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Abstract. We give an x-space definition of dimensional regularization suited to
the tree expansion method of renormalization. We apply the dimensionally
regularized tree expansion to QED, obtaining sharp bounds on the size of a
renormalized graph. Subtractions are made with the Lagrangian counterterms of
the tree expansion, not by minimal subtraction techniques, and so do not entail
a knowledge of the meromorphic structure of a graph as a function of dimension.
This renormalization procedure respects the Ward identities, and the counterterms
required are gauge invariant.

1. Introduction

In [1] with J. Feldman and T. Kurd, we developed a general scheme for
renormalizing a quantum field theory based on the tree expansion of G. Gallavotti
and F. Nicolό [2], and we applied this scheme to quantum electrodynamics (QED)
to give a complete proof of the renormalizability of QED in perturbation theory.
The basic idea of the tree expansion approach is to slice up each field as a sum
of fields of different scales, to integrate out the fields one scale at a time, and to
renormalize scale by scale. The resulting renormalization procedure is remarkably
simple: one never sees "overlapping divergences" or the usual combinatoric
complexities of BPHZ renormalization, and the required bounds amount to little
more than superficial power counting. We briefly review the tree expansion in
Sect. 2 but shall rely on [1] or [3] for details. See also Hurd [4] for a simple
version of the tree expansion that employs continuous rather than discrete slicing,
as in Polchinski [5].

The main technical difficulty we faced in applying the tree expansion to QED
in [1] is that the slicing breaks gauge in variance and so it was not clear whether
the theory could be renormalized using only gauge invariant counterterms. We
overcame this problem as follows: we introduced an auxiliary regularization on
the fermions that preserved the Ward identities but allowed us to remove the tree
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expansion cutoffs on the fermi lines; upon doing so we recovered the Ward
identities, and were thus able to rule out forbidden gauge variant counterterms.
The auxiliary regularization we used in [1] was "loop regularization." (We call
such a regularization "auxiliary" to the tree expansion regularizations since it
cannot be used to give the slicing of individual lines that is needed to run the tree
expansion.)

Now loop regularization has its shortcomings. For a non-abelian gauge theory
like Yang-Mills, it will not on its own give finite graphs. But even for QED, where
loop regularization is most conveniently implemented via fictitious spinor fields,
there is an incompatibility between loop regularization and renormalization.
Graphs with fictitious field external legs must be renormalized with "incorrect"
counterterms in order to maintain the algebraic cancellations involved in loop
regularization. It was this complication of loop regularization that gave us the
most trouble when we removed the UV cutoffs in QED [1].

Are there better auxiliary regularizations that preserve the Ward identities?
There are precious few. In this paper we show that dimensional regularization
[6,7] can be used as an auxiliary regularization in the tree expansion; and we
illustrate its use in QED, as a simpler alternative to the methods of [1]. The basic
idea of dimensional regularization (dr) is to regularize a graph in d dimensions by
evaluating it as though it were coming from v < d dimensions (v not necessarily a
positive integer). For sufficiently small v the regularized graphs have no UV
divergences and yet Ward identities are maintained since, intuitively, they hold in
"v dimensions."

In spirit, our treatment of dr follows that of Breitenlohner and Maison [7].
However, in contrast to these and other authors, we shall work in x- rather than
in p-space. Aside from our beliefs that it is more natural to regularize the dimension
of the underlying coordinate space and that the resulting algebraic structure is
clearer in x- than in p-space, our main reason for this choice is that the tree
expansion is best carried out in x-space; in particular, by regularizing in x-space,
we can easily obtain the bounds on graphs needed to establish renormalizability.
Also, in contrast to most other treatments of dr (see e.g. [8]), our analysis involves
neither an explicit computation of the value of a graph nor an investigation of its
meromorphic structure as a function of v. To renormalize a graph we do not
subtract off poles in v; instead we renormalize directly with Lagrangian
counterterms defined in x-space. It should be possible to prove that these two
subtraction schemes are equivalent, i.e. differ by a finite renormalization. We offer
no such proof here. Rather, the onus is on the minimalists to demonstrate that
their scheme is equivalent to a Lagrangian counterterm scheme and hence respects
unitarity. Such a demonstration can be quite intricate (see, for example, [9]).

We restrict our attention in this paper to the example of QED4. Thus we are
not concerned with the problem of defining objects like y5 or ε vλσ [7]. Another
simplification in QED is that one can place UV and IR cutoffs on photon lines
which do not break the Ward identities.

Given a (Euclidean) QFT with fields Φ defined on Rrf, free (quadratic)
Lagrangian g 0, and interaction Lagrangian g^ the tree expansion analyzes the
generator of connected, amputated Green's functions, the "effective potential,"

ί(φ+φe))]0. (1.1)

Here $ is the Gaussian expectation with respect to Φ with density
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|= - JjS?j(Φ(x))ί/x is the interaction potential; Φe is
the set of external fields; and the notation C ]o means "drop terms independent
of ΦV For the purposes of perturbative renormalization theory, we interpret
V(Φe) as a formal power series (fps) in the coupling constant(s) and fields Φe. As
such, V(Φe) can be evaluated in terms of connected Feynman graphs whose external
legs correspond to fields Φe.

We now give our definition of x-space dr. Consider a (connected) graph G
contributing to (1.1) for QEDd. Its lines <^(G) are either bosonic or fermionic,
<£ = $£ b u JSfy ; its legs Λ(G) are half-lines corresponding to external or uncontracted

fields; each of its vertices υei^(G) has two attached fermion lines or legs and one
attached boson line or leg and carries a coordinate x and an index μ (corresponding
to its photon field Aμ(x)). Let V=\i^(G)\ and L= \&(G)\. Each line Ie&b9 arising
from the contraction of the photon fields Aμι(xt) and Avι(yl), contributes the
propagator (in Feynman gauge) δμιvlC(xhyl\ where

C(X,,Λ) = (-ΔΓ^yt) = ? d*ter**(xl9yt)
o

where zl = xl — yt. A line /eJ^/5 arising from the contraction of the fermion fields
ψ(xι) and ^(y/), contributes the propagator

S(xι, Λ) = ( - i

o

where

fι= — #//2α/ -f m, / = zμy
μ,

the yμ's being Euclidean Dirac matrices with

The value of the graph G is then

O, (1.3)

where c = (4π)~dL/2, α = (α/)ίe^ with each α/ integrated from 0 to oo, jδί = α/~
1,

/^= Π A,x = (x1,...,xκ)Jdx = Jέ/x^ dx^,
le^7

P= /« 5 μ ι v I ^ (L4)

(repeated indices summed over), b = £ftzf , and 77e(xe) is the product of external
i

fields corresponding to the legs of G with xe representing the coordinates of the
external vertices 1^e (i.e. those vertices having an attached leg). We suppress the
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vector and spinor indices on Πe and the spinor indices on the y's in p, but it is
understood that the fermi fields in Πe occur in a specific order and that the y's in
p occur in ordered products and traces corresponding to the lines and loops of
G. We also break the translation invariance of pe~~bl4 in (1.3) by setting xF = 0
(which we assume is an external vertex). Then the (V — 1) x (V — 1) matrix B defined
by

is non-singular.
In general, the expression (1.3) diverges because of UV singularities at α = 0

(as well as IR singularities at α = oo, which we deal with below). We define the
UV regularized version Gv of G by making the following replacements (i)-(v):

0 βd£-»β*£ where v<d.
For v small enough, this replacement removes any UV divergences but on its own
does not give an expression "coming from v dimensions" and so cannot be expected
to have the appropriate invariance properties.
ii) For each coordinate x in p or ί>, x -> X = (x, £).
Here, x is a formal symbol whose calculus we specify below so as to be consistent
with the calculus when v is an integer > d, in which case xeR v~d and XeR\ Note
that the arguments of Πe(xe) are not affected by ii). Let τΓ0 c i^e denote those
vertices with an attached photon leg, and ΊΓ1 = i^\i^Q those without.
iii) For each Dirac matrix in a fermi factor ft or associated with a vertex vei^Ί
in (1.4), y-»Γ = (?,?)•
iv) Each Kronecker delta in (1.4), d**-*A* = δ*β + δ*β.
The formal symbols x,f and δ satisfy algebraic rules appropriate to "(v — d)
dimensions":

{Γ,r } = - 2#"*2, {y*',r } = 0, (1.5)

δμιμ2 = δμ2μι, δμιμ2xμ2 = xμι, δμιμ2yμ2 = yμι, (1.6)

We require no further algebraic structure for the f's, such as a representation of
yμ as a matrix, a product rule for fs or a "trace" on products of f's. By Rule v)
below, the f's will always occur in pairs yμyμ which we can evaluate by (1.5) and

Note also that a repeated index μ on A-objects (as in (1.6) or (1.7)) is not actually
"summed over."

According to π)-iv),

p-+p= Π Fι Π Δμιvι Π Γ"v Π ?""> <L8)
ίeJSff 1<=£Ί, ve Γi ueiΓo

where

,£ f = ί> + S.
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v) \dx-+\dX = jdxjdx, where the computational rule for Jdx is Gaussian and
follows formally from Jdx = §dxί •-dxv_ί'\. =Q:

Π (2B-1)Wl^
|V| seven

(i9b)V ' }

0 sodd,

where cx = (4π)1 ~v and G is summed over graphs whose lines join the s x's in pairs,
with ί

Th
graph

with ίe-Sf(G) joining xf/ to x];.
The replacements i)-v) and the calculus (1.5)~(1.7), (1.9) define the regularized

e). (1.10)
ZeJSf/

We shall be more explicit about the form of Gv in Sect. 3 and the reader may wish
at this point to skip to the example after Corollary 3.2, but for now consider the
"leading term" in (1.10), which has the same form as (1.10) but with p in place of
P. According to (1.9a) this leading term differs from the value G of (1.3) by virtue
of the additional factor

β^-d)/2\B\(d-v)/2 = ί/G(α)(d-v)/2. (1.11)

The factor UG is a homogeneous polynomial in α of degree L— K+ 1 [10] and
provides the needed UV regularization at α = 0 for v small enough. Our general
strategy in using the dr expression (1.10) will be to integrate out the x's when we
want bounds but to leave the x-integrals intact when we want relations such as
Ward identities.

Now (1.10) will still have IR singularities as α->oo (worsened by the factor
(1.11)!). To deal with these we simply insert a cutoff on the photon lines, αf ̂  M~2/,
where M > 1 is fixed and the IR cutoff / > — oo. We are free to do so in QED
because cutoffs and slicing on the photon lines do not disturb the Ward identities.
At the end of Sect. 4 we indicate how to remove the IR cutoff, /-> — oo, after
renormalization.

Consider the dr version of (1.1) which we write as

Vv(φ*) = %v(eVl(φ+φe)), (1.12)

where ^V(F(Φ+ Φe)) denotes the sum (fps) of connected graphs contributing to
[(ί(F(Φ+ Φe})~]$ with each graph dimensionally regularized. As we show in
Corollary 3.2, the graphs contributing to Vv are finite when v < 2 and / > — oo.
We renormalize Vv with the tree expansion counterterms appropriate to d = 4
dimensions to obtain the renormalized dr effective potential V (Φe). This
subtraction scheme does not entail a knowledge of the meromorphic structure of
Vv as a function of v. Although oversubtracted when v < 4, V is finite for v ̂  4
and is consequently an analytic function of v for Re v < 4 (see Theorem 4.2 and
Remark 3 following it).

What about the Ward identities? Why do they hold for Vv or 7en v? Although
the "expectation" ̂ v is not given by a genuine integration over fields, it nonetheless
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satisfies "integration by parts" formulas with respect to ψ and ij/9 such as (see
Lemma 3.5):

β)) (1-13)

These identities correspond to what Breitenlohner and Maison call the "Action
Principle" [7].

Choosing v < 2 (and / > — oo) to ensure finiteness of all graphs and
counterterms (see Corollary 3.2), we use the integration by parts identities to
establish Ward identities for the effective potentials Vv and Fren>v (Corollary 5.4).
But Kren v is an analytic function of v for Re v < 4 and so the Ward identities for
it immediately continue to Re v g 4. This guarantees the gauge invariance of the
renormalization procedure. For QED4 it is also possible to make a somewhat
more direct version of this statement: with IR and UV cutoffs / > - oo and Up<co
on the photon lines all counterterms are finite when v < 4 except for the mass
counterterm to the second order vacuum polarization graph. Consequently, if we
analytically continue this one graph to v<4, we can assert that the other
counterterms required to renormalize QED4 (finite for v < 4 and — oo < / ̂  0 ̂
Up < oo ) are of gauge invariant form (see Sect. 5).

The main conclusion of this paper is that x-space dr provides an elegant
auxiliary regularization that preserves Ward identities and combines clearly with
the tree expansion approach to renormalization. We believe that this regularization
will prove very useful in the application of the tree expansion to non-abelian
gauge theories. Unfortunately, it does not seem possible to implement dr at the
functional integral level, and so we are dubious that it will be a useful tool in
non-perturbative analyses.

Acknowledgement: We thank Robert Adams for the artwork executed on the mg system.

2. Review of the Tree Expansion

We outline here the tree expansion procedure for renormalizing a field theory as
discovered by Gallavotti and Nicolό [2] and developed by Feldman, Hurd, Rosen
and Wright [1,3]. For full details and proofs see these references.

Our description will centre on the example of (Euclidean) QEDd with fields
Φ = (Φi9 Φ2, Φ3) = (A,ψ9ψ) and Lagrangian & = J^0 + Jί?/, where (in Feynman
gauge)

j£P 0 =-±Λ 4Λ + ιH-$ + w)^ and £Ί = eψ4ψ.

In contrast to [1] we shall not Wick order the graphs in the effective potential
and so our trees will be slightly different from those of [1].

The unrenormalized effective potential V(Φe) is given by (1.1) as a fps in e
whose coefficients may be expressed in terms of connected Feynman graphs with
external legs corresponding to the external fields Φe = (Ae, ψe, φe). Of course, (1.1)
is only formal: the fps coefficients are in general divergent. The central task of
(perturbative) renormalization theory is to introduce regularizations (which we
denote by N < oo) so that the regularized version of (1.1),

β>)]0, (2.1)
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has a well-defined (but not necessarily convergent!) fps and to introduce
counterterms

δVN(Φ)=-$δ&(Φ(x))dx, (2.2)

which cancel the would-be infinities of VN so that the renormalized effective
potential

N-oo

has a well-defined fps. The counterterms δVN are to be chosen as a fps in e (with
finite coefficients when N < oo) and are supposed to have the same form as the
terms in the original & ("local Lagrangian counterterms"). In particular, if 5£ is
invariant under a gauge group, the counterterms δ<£ are required to respect this
gauge invariance. This gives rise to the main technical complication in renormali-
zing a gauge field theory: most convenient regularizations N break gauge invariance
and so apparently must δVN.

The strategy we adopted in [1] to overcome this difficulty was to introduce
regularizations convenient for the tree expansion: N9 a UV cutoff on the electron
propagator; 17, a UV cutoff on the photon propagator; /, an IR cutoff on the
photon propagator; as well as an auxiliary regularization Λ9 on fermi loops
(implemented by fictitious spinor fields). We ran the tree expansion with all 4
regularizations in place using counterterms δVI υ ΛN that were gauge variant and,
because of the need to maintain the loop regularization, could not be chosen so
as to renormalize graphs with fictitious field legs correctly. We then took JV-* oo.
In the N = oo limit the theory is finite (order by order in perturbation theory) and
the Ward identities are recovered. Consequently, the (finite) counterterms
δVIV A = lim δVιυ ΛίN are gauge invariant. We then removed the remaining cutoffs

N-xx)

but it was crucial to take A -» oo first (followed by U -> oo and then / -*• — oo) in
order to control the incorrectly renormalized fictitious field graphs.

In this paper we replace loop regularization A by dimensional regularization
v < 4 with a considerable reduction in technical difficulties. We describe the tree
expansion in this section without v but include it in subsequent sections.

The first step in the tree expansion is to decompose the propagators (1.2) into
α-space slices. Fix M > 1 and for Λ = 0, ± 1,... set

00

Cw(xί9yt) = J ί/αίχ
(Λ)(αί)(4παί)~<ί/2e-z'/4αι, (2.4)

u o
where

χ(/l) = characteristic fn. of [M~2/I,M~2Λ + 2]. (2.5)

For h = 0,1,2,... we set

S(W(*ι, JΊ) = f ώlχ?)(αl)(4παl)-"2/,e-I?/4«'-«"2

> (2.6)
0

where /, is given after (1.2), y(® = χ(Λ) for h > 0, and

χ(°> = characteristic fn. of [1, oo). (2.7)

(For massive particles there is no need to slice up the IR regime α, ̂  1.) Thus

C = fέ C(h} and S = £ S(h\ (2.8)
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The fields corresponding to these slice covariances are denoted Φ(h) and the
corresponding Gaussian expectations S (h}. For example,

Corresponding to the decompositions (2.8) we have

A= Σ A(h\ φ= £ ψ(h) and φ= £ ιp>.
Λ = - oo Λ = 0 Λ = 0

The UV- and IR-regularized fields are (we take the UV cutoff to be the same on
the photon and electron fields)

ψ[0^ = £ <^*>, etc., (2.9)
h=I h = 0

and the corresponding cutoff propagators are

cu.ι/ι = £ cw and sιo.ιπ = £ sw
Λ = 7 Λ = 0

For the remainder of this section and until the end of Sect. 4 we shall assume that
the IR cutoff is fixed at / = 0 and we shall write Φ(~ 1} for the external field Φ(e)

k V

and Φ (= f c ) for £ Φ(/I). We also write <f " for the Gaussian expectation f] <ί(/I).
Λ = - l Λ = 0

The renormalized effective potential with UV cutoff U (and IR cutoff / = 0) is
given by

VU(Φ€) = Dog<fϋ(eKl(φ(SC7)))]o. (2.10)

The tree expansion for K17 is obtained by successively integrating out the fields
Φ(V\ Φ(U~l\ . . . , φ(0) and performing a cumulant expansion

Σ ~^(

Γ

Λ)(^ -^) (2-11)
p=\P p arguments

after each expectation. Here ̂  denotes the truncated or connected expectation.
A tree τ is a tree graph (i.e. no closed loops) with a distinguished end-vertex

at the bottom (the root), the other end-vertices at the top (called endpoints), and
each remaining vertex / (called a fork) having one line down and the other pf ^ 1
lines going up. We denote the set of endpoints by δ(τ) and forks by ^"(τ). The
structure of a tree τ determines a natural partial ordering on the set δ (τ)uJ^(τ):
vl < v2 if vλ is below v2. For example the tree

τ= /i ^Γ^ ^ (2.12)

has 4 endpoints and 3 forks with /3 < /2 < Λ < ̂ ι,/ι < e2>/3 < ^3> an<i /a < e^
Each /6«^"(τ) bears a scαίe lebel fty such that the scales h = (hf)fe^ belong to the set

hι<h2 if Λ</2}. (2.13)




