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Abstract. We generalize the usual Lax equation — L= [M, L] by — L— —ρ(M)L,
at at

where ρ is an arbitrary representation of a Lie algebra g (the values of M) in a
representation space F(the values of L). The usual classical r-matrix programme
for Hamiltonian integrable systems is generalized to r-matrices taking values in
§®V. The r-matrices are then considered as left invariant torsion-free covariant
derivatives on a Lie group K (with Lie algebra F*). The Classical Yang-Baxter
Equation (CYBE) is equivalent to the flatness of K whereas the Modified CYBE
implies that K is an affine locally symmetric space. An example is discussed.

1. Introduction

In the last years, the interest in integrable Hamiltonian systems has rapidly grown
because of the relation to the Classical Yang-Baxter Equations (CYBE) which in
turn point towards the Quantum Yang-Baxter Equations (QYBE) and Quantum
Groups. In various papers, e.g. by Sklyanin (cf. [1,2]), Belavin and DrinfePd (cf.
[3,4]) and Semenov-Tyan-Shanskii (cf. [5]) classical r-matrices have been defined
and discussed. Further algebraic properties and formulations of the CYBE and
Poisson Lie groups using Schouten brackets are developed in the work of
Kosmann-Schwarzbach and Magri (cf. [6]). In several articles (cf. [7, 8]) Babelon
and Viallet studied the importance of classical r-matrices and the CYBE in the
context of Hamiltonian systems defined by Lax pairs.

In this paper, an attempt is made to generalize the concept of Lax pairs by
replacing the well-known Lax equation (cf. [9])

by
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where ρ is an arbitrary representation of a Lie algebra g in a representation space V,
M is a g-valued function on phase space and L is a V-valued function on phase
space. For F = g and ρ = ad (the adjoint representation of g) this reduces to the
usual Lax equation. Such generalized Lax equations have also been considered in
a more special context by Semenov-Tyan-Shanskii (cf. [10]) who uses restrictions
of (co)adjoint representations and by Fomenko (cf. e.g. [11]) whose sectional
operators are special M-functions depending linearly on L.

In Sect. 2 of this paper we shall give the definitions and apply the usual r-matrix
programme (cf. e.g. [7]) to our more general situation: starting with the Lax pair
we get G-invariant functions of L as conservation laws (G being a Lie group having
Lie algebra g). Next, a more general r-matrix ansatz is formulated where the
r-matrices are elements of F(g)g rather than g®g. This guarantees Poisson
commutativity of the above conservation laws. We shall then give a more general
form of the (Modified) CYBE which serve as a sufficient condition to the
consistency of a Lie structure on 1= V* defined by the r-matrices.

In Sect. 3 of this paper we shall adopt the point of view of affine geometry rather
than the usual symplectic geometry: We shall interpret the generalized r-matrices
as left invariant affine torsion-free connections V on a Lie group K (having Lie
algebra I = V*) and define the Lie algebra g to be any subalgebra of gl(I) containing
(up to projections) the Lie algebra generated by all covariant derivatives at the
identity along left invariant vector fields on K. A special case of this, namely the
canonical "half commutator" connection on a semisimple Lie group appears in
two papers of Ferreira (cf. [12]). The Jacobi identity for the Lie structure on I is
then reflected in the first Bianchi identity of the Riemann curvature tensor of V. We
shall show that this construction will give rise to new families of Poisson
commuting conservation laws. The CYBE and the Modified CYBE will then
appear as special cases of this, i.e. zero curvature for CYBE whereas the Modified
CYBE will correspond to a covariantly constant curvature tensor thus giving the
Lie group K the structure of an (in general noncanonical) affine locally symmetric
space. Here the crucial condition will turn out to be the possibility of twilling
together (in the sense of Kosmann-Schwarzbach and Magri, cf. [6]) the two Lie
algebras g and I to a larger one defined on the direct vector space sum g 0 l (which
contain the Manin triple algebras gθg* as a special case). We shall show that this
twilled extension is a symmetric Lie algebra of infinitesimal affine transformations
on the affine symmetric space K.

Section 4 of this letter contains an example for a generalized Lax pair, namely
the now classical left invariant geodesic motion on a Lie group K (see e.g. the work
of Fomenko and Mishchenko [18]): here, one half of the equations of motion has
the usual coadjoint Lax form but we show that it can be rewritten in a second Lax
form not containing the coadjoint representation thus giving rise to more Poisson
commuting conservation laws.

In this paper we do not discuss the difficult problem of completeness of these
conservation laws and the possibly prominent role of the (co)adjoint represent-
ation in this context.

2. Generalized Lax Pairs, /-Matrices and the (M)CYBE

Let (P,ω) be a symplectic manifold (a phase space) and H.P^IR. a fixed real-
valued smooth function (a Hamiltonian). We refer to (P, ω, H) as a Hamiltonian
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system, XH = ω*dH is the Hamiltonian vector field of H, and the Hamiltonian
equations are p = XH(p)- Recall that (P, ω, H) is completely integrable (in the sense of
Liouville) iff H is a function of n (= 1/2 dimP) functionally independent, Poisson
commuting conservation laws Ft: P-»1R (1 ̂  i: ̂  n) (see the books of Abraham and
Marsden ([13], where we take our sign conventions from) or Fomenko and
Trofϊmov [11] for details). The following procedure will serve as an ansatz to get
completely integrable Hamiltonian systems.

2.ί. Definition. We call a quintuple (g,ρ, V,L,M) a (generalized) Lax pair for a
Hamiltonian system (P, ω, H) iff

i) g is a finite dimensional real Lie algebra,
ii) V is a finite dimensional real vector space,

iii) ρ: g-»Hom(K V) is a representation of g in V,
iv) L.P-+V is a smooth map and
v) M:P-*g is a smooth map such that

for all pin P. (•)

On the solution curves of XH equation (*) is by the chain rule equivalent to

^ (2.2)

Of course, for g = V and ρ = ad this reduces to the usual Lax equation. We say that
the Hamiltonian system (P, ω, H) is defined by (g, ρ, V, L, M) iff dL(p) is injective for
all p in P because then the inhomogeneous linear equation (*) is uniquely solvable
for XH if solvable at all. P can then be considered as an immersed submanifold of V.

In numerous cases M is a function of L which implies that Eq. (2.2) defines a
differential equation on V that can be investigated without referring to (P, ω, H).

Let G be a connected Lie group having Lie algebra g such that ρ exponentiates
to a representation of G in V which we shall also call ρ. Recall that the G-orbit G v
through v e V is the set {g(g)v\g e G}. Now, since the tangent space TV(G v) is given
by the space {ρ(ξ)v\ξ e g} the geometric content of Eq. (*) is the easily seen fact that
L maps the integral curves of XH onto curves in V that are always constrained to
some G-orbit in V. Hence the following proposition is an immediate consequence:

2.3. Proposition. Let (g,ρ, V,L,M) be a generalized Lax pair for a Hamiltonian
system (P,ω,H). Furthermore, let f: F->R be a G-invarίant smooth function, i.e.
f(Q(g)v)=f(v) for all geG and veV.

Then foLis a conservation law, i.e.

Proof G-invariant functions are always constant on each G-orbit, and the equation
follows from the infinitesimal G-invariance of /:

df(v)ρ(ξ)v = 0 for all £eg and veV. (2.4)

Hence
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For the usual Lax pairs, / is mostly taken to be a trace polynomial trace (Lk) (k a
positive integer) which is invariant under conjugation Lh^gLg"1 (that is the
adjoint representation of G in g= V).

So far, the Hamiltonian structure of the phase space P did not enter and
everything mentioned above is also valid for arbitrary vector fields on P. The next
step in the programme is the question: when do these conservation laws /°L
Poisson commute among themselves?

Let et (1 ̂  ί ̂  dim V) be a basis of V and TA (1 <; A ̂  dim g) be a basis of g. Then
for v = vieieV and ξ = ξATAeg one has the "matrix elements" ρAj of the
representation ρ, i.e. ξΛvjρA

i

j=(ρ(ξ)v)i (for V=g,ρ = ad these matrix elements are
nothing but the structure constants of the Lie algebra g). Now the Poisson bracket
{/oL, hoL} for arbitrary functions /, h: F-*1R is easily calculated:

{foL,hoL} = j-ro Lj-jor {L\Lj}. (2.5)

If both / and h are G-in variant, then the above Poisson bracket will vanish if the
Poisson bracket {L\ U) "somehow contains the representation ρ such that the
infinitesimal G-invariance [Eq. (2.4)] can be applied." To be more precise we
consider two smooth maps which we shall call classical r-matrices in the sequel

r + , r_ :FxP-»F®g (2.6)

and make the following generalized r-matrix ansatz:

{L\Lj} (p)= —r+iA(L(p), p)ρA\L\p) + r JA(L(p),p)ρA

i

kL
k(p). (2.7)

As a consequence we have the

2.8. Theorem. Let (g,ρ, V,L,M) be a generalized Lax pair for the Hamiltonian
system (P,ω,H) allowing for classical r-matrices that obey Eq. 2.7. Then for two
real-valued G-invariant functions f and h on V the Poisson bracket {/°L, hoL}
vanishes.

Proof Using Eq. (2.5) and suppressing the arguments of r+ and r_ we get

and the underlined terms both give zero because of infinitesimal G-invariance
[Eq.(2.4)].

Again, for V—g and ρ = ad the classical r-matrices take values in g(χ)g, and the
above theorem specializes to the fact proven, e.g. in [7] that arbitrary trace
polynomials of L Poisson commute among themselves.

Making an ansatz like Eq. (2.7) requires a consistency check because on the
left-hand side is a Lie bracket coming from the Poisson structure that satisfies
antisymmetry and the Jacobi identity. Hence the classical r-matrices have to obey
some consistency conditions. In the following, we shall only consider constant
r-matrices (for Independent r-matrices in the usual approach see [8]). This implies
that the component functions Ώ close to a finite dimensional Lie subalgebra ϊL of
the Poisson algebra of functions on the phase space (P, ω) since the right-hand side
of Eq. (2.7) is then linear in L. Finite dimensional Lie subalgebras of Poisson
algebras have extensively been studied by Mishchenko and Fomenko (cf. [11,14]).
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In case IL exponentiates to a global canonical action of some connected Lie group
KL (having Lie algebra IL) on phase space L will be an Ad*-equivariant momentum
map (see [13] for details). Now the values of L will in general span only a subspace
VLoϊV which need not be G-invariant (the L for the sl(n,JR) Toda chain occupies
only diagonal and first upper and lower off-diagonal matrix elements, see e.g. [7]).
Therefore the conditions for the classical r-matrices will in general depend on the
specific L. But if one is interested in the investigation of all generalized Lax pairs
having the same phase space (P, ω), the same g, ρ, and V and the same classical
r-matrices r+ and r_ then one has to impose the stronger condition that Eq. (2.7)
ought to be consistent with the Poisson structure of all such L's. This stronger
condition then says that

fiJ

k=-r+

iAρA

J

k+r-JAQA (2-9)

should be the structure constants of a Lie structure on V*9 the dual space of V. We
shall now come to an index-free notation: we set I = V* and consider r + and r _ as
linear maps ϊ-*Q:x = xie

i\-+r±(x) = xir±iATA, where eι are dual basis vectors to et.
This construction is in fact canonical: F(χ)g~ϊ*(χ)g~Hom(ί,g). The represent-
ation ρ dualizes to a representation ρ*: g-+Hom(ϊ,ί) in the usual way: (ρ*(ξ)x)(v)
= — x(ρ(ξ)v) for all xel, ξβQ and veV. We shall write ξ x for ρ*(£)x.

With these abbreviations condition (2.9) can be reformulated as follows:

=r+(χ)-y-r-(y)'χ (2.10)

should define a Lie bracket for all x,yel With

r=l/2(r + +r_), c = l/2(r+-r_) (2.11)

we have the following

2.12. Proposition. Equation (2.10) defines a Lie bracket on I iff for all x,y,zel

ii) (|>(x), r(y)] - r&x, y]J) z + cycl. = 0.

Proof The antisymmetry condition i) is obvious. In order to prove the Jacobi
identity we write out the terms

[[*, J>L, Z]R = r([x, y]R) * - r(z) (r(x) • y) + r(z) (r(y) x)

[|>, *]R, y]R = r([z, x]Λ) y - r{y) (r(z). x)+r(y) (r(x) z)

l[y, ΉR> X]R = r([y9 z]J x- r(x) (r(y) z) + r(x) (r(z) y)

and use the following representation identity: [ξ9 η] x = ξ (η x) — /; (ξ x) for all
ξ, y/ e g and x e I to re-arrange terms in the cyclic sum. For instance, the sum of the
terms in yield the term written out in ii) above.

Note that for a specific Lax pair (g, ρ, V, L, M) of a Hamiltonian system (JP, ω, H)
allowing for classical r-matrices that obey 2.12 L defines a Lie homomorphism

L I ^ ^ ^ ^ Ξ X Γ (2.13)

(using the natural pairing < , > of V and V*) since Eqs. (2.7) and (2.10) together
yield the following:

{<L5 x>, <L5 y}} = <L5 [x, ylR) for all x, y e ϊ. (2.14)
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Furthermore, we can directly transfer a proposition in [8, Part 3], namely that
each Hamiltonian of the special form foL with G-invariant / : F-»R admits the
following Lax pair (g, ρ, V, L, - r(df(L))):

^ = {L,foL} = ρ(r(df(L))L (2.15)

since the first summand in the Poisson bracket vanishes by infinitesimal
G-invariance of/ [cf. Eq. (2.4)].

Now we return to Proposition 2.12. Recall that the crucial condition for the
Jacobi identity was the vanishing of the cyclic sum over

COM, r(y)] - r(r(x) y) + r(r(y) x)) z. (2.16)

An obvious ansatz satisfying Eq. 2.12 ii) would be

(2.17)

which we call the Classical Yang-Baxter Equation (CYBE) for r. This is of course
equivalent to r:ϊ->g defining a homomorphism of Lie algebras.

A more sophisticated ansatz is obtained if the 0 on the r.h.s. of Eq. (2.17) is
replaced by a term containing the map c [cf. (2.11)]:

2.18. Theorem. The notations being explained above let the map c satisfy

a) c(x) y + c(y) x = 0 for all x,yet (antisymmetry)
b) c(ξ-x) = [_ξ,c(x)] for all xet and ξeQ (G-invariance).

Then the following two conditions are equivalent and imply the Jacobi identity
for the bracket [ , ] Λ on I:

(Modified Classical Yang-Baxter Equation (MCYBE) for r),

ii) lr±(x),r±(yft-r±(lx,y-]R) = 0 Vx,yet
(Classical Yang-Baxter Equation (CYBE) for r+ and r_j.

Proof Note that r±=r±c, and the equivalence of i) and ii) follows in the following
manner:

ίr{x) ± c ( 4 r{y) ± φ ) ] - r([x, y]R) + c(r(x) • y) ± c(r(y) x)

= ϋix\ r(y)] - r([x, y]J + [φ), φ ) ]

± (lr(x), cm - ίr(y), φ ) ] - c(r(x) y) + c(r(y) x)),

and the ±-term vanishes by the G-invariance of c. Since for all x,y,zel

[c{x\φ)] z = φ ) ( φ ) z)-c(y) (c(x) z)

= — c(c(j;) -z) x — c(c(z) -x)-y (by antisymmetry)

= — \c(y\ c(z)] x—[c(z) c(x)] y (by G-invariance)

the Jacobi identity holds.
Here, the map r is in general no longer a Lie homomorphism, but the two

r-matrices r+ and r_ both are. As a justification of the name "(M)CYBE" and a
motivation to consider G-invariance (property b) of c) we shall discuss two well-
known cases:
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1. ρ = ad*, V=g*: Here I is equal to g as a vector space and ρ* = ad. Fix a linear
map R: g->g, set r = R and c = 1. Obviously, c satisfies conditions a) and b) of the
above theorem. The bracket [ , ] κ on I = g yields a second Lie structure on g:

= ϊ , ( 2 1 9 )

and the MCYBE as defined above take the familiar form

. (2.20)

For the equivalence of the MCYBE with the CYBE for R ± = R ± 1 see [5] or [7].
Lie algebras g with an r-matrix R satisfying the MCYBE are sometimes called
Baxter Lie algebras (cf. [7]). Semisimple Baxter Lie algebras with r-matrices R that
are antisymmetric with respect to the Killing form of g have been classified by
Belavin and Drinfel'd (cf. [3]).
2. ρ = ad, V=g: Here ϊ = g* and ρ* = ad*. In an abuse of notation, fix a linear map
r : 9* -• 9 (which can canonically be considered as an element of g ® g) and set r + = r
and r_ = —r* (which simply amounts to the negative of the transposition of the
matrix r). Hence c = 1/2 (r + r*) is self-dual :c* = c. Therefore we have the following
equation for all x,yeq* and

This clearly shows the equivalence of antisymmetry (condition a) in 2.18) and
G-invariance (condition b) in 2.18) for c in this particular case.

Now, the right-hand side of the CYBE as defined above reads for x9 y, z e g* and
yι

jk (1 ̂ i j ,fc^dimg) denoting the structure constants of g:

= z([r(x),r(3;)])-z(r(ad*(r(x))3;))-z(r(ad*(r*(3;))x))

; Γf](g>Tfc

where r 1 2 = f%® Γf® 1, r x 3 = rskTs® 1 ® Tk, r23 = rjtl ® 7J® Tί? 1 being the identity
in the universal enveloping algebra of g. Hence the original version of the CYBE
(cf. [3] or [5])

Iri2,r13] + 0 1 2 , r 2 3 ] + [ r 1 3 , r 2 3 ] = 0 (2.21)

is also recovered in this framework. In the beginning, only antisymmetric r (in the
sense that c = 0 or12=—r2ί and not in the more general sense of condition
2.18 a)) had been discussed (cf. [4]) giving g the structure of a so called Lie
bialgebra.

We remark that for semisimple g a classification of the solutions of the
MCYBE in the sense of Theorem 2.18 can partially be done by using the fact that
the kernel of the map c is a g-invariant subalgebra of ϊ and the image of c is an ideal
of g. We shall do this in another paper.
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3. (Modified) Classical Yang-Baxter Equations and Affine Geometry
on Lie Groups

In the previous part we were starting with a given (generalized) Lax pair, i. e. a given
Lie algebra g, a given representation ρ and a given representation space V and
successively constructed a Lie structure on ϊ, the dual space of the representation
space. In this part, we want to reverse this procedure:

Given a (simply) connected Lie group K having Lie algebra I, how can we
construct the Lie algebra g, the representation ρ and possibly a typical Lax pair

Now, the Lie algebra ρ*(g) is a subalgebra of the Lie algebra gl(I) of all linear
maps !->ϊ. According to Proposition 2.12 we are looking for linear maps r-
= ρ*(r( )):ϊ->ρ*(g)CgI(ί) (g being yet unspecified) such that the now fixed Lie
bracket [ , ] Λ on I can be expressed by

ίx>ylR = r(x)'y-r(y)'X for all x,yet.

The idea is now to interpret [ , "]R as a Lie bracket [ , ] of vector fields, r( ). as a
covariant derivative F, and the above equation as a vanishing torsion condition.
More precisely, let A, j> denote the left invariant vector fields generated by x9y eϊ
(i.e. t(k) = TeLkx for keK, e=identity element of K, Lkk' = kk! left multiplication,
%{k) = kx for matrix groups). By definition [ά, j>] = ([>, j/]Λ)A. Furthermore, let V be
a /e/£ invariant, torsion-free covariant derivative on X: then we have the following
vanishing torsion equation:

[*,j>] = P*j>-F>* forallx,yel. (3.1)

Since the vector field V^ is again left invariant it is determined by its value at the
identity and we can define a linear map r. :ϊ-»gl(ί) by

r{x) y=VJ{e) for all x9yet9 (3.2)

where at the moment the dot is yet unspecified and will be interpreted in a second
step. On the other hand, since the left invariant vector fields form a basis for all
vector fields on K any left invariant V is determined by its values on the left
invariant vector fields. Hence, an arbitrary linear map r.: ϊ->gl(l) defines a unique
left invariant V by means of the above equation (for details of this procedure see
[15], where r(x). is denoted by Λ(x)y). Moreover any left invariant torsion-free V is
defined by an r. of the following special form:

r(x) y = l/2lx,y-]R + U(x,y) for all x9yel, (3.3)

where U is any symmetric bilinear map I x ϊ ^ I (see [15, Chap. X, p. 192] for a
proof). In case U vanishes V is the canonical torsion-free ("half commutator")
connection which has been used e.g. by Ferreira [12].

In order to define the Lie algebra g, the representation ρ*, and the r-matrices
(without dot) let at be the Lie subalgebra of gl(I) generated by all r(x)., xeΐ:

O ϊ s R - s p a n W ^ W ^ K y ί i C W ^ K y ) - ! ^ ) . ! etc. \x,y,zel}. (3.4)

Choose any subalgebra g of gl(I) containing αϊ? take any Lie algebra g such that
there is a surjective homomorphism ρ*: g-*g, and find a linear map r: ϊ-»g such
that r(x). = ρ*(r(x)). Defining V=I* and ρ = (ρ*)* we clearly obtain the structure we
wanted. For instance, a natural choice would be g = g = αf, ρ*=identity on αϊ5 and
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Now, we get a very natural interpretation for the left-hand side of the
(M)CYBE:

= R(*J)z(e)9 (3.5)

where R denotes the Riemann curvature tensor of V. Therefore we can re-interpret
the Jacobi identity condition in Proposition 2.12 ii) as the first Bianchi identity for
a torsion-free curvature tensor (cf. e.g. [15, Chap. Ill, p. 135]). If we also take into
account Proposition 2.3, Theorem 2.8, and Proposition 2.12 we have the following

3.6. Theorem. Let Kbea finite-dimensional real Lie group having Lie algebra I and
let V be a left invariant torsion-free connection on K defined by a linear map r.: I
-»gl(ϊ) as explained above. Choose (g,ρ, F=ϊ*) in the above manner. Assume that
there is a Hamίltonίan system (P,ω,H) admitting a generalized Lax pair
(g, ρ, V, L, M) such that Eqs. 2.14 (i.e. {<L, x), <L, y)} = <L, [x, y~]R}) is satisfied for
all x, y 61. Then all the G-invarίant functions of L are conservation laws and Poisson
commute among themselves.

Note that the vanishing torsion is the only condition V has to satisfy. An
example for a Hamiltonian system satisfying the hypothesis of this theorem will be
given in Sect. 4.

We shall now investigate the specific afϊϊne connections V underlying the
CYBE and the MCYBE as defined in the preceding part:

The CYBE for r [cf. Eq.(2.17)] simply means that the curvature of the
corresponding V is zero, i.e. that K is flat. For an account of left invariant flat
torsion-free connections on a Lie group K see the work of Medina [16]. We shall
derive the differential geometric meaning of the MCYBE (in the general sense of
Theorem 2.18) in the following

3.7. Theorem. In the notation of Theorem 2.18 the curvature tensor of the MCYBE

Re(x,y)z = - [ φ ) , φ ) ] z for all x,y,zeϊ

is Q-invariant, i.e. for all x,y,zel and £eg,

ξ Re(x,y)z-Re(x,y)ξ z-Re(ξ. x,y)z-Re(x, ξ. y)z = 0.

In particular, setting ξ = r(w), we I, this means that the curvature tensor is
covariantly constant which in turn is equivalent to the Lie group K being an affine
locally symmetric space.

Proof The first statement easily follows from the G-invariance of c. Since r(w)
represents V^ at the identity it follows that the tensor field VR vanishes. But this fact
together with the assumed vanishing torsion of V is equivalent to K being locally
symmetric (cf. [15, Chap. XI, p. 222]).

An affine (locally) symmetric space is also characterized by the condition that
around each point the (local) parity transformation reflecting geodesies of V is a
(locally) affine transformation (cf. [15, Chap. XI, p. 222]). If K is simply connected
and complete in the sense that the affine parameter of each geodesic is defined on
the whole real line, then K will be globally affine symmetric (cf. again [15,
Chap. XI]).

Note that on every Lie group K there exists a canonical left and right invariant
affine symmetric structure which is given by the standard reflections sk{k)
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= k'k~ 1k' (fc, k' eK) and the 0-connection VJ = 1/2 [χ9 y]A. Here the geodesies of V
are always equal to shifted one-parameter-subgroups of the form τ\->kexp(τx),
k e K, x e ϊ, τ e R (cf. [15, Chap. XI, p. 228]). In case I admits a nondegenerate ad-
invariant (possibly indefinite) scalar product B (such as the Killing form for
semisimple ϊ) the 0-connection V is always equal to the Levi-Civita connection of
the left and right invariant (pseudo) Riemannian metric on K which is induced by
B. Now, since r(x) = l/2ad(x), xel, the Lie algebra at is equal to ad(I)
= {ad(x) I x e 1} which is isomorphic to I modulo its centre. Taking g = ϊ and ρ* = ad
one is in the situation that g is a Baxter Lie algebra (cf. Sect. 2) where £ is equal to 1
after rescaling with a factor of 2 (which of course satisfies the MCYBE [cf.
Eq. (2.20)]). However, in the typical cases of the Belavin-DrinfeΓd classification
scheme (cf. [3]) the situation is not so trivial: g is simple and I is sometimes
solvable, hence g and I are in general nonisomorphic. Therefore noncanonical left
invariant affine symmetric structures on K become important in this framework.

A more general reason why affine symmetric structures turn up can be derived
using the concept of twilled extensions of two Lie algebras which is due to
Kosmann-Schwarzbach and Magri (cf. [6]). In the theory of the above-mentioned
Lie bialgebras the Lie algebras g and g* = I can be "summed up" to a socalled
double (cf. [5]) or Manin triple algebra gθg*, where both g and g* are (in general
noncommuting) subalgebras of gθg*. More generally, the question arises under
which circumstances a Lie structure can be defined on the direct vector space sum
gφϊ of two arbitrary Lie algebras g and ϊ such that both g and I are subalgebras
with their original Lie structure. Kosmann-Schwarzbach and Magri called gφί a
twilled extension of g and I and showed that a Lie structure on gφl in the above
sense is equivalent to having the following ingredients (cf. [6]):

a) a representation ρ*: g->gl(ϊ), (3.8)

b) a representation σ:ϊ->gl(g) such that (3.9)

c) Q*(ξ) [x, y]Λ = lQ*(ξ)x, y] + [x, Q*(ξ)y] ~ Q*(σ(x)ξ)y + Q*(σ(y)ξ)x, (3.10)

d) σ(x) K,,] = [σ(x)ί, if] + K, φ)η] - σ(ρ*(ξ)x)η + σ(ρ*(η)x)ξ

for all ξ,ηea and x,yel. (3.11)

Then a Lie bracket on gφί can be defined as follows:

ρ*(η)x) (3.12)

and conditions a)-d) guarantee the Jacobi identity of this bracket.
In the situation of Sect. 2 we are already given two Lie algebras g and I and a

representation ρ* but we are still lacking a second representation σ. To get an idea
we calculate condition c) above:

= ξ (r(x) y)-ξ (r(y) x)-r(ξ • x) -y+riy) • {ξ • x)-r(x) .(

= -ίr{x),ξ}-y-r{ξ-x)-y+[r(y),ξ]-x+r{ξ-y)-x.

In order to satisfy c) we can try to define the (would-be) representation σ as follows:

σ(x) (ξ) = [r(x), ξ]+r(ξ • x) for all { e g, x e ϊ . (3.13)
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With this ansatz we also check condition d) above:

σ(x) (K, η\) - ίσ(x) (ξ), η] - [£, σ(x) (,)]

= ίΛx), K, ιj]] + KK, *]•*)- Cl>(4 α»?] - ίr(ξ • x), rβ

= - ίr(ξ • x\ η\ - r(η • (ξ • x)) + [r{η • x), ξ] + r(ξ (η • x))

which is automatically satisfied by σ. The remaining check of the representation
identity b) for σ will become a little bit less trivial:

3.14. Theorem. We use the above notations. With the map σ defined above (cf.
Eq. {3.13)) the two Lie algebras g and I admit a twilled extension g φ ϊ iff the
curvature tensor R(x, y) = [r(x% r(y)] — r([x, y]R) is ^-invariant. In particular, the Lie
group K must be an affine locally symmetric space. In case g being generated by the
r-matrices (g = αI? ρ* = identity on at) the affine locally symmetric structure of K is
also sufficient to guarantee a twilled extension.

Proof We calculate the representation identity b). Note that

σ(x) (r(z)) = R(x, z) + r(r(x) z) for all x, z e I, (*)

and it follows that for all x, y e I and all ξ e g,

σ(x) (σ(y) (ξ)) - σ(y) (σ(x) (0) - <τ(|>, ylR) (ξ)

= ίr(x\ ίr(y), ξj] + r{\r{y\ ξ].χ) + σ(x) (r(ξ. y))

-ίr{y\ίr(x),ξΏ-φ(x\ξ] y)-σ(y)(r(ξ x))

- [r([x, ylR), ξ] - r(ξ (r(x) y)) + r(ξ (r(y) x))

= lR(x, yl ξ] + r(r(y) ({ x)) + R(x, ξ y) + r(r(x) ({. y))

-r(r(x) ({. y))-R(y, ξ x)-r(r(y). ({ x))

= -&ξ,R(χ,y)-]-R(ξ χ,y)-R(x,ξ y)), (**)

using Eq. (*) in the second equation. Since conditions a), c), and d) had already
been shown to be valid this proves the first statement of the theorem. Now, setting
ξ equal to r(z)= Vt\e this clearly implies ^ = 0 which is equivalent to the affine
locally symmetric structure of K (compare Theorem 3.7). On the other hand, since
Eq. (**) defines a representation of all ξ egl(ϊ) in the linear space of all bilinear
antisymmetric maps: ϊxϊ-»gl(ϊ) then the vanishing of the right-hand side of
Eq. (**) for all ξ = r(z) = Vt\e (<=> VR = 0) will imply the vanishing of the right-hand
side of Eq. (**) for all commutator expressions formed out of the r(z), i.e. for all
ξ e at. This proves the last statement of the theorem.

Now we see that Theorem 3.7 (and thus every (M)CYBE) is a special case of the
above theorem since merely the G-invariance of the curvature tensor — [c(x), c(y)~]
was important. Moreover, Theorem 3.14 allows us to form twilled extensions in all
the cases covered by Theorem 2.18 (and contains the Manin triple algebras as a
special case).

Kosmann-Schwarzbach and Magri (cf. [6]) gave a nice explanation for the
funny form (3.13) of the representation σ: considering σ as a map g-»Hom(ί,g):
ξt->(xι->σ(x)(ξ)) and the space of linear maps ϊ-»g, Hom(I, g), as a g-module (for
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s e Horn (I, g) set (ξ s) (x) = [ξ, s(x)] — s(ξ x)), condition (3.11) for σ then says that
σ e Λ *(g, Hom(I5 g)) is a cocycle. In particular, if σ is a coboundary it will take the
form (3.13). For instance, this happens for those Lie algebras whose first
cohomology group Jϊ1(g, Hom(I, g)) vanishes (which is true for all semisimple Lie
algebras due to the first Whitehead lemma).

We remark that the Lie algebra cij was introduced by Kostant (cf. [15, Chap. X,
p. 207]) and contains the Lie algebra of the holonomy group at the identity (which
is generated by all parallel transports along loops based at the identity, cf. [15,
Chap. II, p. 71]) as an ideal (cf. [15, Chap. X, p. 207]).

For globally symmetric spaces, the following geometric picture may be useful:
Let A be the identity component of the Lie group of all affine transformations on K
and let α its Lie algebra. Since the left multiplications of K on itself are affine, K can
be considered as a subgroup of A and A acts transitively on K. Let H be the closed
subgroup of A that fixes the identity and let ί) be its Lie algebra. Then K is
diffeomorphic to the homogeneous space A/H in a natural way and one has the
decomposition A = KH with KnH = {e} because K clearly acts freely and
transitively on itself. This corresponds to a direct (vector space) sum α = ί)0ϊ. Now,
in case K is an affine symmetric space there is also a direct decomposition
α = ί)φnt, where m is a vector subspace of α and the following well-known
commutation relations hold: [ί),m] Cm and [m,m] CI) (cf. [15, Chap. XI, p. 226]).
For a e a let a^ (respectively am) denote the ί)- (respectively m-) components of a
according to the decomposition α = f)0m. Similarly, let πφ, (respectively πtά)
denote the I)- (respectively I-) components of a according to the decomposition
α = £)0ϊ. Now, every symmetric space always carries the so-called canonical
connection (which is in general different from the above mentioned canonical affine
symmetric structure), cf. [15, Chap. XI, p. 230]. It is usually expressed in terms of I)
and m, where the tangent space TeK is identified with the subspace m: (V^(e))m

=(-4(x)(y))m = [ ^ y J + ^ m ( ^ J ( y J = [ ^ y J >

 s i n c e Λm is equal to zero for
symmetric spaces (cf. [15, Chap. X, p. 191], [Eq. (4.4)] of this paper, [15, Chap. X,
p. 188, and Chap. XI, p. 230]). Note that πt is a bijection m->ϊ which is the inverse
of ( ) m : ϊ-*m, so if we map (V%$(e))m from m back to I we get

VJ(e) = r(x) - y = iφo* j;] for all x, y e I, (3.15)

where the commutator [ , ] is taken in α. Note that the commutation relation
[m,m]cί) is crucial for the equation [x,y]R = r{x)'y—r{y)'X, Moreover, the
curvature tensor is easily calculated to be the usual one: R(x,y)z= — ̂ [[xm,);m],
zm] for all x9y,zeϊ (cf. [15, Chap. XI, p. 231]). Now, define g = ί) and

Q*(ξ)x = ihlξ,x] forallxeUeg. (3.16)

Hence r(x) = xh is a consistent choice by Eq. (3.15). Calculating for xel, ξeί),

) < ^ ^

one gets the following equation for the representation σ:

σ(x)(ξ) = πhlx,ξ2 forallxeϊ,£eg. (3.17)

Comparing these two equations with the bracket Eq. (3.12) one sees that the
twilled extension of g and I is indeed α. This is also reflected by the geometrical fact
that for symmetric spaces every parallel transport can be expressed by the action of
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an affϊne transformation (cf. [15, Chap. VI, p. 262]). Since the Lie algebra at

generates parallel transports along one-parameter-subgroups it is therefore
contained in the Lie algebra of all infinitesimal affine transformations.

It should also be mentioned that representations like Eqs. (3.16) and (3.17)
occur in the generalized Lax pairs discussed by Semenov-Tyan-Shanskii (cf.
[5,10]) where also the Poisson commutativity ansatz of Adler/Kostant/Symes (cf.
e g [?]) is applied.

As an example, consider A = SL(N,1R), H = S0(n) and K the subgroup of A
consisting of all upper triangular matrices with positive diagonal entries. Clearly,
HnK = {ί}. By the Iwasawa decomposition of SL(n,ΊR) (compare [17, Chap. VI,
p. 260 and p. 270], and take inverse matrices) one has A = KH. Hence K~A/H
= SL(n, R)/S0(n). Now the homogeneous space A/H is known to be isomorphic to
the Riemannian symmetric space of all positive definite matrices of determinant
one (cf. [17, Chap. X, p. 518]). Hence the Lie group K is isomorphic to this space
and thus carries a left invariant Riemannian symmetric structure. The projection
( ){, (respectively ( )m) is the usual projection on the antisymmetric (respectively
symmetric) part of a traceless matrix and the projection πh (respectively πf) is easily
computed to be π̂ fl = α_ — αf_ (respectively πta = a0 + a+ +α*_) where a0 (respec-
tively α_, respectively a+) denotes the diagonal (respectively strictly lower
diagonal, respectively strictly upper diagonal) part of a e a and ( ) denotes matrix
transposition. Therefore, by Eq. (3.15)

r{x)-y = \β[x,y~]-\l2πι[x\y] for all x,yet, (3.18)

which is for n>2 noncanonical.

4. Left Invariant Geodesic Motion on a Lie Group: Non(co)adjoint Lax Pairs

In this section we shall combine the results of the two former parts to get an
example of a nontrivial Lax pair. Let K be a connected simply connected Lie group
with Lie algebra ϊ. We recall the basic procedure of building up Hamiltonian
mechanics on K as configuration space (for details see [13,18]). The correspond-
ing phase space is then the cotangent bundle T*K of K. We use left trivialization to
get the diffeomorphism TK~Kxt, namely vk\-^(k,(TeLk)~1vk) for keK and
vkeTkK. Similarly, we get the diffeomorphism T*K~Kxl*, namely
βk h->(fc, (TeLk)*βk) for keK,βke TfcK*. By a second left trivialization step we get the
diffeomorphism TT*K~K xϊ* xίxϊ*. The canonical 1-form So is given by
&o(K β) (K β, x, y) = β(x) and the canonical symplectic form ω0 = — d&0 is computed
to be ωo(fc,j?)((/c,jS,:x;i,yi), ( M ^ ^ H ^ ί X i ) - ? i ( * 2 ) + / ( [ * i > x 2 L ) for keK, x,
xux2e I, β, y, γ 1? γ2 e I*. The canonical point transformations T*Lk induced by the
left multiplications Lfc, keK, are simply given as follows: T*Lk(k',β) = (kk',β).
Hence every left invariant Hamiltonian function is a real valued smooth function F
of the dual space I* alone, its differential dF(β), β e I*, lies in I and the Hamiltonian
equations of motion take the following form (see also [18]):

k=TeLkdF(β),

For matrix groups the first equation reads k = kdF(β). The second equation, also
known as the Euler-Arnoΐd equation, is independent of k and has the well-known
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coadjoint Lax form: g = ϊ, V=ϊ*, ρ = adf, L(k, β) = β and M{k, β) = dF{β). A special
case of this is Euler's equation for a free top, where K is the rotation group in R 3, L
is the angular momentum in a body-fixed frame and M is the angular velocity (in
the same frame) that depends on L via the moments of inertia. Moreover, the
F-valued function L satisfies the following Poisson bracket relation:

>, <L, y}} = - <L, lx, ylRy, (4.2)

which can directly be calculated using the above symplectic form or by noting that
L: T*K-»f* is the canonical momentum map corresponding to the canonical
point transformations induced by right multiplication of K on itself (see [13,
Chap. 4.4, p. 311 fϊ]).

Now, let Q be a nondegenerate symmetric bilinear form on the Lie algebra ϊ. Q
extends to a left invariant pseudo-Riemannian metric on K: Q(fc)((fc,x), (k,y))
= Q(x,y) for all x,yet Let Q* :I* x ϊ*-»R denote the inverse metric. Then it is
known (cf. [13, p. 224]) that the function F: ϊ* -»R,

FoL(k,β) = F(β) = l/2Q*(β,β) foralljffeϊ* (4.3)

defines a left invariant kinetic energy function F o L on T*K whose Hamiltonian
flow lines project onto geodesies in K. Let V be the Levi-Civita connection of Q.
Then V is torsion-free and also left invariant and gives rise to an r-matrix as
described in the previous part: r(x)y= V%p(e) for all x9yeϊ. Set g equal to at [cf.
Eq. (3.4)], let ρ* be the natural representation of g C gl(I) acting as linear maps on I,

set F = ϊ * and ρ = (ρ*)*. For xeϊ, let xκ denote the vector field k\-+—

((expίx)fe)|ί=0, i.e. the infinitesimal generator of the left multiplication of K on
itself. Note that xκ is a right invariant vector field on K and obeys the equation
xκ(fc) = (Ad(k~1)x)A(/c). Hence, it can be shown that for all x,yet the following
relation holds (see also [15, Chap. X, p. 188]):

r(x)y = (VXκyκ-lxκ,yκ])(e), (4.4)

where [ , ] denotes the Lie bracket of vector fields. Since all the xκ are Killing fields
for the metric Q (i.e. LXκQ = 0, L denoting the Lie derivative here) and Q is
covariantly constant (i.e. VQ = 0) it can be deduced that all the linear maps r(x),
xel, are Q-antisymmetric, i.e.

Q(r(x)y,z) + Q(y,r(x)z) = 0 for all x,y9zet (4.5)

(cf. also [15, Chap. X, p. 201/202]). Since the r(x), xel, generate the Lie algebra
g = at and the previous equation defines a representation of gl(l) on the space of all
symmetric bilinear forms on ί one has the following equation, too:

Q(ξy, z) + Q(y, ξz) = 0 for all y, z e ϊ, { e g. (4.6)

This easily implies that a similar equation holds for the inverse metric β*:

Q*(ρ(ξ)β, y) + β*(fc ρ(ξ)y) = 0 for all β, γ e I*, { e g. (4.7)

Specializing to β = y the above equation simply says that the function F
representing the kinetic energy function [cf. Eq. (4.3)] is infϊnitesimally
G-invariant:

dF(β)ρ(ξ)β = 0 for all β e I*, { e g. (4.8)
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But according to Eq. (2.15) this means that the kinetic Hamiltonian F o L admits
the following second Lax pair:

L=ρ(r(dF(L))L=ρ(r(Q*L))L, (4.9)

where 8 = 0* ρ = l9, 7=1*, L(k,β) = β, M(k,β)=-r(dF(L(k,β)))=-r(Q*β) (β*
being the inverse metric regarded as a linear map V=t*-+Ϊ). If we rescale L and
M by a factor of — 1 we see that by the rescaled generalized Lax equation (4.9)
and Eq. (4.2) the hypothesis of Theorem 3.6 is satisfied.

The first conclusion which can be drawn from this is the fact that each ϊ*-part
β(t) of the solution curve is contained in the intersection of some coadjoint orbit
[according to the first Lax pair Eq. (4.1)] with some G-orbit (according to the
second Lax pair Eq. (4.9)]. For the above-mentioned free top this picture
corresponds to the well-known fact (cf. e.g. [13, p. 363]) that the L curves lie in the
intersection of a sphere (the (co)adjoint orbit of the usual Euclidean 50(3) action)
with an ellipsoid [the orbit of the group GcSX(3,]R) that leaves invariant the
inverse inertia tensor]. Note that G is isomorphic but not equal to 50(3) in this
example.

The second conclusion is that according to the discussion in the two previous
parts all the functions of the form /oL, where /:ϊ*-»IR is G-invariant Poisson
commute among themselves and of course with the Hamiltonian. From the first
Lax pair alone one would merely conclude that all the functions /° L, where / : I*
-•R is Ad*(K)-invariant Poisson commute with the Hamiltonian and among
themselves. Hence the additional G-symmetry produces new Poisson commuting
conservation laws. Moreover, since each Ad*-invariant function of L Poisson
commutes with any function of L (cf. e.g. [7]) one can put these two sets of
functions together to get a bigger family of Poisson commuting conservation laws.
However, it may happen that the group G becomes as large as possible, namely
isomorphic to SO(p, q) ((p, q) denoting the signature of Q). Then the generic orbits
of G are manifolds of codimension one in I* and F is (up to functional dependence)
the only G-invariant function on I*.
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