

Thus unitarity of 7_(/, fc)^+ requires / < 0, k> —2l9k>2. There are similar vectors
in case G3 which require / > 0, fc > 21, k> 2, for unitarity of V+(19 kf+. Finally, in
case G4, the following $ + -invariants in V 0 ( μ 9 v 9 k ) have positive norm only if
v >μ(l — μ) and fc> 2:

This completes the proof of Theorem 3.13.

4. Discussions

In Chaps. 1 and 2, we have dealt with the functor

where ^0 is ad-diagonalizable. One can generalize to the case in which (A) ̂ 0 is
not ad-diagonalizable or (B) ̂ 0 is non-abelian. In these cases, one has to deal
with certain technical problems in computing Jΐ* . Another interesting problem
that arises in Chap. 1 is (C) What is the role of the representation of the super
Heisenberg algebra? To explain this, we recall some of Chap. 1.

The construction of the BRST complex can be viewed abstractly as follows.
Given a graded super Lie algebra ,̂ there is a natural graded super-Heisenberg
algebra <&(&©&') associated with <§. To define a semi-infinite complex, we have
chosen a particular irreducible representation of the associated super Weyl algebra
i^^S®^S'\ However, it is well-known that there are many inequivalent irreps of
the Weyl algebra (even when dim^ < +00!). The problem is to decide when the
functors W^>H^(^, W) resulting from different irreps of W are naturally
isomorphic. In [LZ1], we have had a glimpse at this problem in the case of the
super Virasoro algebra. We have shown that in some cases, two distinct irreps of
H^ do result in the same cohomology. Note that the above problem does not arise
when ̂  is non-super. In this case if reduces to a graded Clifford algebra C(<& ® $'}
which has a unique irrep.

We note that problem (C) is in fact physically relevant. It is equivalent to the
question of whether the physical states in a model are dependent on the choice
of (super) ghost states. In the context of superstring theories, Friedan, Martinec
and Shenker [FMS] have shown that the answer is negative, at least for a certain
class of superghost representations.

Problems (A), (B), (C) will be the subject of our future investigations. We note
here that problems (B) and (C) are also of direct relevance to the problems listed
in the introduction.

We emphasize here that the material in Chapter 3 serves merely as an exercise
to illustrate our fundamental results developed in Chap. 2. Our on-going work



580 B. H. Lian and G. J. Zuckerman

now is to apply our machinery to higher-rank algebras. The new results will be
reported soon.
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