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Abstract. We construct all the periodic irreducible representations of #(SU(3)), for

g a m-root of unity. Their dimensions are k(2m)? for k=1,...,m (only k=1,... ,221-

for even m>. Their interest is that they could be a tool to generalize the chiral

Potts model. By truncation of these representations, we construct “flat repre-
sentations” of %(SU(3)),, in which all the multiplicities of the weights are set to 1.

I. Introduction

In [1], M. Rosso classified the finite dimensional irreducible representations of
the quantum analogue %(%), of the enveloping algebra of a complex simple Lie
algebra when the parameter of deformation ¢ is not a root of unity. He proved
that they were deformations of the finite dimensional irreducible representations
of the classical %(%). They are in particular characterized by a highest weight A
corresponding to a classical representation of #(%) and by we{l, —1,i, —i}
characterizing the average (the center value) of the eigenvalues of the generators
h; of the Cartan torus.

In [2], the finite dimensional irreducible representations of #(SU(2)), for g a
root of unity are classified. The new fact is that the dimensions of these representa-
tions is bounded by m, if g™ = 1. The d <m representations are called regular
and correspond to unitary representations of the WZW theory based on affine
SU(2) level m — 2. Furthermore, the m-dimensional irreducible representations can
be periodic, in the sense that the generators J* and J~ are not nilpotent and act
as Z,,. Continuous parameters also enter in their definition. In [3], the composition
of regular representations is studied. It leads to a sum of irreducible and indecom-
posable representations, an explicit truncation being possible to recover the sum
over regular representations provided by the WZW theory. This result is
generalized in [4] to all the quantum analogues of simple Lie algebra.
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The periodic representations of #%(SU(2)), are used in [5] and [6] for a
connection to the chiral Potts model.

In thls paper, we classify the periodic irreducible representations of %(S U(3))q
for ga m™ root of unity and prove that thelr dimensions are k(2m)* with k = 1,.

(where m* =m if m is odd and m* = > ™ it mis even). These representations may

play a role in a generalization of the chiral Potts model, with a method inspired
by that of [5,6].

In Sect. II, we derive an auxiliary algebra ./ whose finite dimensional irreducible
representations are the fundamental tool to construct the periodic irreducible
representations of %(SU(3)),. In Sect. I, we classify the irreducible representations
of /. In Sect. IV, we perform a truncation of the (2m)*-dimensional periodic
representation of #(SU(3)), and obtain a new type of highest weight representations,
which we call “flat” since all their weights have multiplicity 1. In Sect. V, we study
a subtlety that appeared in II when m is a multiple of 3, and prove that this is
indeed not a particular case.

We conclude the introduction with the following remark: each simple link of
the Dynkin diagram of a simply laced algebra provides a constraint, via the Serre
relations, corresponding to the constraint of a single SU(3). So it seems that the
knowledge of periodic representations of #(SU(3)), will be the basic tool for the
construction of the periodic representations of the quantum analogues of a simply
laced algebra. The generalization of this work to the quantum analogue of simply
laced algebras will be the subject of a further publication. Note however that the
results of Sect. IV on flat representations are immediately generalizable to the
#(SU(N)), case.

IL. Derivation of the Auxiliary Algebra o/
The quantum group #(SU(3)), is defined by the generators qg*"/2 ¢, f; (i=1,2)
and the following relations:
qh./Z_q—hi/Z — q-thZ,qh,/Z —_ 1,
9 97" =q
g3 -e;q % = goiilZe,
qhi/z,fj_ —hi/2 _ =q a.,/lf

[e0 1= 8,2 _q—_a.,(h Do

B2, k2 hil2. ghil2

q

(S) {eieitl—(q"l'q_l)eieiilei+eitlei2=0
fizfi:tl_(q+q_1)fifiilfi+fiilfi2=0

where (a;;); j-=1,, is the Cartan matrix of SU(3), i.e.

2 -1
(aij)=<__1 2 )

We shall not use the coalgebra structure in the following. The representations we
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will construct will be representations of the algebra structure only. The coalgebra
structure is then the tool to construct the analogue of the tensor products of
representations corresponding to the composition of cinetic momenta.

We shall suppose in the following that mis the smallest integer such that g™ = 1.

Lemma. As a consequence of the commutation relations, (e;)*™, (f;)*™ and (q"/%)*™

are in the center of the algebra.
Note that this is true for #(SU(N)), for general N. But for N =2, the m™®
power is enough [2] since in that case the Cartan matrix contains no odd integers.

Lemma. Let M be a finite dimensional simple module over €. Then ¢"''* and q"/*
are simultaneously diagonalizable and
M= @ M, p+pizmz-peto 1)
p1eZam
p2elom

M2 and q"/? associated to the eigenvalues

where M ;| ;, is the common eigenspace of q
q* and gq*.

There is a subtlety here if m is a multiple of 3, since in this case the sum is not
a direct sum. For reasons which will be explained in the last section, it is nevertheless

possible not to distinguish this case in the following.

Proof of the Lemma. Since ¢"/? and ¢"*'? commute, let v be an eigenvector of both
of them, associated to ¢*/> and ¢***>. Then M = %(SU(3)), v since M is simple.
Because of the commutation relations, every A-v, where 4 is a word made of
e;’s, fs and g"/*’s, is an eigenvector of ¢"/? and ¢"*/? associated to the eigenvalues
qr/2mPrte2 gnd g2 P22 where p; is the number (modulo 2m) of f;’s minus
the number of e;’s in A.

We now make the assumption that f, and e, act injectively on M, i.e., since

f¥™ and e3™ are in the center and since M is a simple module
2m,,, _ 2m,
f;m v—a;m U VoeM
es™v=ou5"0
with a; eC* and o,eC*.

Let M, .., be a common eigenspace of ¢"/? and ¢"*/? associated to g2
and ¢*2. Then f| (respectively e,) defines an isomorphism (of vector spaces) from
M 2002 80 My 51 2+ 1)2 (respectively My, 545 ,,2+1) Which consequently
has the same dimension. Since f; and e, commute, any basis of M, , ,,,, can be
carried to every M, , ... With such correlated bases, f, and e, can be defined to
act as a multiple of identity, i.e.

fl ) VPl,pz =0y Id- VPl +1,p2>
ez'V =Ot2 Ide

p1,p2 1,P2-12

denotes a vector in
M

where V,, .,

#1/2 = p1+p2(2,p2/2 = p2+ p1/2
and V, ,, ,, a vector in

Mm/Z —(p1+1)+p2/2,u2/2 = p2+(p1+1)/2

with the same coordinates.
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Action of e, and f,. The commutation relations [e;, ;] = (h;), imply

1
el. Vp;,pz = {i;:(pl)q(ul Pl + p2 + 1) Id + sz] p1—1,p2

1 @
f2' Vpl,pz = ['a_(pZ + 1).;(/‘2 — D2 + pl)q Id + ypl:l' Vp],p;+1a
2

where g, (respectively y,,) is an operator that does not depend on p, (respectively
p,)- This solves the constraints given by the two #(SU(2)), subalgebras generated

by (g*"72, ey, f1) and ("2, e,, f2)

Lemma. The dependence of B,, and y,, on p, and p, respectively is given by

{B,,z =q”B+q Pp
Yo =4"y+q Y

Proof. Thisis a direct consequence of two of the Serre relations (S) applied to V,,, ,,:

{(ezer‘(q"'q l)ezelez+elez) P1.P2 =0=>ﬂp1_(q+q_l)ﬂpz—l+ﬁp2—2=0
(fzfz_(‘1+q_l)f1f2f1+f2f2) Vourpa 0'—"?,,,“(‘1""1_1)%,“+'}’p.+2=0
(Note that (@ + 1), — (g +4g ')(@),+(a—1),=0Va)

The two other Serre relations now provide the following constraints on the
operators f, f,y and y':

1 - - 1 ’ - / 4
B) ——q 7 p——q" B+ (1= ) + (1 =) f=0
1 1
i B '
F) = a7y ¢I“’”v’+(1— @y +(1—q ?)yy=0
2

All the relations of deﬁmtlon of %4(SU(3)), are now satisfied on the module
but [e;, f,]1=0. This leads to the following four relations

1
(+4+) ———— s+ + )+ ————q*y
woylg—g T T a(g—q7Y)
+ g B+ By —q P =
ag—q7 ")

(+-) ! ey +p2+ 1), + : q "y
monlg—g ) T g —g7Y)
——— "B+ [B.7]=0,

ay(g—q~ ")

(—4) L mtmet) L gy

wmog—q 1y T g—qY)
1

+——— 9 "F +[BY]1=0,

o(g—q7 ")
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1

——q "y
a(g—q )

1
(—-) m(ﬂx +up+ 1)~

1 - J T 2
————q " + (B —¢*¥B)=0,
a(g—q~")
where the equation (g ¢,), - 1+ is the coefficient of g*#! *<2(#2* 1 jp
[elafZ]' Vpl,pz = O'
Let us now define the algebra o/ by the generators
U= q1/3(“‘""2)[a1q"2(q —-q” I)Zﬁ + qm+uz+ 1]

u = q—l/3(m "“”[oclq""(q _ q— 1)25' + q—m —u2- 1]

q

q

v =1/3(u1 ~ﬂz)[a2qm(q —q- 1)2), + g* +y2+1]
v = 1/3(u1 _Ill)[azq“ﬂl(q —q° I)ny + q*m —p2- l]
and the relations provided by (E), (F), (%, *)

-1 1.

quu—q~ ‘uw quv’ —q~ "v'v

(E) —=1 (F — =1
9—q a—q
—q~1 RS B
(++) quv q—lvu=1 (=) qu'u q_luv:1
q9—q q9—1q
(+—) vV—u+ —[w,v]1=0,
q9—4q
(—+) v—u— —[u,v']=0.
q9—49

Note the similar form of (E), (F), consequence of the Serre relations (S) and
(+ +)1 (_ —‘), due to [el,fz] =0.

(— +) is not independent and can be derived for example from (E), (+ —) and
(+ +).

Since f, and e, provide an identification of all the common eigenspaces of g*'/2
and "2, the classification of all the irreducible representations of %(SU(3)), with
a; #0 and a, # 0 reduces to the classification of the irreducible representations of
the algebra o/ generated by u, u', v and v'. The first ones will then have a dimension
(2m)? times bigger than the second.

The expressions of the quadratic and cubic Casimirs of %(SU(3)), are given
by [3]1 C,3=(C. £C_)(g+q™"), where

_ 1
@—q ')
+ ql +(hy +2h;,,)/3fle1 + q— 1-(2h +kz)/3f2e2
— g™ —hzm(flfz ~qf2fi)ee;—q~ lese)),

C_ =idem with ge>g™ ', (Cas.)

C+ (q2+(4h1+2h2)/3+q 2 (2h1+4h2)/3+q (hy hz)/3___3)
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In terms of elements of &, they write
@—q 'YCi=qu+q™ v+ =3,
@—q 'VCo=qu+q "W +vu-3.

III. Classification of the Irreducible Representations of the Algebra o7
Lemma. u™, v™, v'™ and u'™ are in the center of . If m is even, u™?,v™? v'™?2) gnd
W' ™2 gre also in the center of .

This is a consequence of the relations of definition of «.

Since 3 will often occur instead of m when m is even, let us define

m ifmisodd
m* =
m .. .
— ifmiseven
2
Let .# be a simple module on /. Let us first suppose that one of these operators,
say u, is such that ™ = A™ 0 on .#. The operator u is then invertible and dia-

gonalizable on .# (since its minimal polynomial has only simple roots) and its
eigenvalues can be 4, g%, Aq*--- Ag>™ 1,

Theorem 1. If u™ #0, then dim # < m*.
Proof. Let us decompose u, #',v and v’ in blocks:

1/” = C’B-/”",

u,-jl.//lj—?‘//li UU'«/”J—*./”,
(Assume that x;; =0 if .#; or . is empty.)
Then let
u,-_,- = 6ijlq2i Id.
From (E) and (+ +):

113
—_ -1l _ -1 -2i
vy=u;'=1""'q"*Id,

u;=u;'=21""q ¥ Id,

and
(W—u"'),;=0 unless j=i—1 (modulom*),
(v—u"');=0 unless j=i+1 (modulom*).
Let us define
w_=u—u"t,
v, =v—u"!
in order to write the algebra .o/ in terms of u,4’_, v, and relations.

[u,v_v,1=0

Obviously, {[ =0
uv U ]=
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Inserting the expression of v' given by (+ —) into (F) and (— —) leads to the
following relations:
qiu_ —(q+q Moo +q Wt = —(q—a7 Q)+ [g7 ' u—q*u?] (F)
and
quiu?—(q+q Y v i +q v, = —(g—q7 ) Qu_[qu—q *u™?] (=)
Combining these two relations leads to

[W_v,,v,u_]=0.
They also allow to check that

(w_)"ecenter of o7,
(v, )™ ecenter of /.

Let now x be a common eigenvector of u,u’_v, and v,u’_, associated to the
eigenvalues Ag*,a, and a_.
Then

u(vyx)=q" *Ag* (v, x),
vt (vix)=a,(vyx),
u v, wex)=[—q*a_+q(q+q Var —qla—q )*(Q),
@7 'A% = * 272" *) (v x).

(v4x) is then a common eigenvector of u,u'_v, and v, «'_. Similarly,

u-(u_x) = q*Ag*(u'_x),
v W x)=[—q7%a, +q7(q+q Na- —q (q—q7 ")),
(gAg* —q 72272 ](W_x),
u_v,W_x)=a_W_x).

(#”_x) is also a common eigenvector of u,u'_v, and v, u'_.
We are now ready to prove our Theorem 1: let us consider two cases:

—If w_ is not injective, let x be a common eigenvector of u,u_v, and v, u_ with
a_=0. Then* Vt;ct{v"+ x}k=’0 ,,,,, 1 18 stable since w'_v* x is proportional to T 1x
and since v} x is proportional to x. So Vect{v* x},_o  ,»_ is a submudule of

.....

A, so is equal to ./ since ./ is simple. Hence dim .# < m*.

—If w'_ is injective, let x be a common eigenvector of u,u’_v, and v,u_. Then
Vect{u*x},_o. . is stable and hence equal to .. So dim .4 = m*.

.....

We check then that the relations (F') and (— —') are compatible.
Theorem 1 is then proved. A representation .# of dimension k < m* of o/ is
then characterized by

e its dimension k
o the eigenvalues 150,a, and a_ of u,u’_v, and v,u_ on one of the commn
eigenvectors. These values are related to the quadratic and cubic Casimirs (Cas) by
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qa_—q ‘a,

@—q 'PCi=(g+q DA+A"2+ ;

a—q
a,—a._
@—q)Cy =(q+q"‘)/1"‘+112—lq+_qa_1

o the value of (W_)™ and (v, )™ on 4.

Let .# be a simple module on 27, and let us now suppose that u™ =0, v™ = 0,
W™ =0 and v™ =0 on .#. We shall now prove the

Theorem 2. There is no finite dimensional representation of </ on which all the
generators u,v,u’ and v’ are nilpotent, but for m =4 (m* = 2), in which case there
are four two-dimensional irreducible representations of .

Proof. uisnot yet diagonalizable. (Unless if u = 0 which contradicts (E) and (+ +).)
We shall first prove the

Lemma. There is a basis of # on which u is written as a m* x m* matrix of blocks
of size N x N.

0 O 0 0
Id 0 0 0
u=|0 Id 0 0
0 O Id 0

(Id and 0 are N x N matrices.)

Proof of the Lemma. We first choose a basis of .# such that u takes a Jordan
form, i.e. a matrix with zeroes everywhere but just under the diagonal where there
can be either 0 or 1. Denote this basis

It satisfies

() — ()
ux = x|
and
0 _
ux, =0

of u. i
Then decompose v, ' and v’ in blocks, i.e.

’ . .
u”--/”‘l""e/”‘ vij..//{j-—)./ff,--'-.

N
such that A4 = ) 4;, where M; = Vect{xP},_, . _, is stable under the action
=1

Now (+ +) applied on .#; and projected on .#; implies

o m#1
.
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*x 1—g? 0 - 0 0
* * 1—¢* -+ 0 0
vy =| : and (m;)=0
* * * o % 1 —gPm—D
* * * e X *

and hence m; = m*.

.
* 0 0 0 0
* x 0 00
V= for l?é]
* k% * 0
* K k... % %

So m;=m* Vie{l,...,N}, and the lemma is proved after an inversion of the
indexes k and i of our original basis

m*—1

,j[:VeCt{x}f’ i=1,.,N = @‘/Vk'
k=0

Now uv is a triangular matrix with (1 — ¢?“~)Id in the diagonal, and is hence
diagonalizable. Furthermore, all the eigenspaces have the same dimension N. We
eventually choose the basis where

uv = Diag[(1 — ¢*“~Y)1d],
where Id is the N x N identity matrix.
Since {(1 —uv)u=q *v(l — uv)’
(1 — uv)u = q*u(1l — uv)
u and v in this basis are such that
u;;=0 wunless j=i—1 (modulom*),
v;;=0 unless j=i+1 (modulom*),

and u;; v, ;= (1 — q** " V)Id, so that we can write

0O 0 - 0 0
Id 0 - 0 0
u={0 Id - 0 0],
0 o0 Id o
0 (1—g)Id 0 0 0
0 0 (1—g*Id 0 0
v=\ . E .
0 0 0 e 0 (1_q2(ms~1))1d

0 0 0 - 0 0
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u,i,i+1=1'—q_2i1d
(E) implies { u;;=0 for j>i+1.
Uiy o1 =9 “uy for j<i
Vi =—q 'Id
v;=0 for j<i—1,
2j

: - 1-q7 ‘>
Uiy jr1 =4 Zl—quvij for jzi

(——) implies

but (+ —) also allows to compute v', and in particular v}, ;. If m #4 (m* #2),
the two expressions of v}, ; are incompatible. In this case, there is no finite
dimensional representation of < with u,v,v" and ' nilpotent. Theorem 2 is then
almost proved.

Finally, if m=4 (g =)

0 0 0 2Id ! ! !
D ol ) ol )
d 0 0 0 Wy, —u, d -,
uy, = —u}/2 since u?=0
with { v, =i} /2
v, = 2iu},

u}, is then the only non-trivial operator. If x is an eigenvector of ', , with eigenvalue
4, then Vect{x}@® Vect{x} = 4 = M, ® M, is stable. We hence obtain a two
dimensional representation of .«/. Note that A satisfies A* = 8i4 since v'> = 0, which
allows four distinct values for A.

So our Theorem 2 is proved and we summarize this section with
Theorem. The finite dimensional irreducible representations of </ have their

, . m
dimension between 1 and m (respectwely ) for m euen).

Hence, back to %(SU(3)),:
Theorem. The finite dimensional irreducible representations of #(SU(3)),, where all

the generators are injective are of dimension k(2m)? with k=1,...,m (respectively

% for even m>

Note that f; and e, injective is actually the only hypothesis we have made.

Note also that the non-trivial generators e, and f, (2) are 2m-idempotent on
irreducible representations, which is equivalent to the fact that u,v,v" and ' are
m*-idempotent on irreducible representations of .«/.

IV. Truncation and Flat Representations of #(SU(3)),

In this section, we perform a truncation of the representation defined above, in
which the operators 8, #',y and y’ (or u, v, 4’ and v’) are chosen to be scalars (i.e.
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in their one dimensional representation). This (2m)*> dimensional representation
M is described by (v

Px»pz)m,pz=0 ,,,,, 2m—1>
fl "Upy,p2 = %1 Upy +1,ps
ez'v 0(2'1)

p1.p2 p1,p2—1°

1
€1 Vpp = [Ot—(pl —X)g(#y —x—p1+p,+ l)q:l'vm—l,pz’
1

1
f2 V= [;(pz +1=y),(2 =Y = P2+ P1)g | Vprpa+ 15
2
where
u= q+ 13y —p2) +(uy+p2+1)~2x _ u'—l,
V= q—1/3(M1—Mz)+(#1+ﬂ2+1)‘2)’= D"l,
and

X+y=p,+pu,+1 since uv=1

The truncation is obtained by choosing particular values of x, y, u; and py,,
and forgetting the constraint that f, and e, should be idempotent.
Let us first fix x and y to be integers, say 0. (Hence p; + 4, + 1 =0.) Then

e10,,=0 and ev,,, =0

€1Um2,,=0 and e v3,,, =0 forevenm

vapx,m—l =0 and f20p1,2m—1:0
fzvpl,(m/z)_ 1= O and fzvpl‘(3m/2)“ 1= 0 fOl‘ even m.

M still remains a module when we perform the following change on f, and e,:

flvm‘— 1,p2 = 09

elvm,O =0.

a, and a, can then be set equal to 1 by a change of basis since there is no periodicity
left.

But now M is no longer irreducible and M, = Vect{v 1 is a
submodule of M. The periodicity of the set of weights is lost, so there is no
invariance under the action of the Weyl group. But the sets of weights provided
by the action of the Weyl group correspond to another truncation, obtained by
setting for example y, — x and p, — y to be integers instead of x, and x,.

We finally choose integer values for u, (and hence u,) so that

(Mg —=X~p1+py+1)y=—(u—y—p2+p1),

appearing in the expressions of ¢; and f, can also vanish. M is no longer irreducible
(but indecomposable). The upper-left part of M, (see fig.) is a submodule of M,,.

This submodule enters in the category of ordinary irreducible representations
of #(SUQ3)),. Its highest weight 4 is in the authorized sector (i.e. the part of the
first Weyl chamber in which (4, ) <m* — 1, where 6 is the highest root of SU(3).
This sector is painted in the case m=5 on the figure representing the d = 19
representation.) Note nevertheless that the values of ¢"/? and ¢"*? on this
submodule are not necessarily centered at 1, but at (w,, w,), where f =1 [1,2].






