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Abstract. We give an x-space definition of dimensional regularization suited to
the tree expansion method of renormalization. We apply the dimensionally
regularized tree expansion to QED, obtaining sharp bounds on the size of a
renormalized graph. Subtractions are made with the Lagrangian counterterms of
the tree expansion, not by minimal subtraction techniques, and so do not entail
a knowledge of the meromorphic structure of a graph as a function of dimension.
This renormalization procedure respects the Ward identities, and the counterterms
required are gauge invariant.

1. Introduction

In [1] with J. Feldman and T. Kurd, we developed a general scheme for
renormalizing a quantum field theory based on the tree expansion of G. Gallavotti
and F. Nicolό [2], and we applied this scheme to quantum electrodynamics (QED)
to give a complete proof of the renormalizability of QED in perturbation theory.
The basic idea of the tree expansion approach is to slice up each field as a sum
of fields of different scales, to integrate out the fields one scale at a time, and to
renormalize scale by scale. The resulting renormalization procedure is remarkably
simple: one never sees "overlapping divergences" or the usual combinatoric
complexities of BPHZ renormalization, and the required bounds amount to little
more than superficial power counting. We briefly review the tree expansion in
Sect. 2 but shall rely on [1] or [3] for details. See also Hurd [4] for a simple
version of the tree expansion that employs continuous rather than discrete slicing,
as in Polchinski [5].

The main technical difficulty we faced in applying the tree expansion to QED
in [1] is that the slicing breaks gauge in variance and so it was not clear whether
the theory could be renormalized using only gauge invariant counterterms. We
overcame this problem as follows: we introduced an auxiliary regularization on
the fermions that preserved the Ward identities but allowed us to remove the tree
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expansion cutoffs on the fermi lines; upon doing so we recovered the Ward
identities, and were thus able to rule out forbidden gauge variant counterterms.
The auxiliary regularization we used in [1] was "loop regularization." (We call
such a regularization "auxiliary" to the tree expansion regularizations since it
cannot be used to give the slicing of individual lines that is needed to run the tree
expansion.)

Now loop regularization has its shortcomings. For a non-abelian gauge theory
like Yang-Mills, it will not on its own give finite graphs. But even for QED, where
loop regularization is most conveniently implemented via fictitious spinor fields,
there is an incompatibility between loop regularization and renormalization.
Graphs with fictitious field external legs must be renormalized with "incorrect"
counterterms in order to maintain the algebraic cancellations involved in loop
regularization. It was this complication of loop regularization that gave us the
most trouble when we removed the UV cutoffs in QED [1].

Are there better auxiliary regularizations that preserve the Ward identities?
There are precious few. In this paper we show that dimensional regularization
[6,7] can be used as an auxiliary regularization in the tree expansion; and we
illustrate its use in QED, as a simpler alternative to the methods of [1]. The basic
idea of dimensional regularization (dr) is to regularize a graph in d dimensions by
evaluating it as though it were coming from v < d dimensions (v not necessarily a
positive integer). For sufficiently small v the regularized graphs have no UV
divergences and yet Ward identities are maintained since, intuitively, they hold in
"v dimensions."

In spirit, our treatment of dr follows that of Breitenlohner and Maison [7].
However, in contrast to these and other authors, we shall work in x- rather than
in p-space. Aside from our beliefs that it is more natural to regularize the dimension
of the underlying coordinate space and that the resulting algebraic structure is
clearer in x- than in p-space, our main reason for this choice is that the tree
expansion is best carried out in x-space; in particular, by regularizing in x-space,
we can easily obtain the bounds on graphs needed to establish renormalizability.
Also, in contrast to most other treatments of dr (see e.g. [8]), our analysis involves
neither an explicit computation of the value of a graph nor an investigation of its
meromorphic structure as a function of v. To renormalize a graph we do not
subtract off poles in v; instead we renormalize directly with Lagrangian
counterterms defined in x-space. It should be possible to prove that these two
subtraction schemes are equivalent, i.e. differ by a finite renormalization. We offer
no such proof here. Rather, the onus is on the minimalists to demonstrate that
their scheme is equivalent to a Lagrangian counterterm scheme and hence respects
unitarity. Such a demonstration can be quite intricate (see, for example, [9]).

We restrict our attention in this paper to the example of QED4. Thus we are
not concerned with the problem of defining objects like y5 or ε vλσ [7]. Another
simplification in QED is that one can place UV and IR cutoffs on photon lines
which do not break the Ward identities.

Given a (Euclidean) QFT with fields Φ defined on Rrf, free (quadratic)
Lagrangian g 0, and interaction Lagrangian g^ the tree expansion analyzes the
generator of connected, amputated Green's functions, the "effective potential,"

ί(φ+φe))]0. (1.1)

Here $ is the Gaussian expectation with respect to Φ with density
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|= - JjS?j(Φ(x))ί/x is the interaction potential; Φe is
the set of external fields; and the notation C ]o means "drop terms independent
of ΦV For the purposes of perturbative renormalization theory, we interpret
V(Φe) as a formal power series (fps) in the coupling constant(s) and fields Φe. As
such, V(Φe) can be evaluated in terms of connected Feynman graphs whose external
legs correspond to fields Φe.

We now give our definition of x-space dr. Consider a (connected) graph G
contributing to (1.1) for QEDd. Its lines <^(G) are either bosonic or fermionic,
<£ = $£ b u JSfy ; its legs Λ(G) are half-lines corresponding to external or uncontracted

fields; each of its vertices υei^(G) has two attached fermion lines or legs and one
attached boson line or leg and carries a coordinate x and an index μ (corresponding
to its photon field Aμ(x)). Let V=\i^(G)\ and L= \&(G)\. Each line Ie&b9 arising
from the contraction of the photon fields Aμι(xt) and Avι(yl), contributes the
propagator (in Feynman gauge) δμιvlC(xhyl\ where

C(X,,Λ) = (-ΔΓ^yt) = ? d*ter**(xl9yt)
o

where zl = xl — yt. A line /eJ^/5 arising from the contraction of the fermion fields
ψ(xι) and ^(y/), contributes the propagator

S(xι, Λ) = ( - i

o

where

fι= — #//2α/ -f m, / = zμy
μ,

the yμ's being Euclidean Dirac matrices with

The value of the graph G is then

O, (1.3)

where c = (4π)~dL/2, α = (α/)ίe^ with each α/ integrated from 0 to oo, jδί = α/~
1,

/^= Π A,x = (x1,...,xκ)Jdx = Jέ/x^ dx^,
le^7

P= /« 5 μ ι v I ^ (L4)

(repeated indices summed over), b = £ftzf , and 77e(xe) is the product of external
i

fields corresponding to the legs of G with xe representing the coordinates of the
external vertices 1^e (i.e. those vertices having an attached leg). We suppress the
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vector and spinor indices on Πe and the spinor indices on the y's in p, but it is
understood that the fermi fields in Πe occur in a specific order and that the y's in
p occur in ordered products and traces corresponding to the lines and loops of
G. We also break the translation invariance of pe~~bl4 in (1.3) by setting xF = 0
(which we assume is an external vertex). Then the (V — 1) x (V — 1) matrix B defined
by

is non-singular.
In general, the expression (1.3) diverges because of UV singularities at α = 0

(as well as IR singularities at α = oo, which we deal with below). We define the
UV regularized version Gv of G by making the following replacements (i)-(v):

0 βd£-»β*£ where v<d.
For v small enough, this replacement removes any UV divergences but on its own
does not give an expression "coming from v dimensions" and so cannot be expected
to have the appropriate invariance properties.
ii) For each coordinate x in p or ί>, x -> X = (x, £).
Here, x is a formal symbol whose calculus we specify below so as to be consistent
with the calculus when v is an integer > d, in which case xeR v~d and XeR\ Note
that the arguments of Πe(xe) are not affected by ii). Let τΓ0 c i^e denote those
vertices with an attached photon leg, and ΊΓ1 = i^\i^Q those without.
iii) For each Dirac matrix in a fermi factor ft or associated with a vertex vei^Ί
in (1.4), y-»Γ = (?,?)•
iv) Each Kronecker delta in (1.4), d**-*A* = δ*β + δ*β.
The formal symbols x,f and δ satisfy algebraic rules appropriate to "(v — d)
dimensions":

{Γ,r } = - 2#"*2, {y*',r } = 0, (1.5)

δμιμ2 = δμ2μι, δμιμ2xμ2 = xμι, δμιμ2yμ2 = yμι, (1.6)

We require no further algebraic structure for the f's, such as a representation of
yμ as a matrix, a product rule for fs or a "trace" on products of f's. By Rule v)
below, the f's will always occur in pairs yμyμ which we can evaluate by (1.5) and

Note also that a repeated index μ on A-objects (as in (1.6) or (1.7)) is not actually
"summed over."

According to π)-iv),

p-+p= Π Fι Π Δμιvι Π Γ"v Π ?""> <L8)
ίeJSff 1<=£Ί, ve Γi ueiΓo

where

,£ f = ί> + S.
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v) \dx-+\dX = jdxjdx, where the computational rule for Jdx is Gaussian and
follows formally from Jdx = §dxί •-dxv_ί'\. =Q:

Π (2B-1)Wl^
|V| seven

(i9b)V ' }

0 sodd,

where cx = (4π)1 ~v and G is summed over graphs whose lines join the s x's in pairs,
with ί

Th
graph

with ίe-Sf(G) joining xf/ to x];.
The replacements i)-v) and the calculus (1.5)~(1.7), (1.9) define the regularized

e). (1.10)
ZeJSf/

We shall be more explicit about the form of Gv in Sect. 3 and the reader may wish
at this point to skip to the example after Corollary 3.2, but for now consider the
"leading term" in (1.10), which has the same form as (1.10) but with p in place of
P. According to (1.9a) this leading term differs from the value G of (1.3) by virtue
of the additional factor

β^-d)/2\B\(d-v)/2 = ί/G(α)(d-v)/2. (1.11)

The factor UG is a homogeneous polynomial in α of degree L— K+ 1 [10] and
provides the needed UV regularization at α = 0 for v small enough. Our general
strategy in using the dr expression (1.10) will be to integrate out the x's when we
want bounds but to leave the x-integrals intact when we want relations such as
Ward identities.

Now (1.10) will still have IR singularities as α->oo (worsened by the factor
(1.11)!). To deal with these we simply insert a cutoff on the photon lines, αf ̂  M~2/,
where M > 1 is fixed and the IR cutoff / > — oo. We are free to do so in QED
because cutoffs and slicing on the photon lines do not disturb the Ward identities.
At the end of Sect. 4 we indicate how to remove the IR cutoff, /-> — oo, after
renormalization.

Consider the dr version of (1.1) which we write as

Vv(φ*) = %v(eVl(φ+φe)), (1.12)

where ^V(F(Φ+ Φe)) denotes the sum (fps) of connected graphs contributing to
[(ί(F(Φ+ Φe})~]$ with each graph dimensionally regularized. As we show in
Corollary 3.2, the graphs contributing to Vv are finite when v < 2 and / > — oo.
We renormalize Vv with the tree expansion counterterms appropriate to d = 4
dimensions to obtain the renormalized dr effective potential V (Φe). This
subtraction scheme does not entail a knowledge of the meromorphic structure of
Vv as a function of v. Although oversubtracted when v < 4, V is finite for v ̂  4
and is consequently an analytic function of v for Re v < 4 (see Theorem 4.2 and
Remark 3 following it).

What about the Ward identities? Why do they hold for Vv or 7en v? Although
the "expectation" ̂ v is not given by a genuine integration over fields, it nonetheless
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satisfies "integration by parts" formulas with respect to ψ and ij/9 such as (see
Lemma 3.5):

β)) (1-13)

These identities correspond to what Breitenlohner and Maison call the "Action
Principle" [7].

Choosing v < 2 (and / > — oo) to ensure finiteness of all graphs and
counterterms (see Corollary 3.2), we use the integration by parts identities to
establish Ward identities for the effective potentials Vv and Fren>v (Corollary 5.4).
But Kren v is an analytic function of v for Re v < 4 and so the Ward identities for
it immediately continue to Re v g 4. This guarantees the gauge invariance of the
renormalization procedure. For QED4 it is also possible to make a somewhat
more direct version of this statement: with IR and UV cutoffs / > - oo and Up<co
on the photon lines all counterterms are finite when v < 4 except for the mass
counterterm to the second order vacuum polarization graph. Consequently, if we
analytically continue this one graph to v<4, we can assert that the other
counterterms required to renormalize QED4 (finite for v < 4 and — oo < / ̂  0 ̂
Up < oo ) are of gauge invariant form (see Sect. 5).

The main conclusion of this paper is that x-space dr provides an elegant
auxiliary regularization that preserves Ward identities and combines clearly with
the tree expansion approach to renormalization. We believe that this regularization
will prove very useful in the application of the tree expansion to non-abelian
gauge theories. Unfortunately, it does not seem possible to implement dr at the
functional integral level, and so we are dubious that it will be a useful tool in
non-perturbative analyses.

Acknowledgement: We thank Robert Adams for the artwork executed on the mg system.

2. Review of the Tree Expansion

We outline here the tree expansion procedure for renormalizing a field theory as
discovered by Gallavotti and Nicolό [2] and developed by Feldman, Hurd, Rosen
and Wright [1,3]. For full details and proofs see these references.

Our description will centre on the example of (Euclidean) QEDd with fields
Φ = (Φi9 Φ2, Φ3) = (A,ψ9ψ) and Lagrangian & = J^0 + Jί?/, where (in Feynman
gauge)

j£P 0 =-±Λ 4Λ + ιH-$ + w)^ and £Ί = eψ4ψ.

In contrast to [1] we shall not Wick order the graphs in the effective potential
and so our trees will be slightly different from those of [1].

The unrenormalized effective potential V(Φe) is given by (1.1) as a fps in e
whose coefficients may be expressed in terms of connected Feynman graphs with
external legs corresponding to the external fields Φe = (Ae, ψe, φe). Of course, (1.1)
is only formal: the fps coefficients are in general divergent. The central task of
(perturbative) renormalization theory is to introduce regularizations (which we
denote by N < oo) so that the regularized version of (1.1),

β>)]0, (2.1)
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has a well-defined (but not necessarily convergent!) fps and to introduce
counterterms

δVN(Φ)=-$δ&(Φ(x))dx, (2.2)

which cancel the would-be infinities of VN so that the renormalized effective
potential

N-oo

has a well-defined fps. The counterterms δVN are to be chosen as a fps in e (with
finite coefficients when N < oo) and are supposed to have the same form as the
terms in the original & ("local Lagrangian counterterms"). In particular, if 5£ is
invariant under a gauge group, the counterterms δ<£ are required to respect this
gauge invariance. This gives rise to the main technical complication in renormali-
zing a gauge field theory: most convenient regularizations N break gauge invariance
and so apparently must δVN.

The strategy we adopted in [1] to overcome this difficulty was to introduce
regularizations convenient for the tree expansion: N9 a UV cutoff on the electron
propagator; 17, a UV cutoff on the photon propagator; /, an IR cutoff on the
photon propagator; as well as an auxiliary regularization Λ9 on fermi loops
(implemented by fictitious spinor fields). We ran the tree expansion with all 4
regularizations in place using counterterms δVI υ ΛN that were gauge variant and,
because of the need to maintain the loop regularization, could not be chosen so
as to renormalize graphs with fictitious field legs correctly. We then took JV-* oo.
In the N = oo limit the theory is finite (order by order in perturbation theory) and
the Ward identities are recovered. Consequently, the (finite) counterterms
δVIV A = lim δVιυ ΛίN are gauge invariant. We then removed the remaining cutoffs

N-xx)

but it was crucial to take A -» oo first (followed by U -> oo and then / -*• — oo) in
order to control the incorrectly renormalized fictitious field graphs.

In this paper we replace loop regularization A by dimensional regularization
v < 4 with a considerable reduction in technical difficulties. We describe the tree
expansion in this section without v but include it in subsequent sections.

The first step in the tree expansion is to decompose the propagators (1.2) into
α-space slices. Fix M > 1 and for Λ = 0, ± 1,... set

00

Cw(xί9yt) = J ί/αίχ
(Λ)(αί)(4παί)~<ί/2e-z'/4αι, (2.4)

u o
where

χ(/l) = characteristic fn. of [M~2/I,M~2Λ + 2]. (2.5)

For h = 0,1,2,... we set

S(W(*ι, JΊ) = f ώlχ?)(αl)(4παl)-"2/,e-I?/4«'-«"2

> (2.6)
0

where /, is given after (1.2), y(® = χ(Λ) for h > 0, and

χ(°> = characteristic fn. of [1, oo). (2.7)

(For massive particles there is no need to slice up the IR regime α, ̂  1.) Thus

C = fέ C(h} and S = £ S(h\ (2.8)
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The fields corresponding to these slice covariances are denoted Φ(h) and the
corresponding Gaussian expectations S (h}. For example,

Corresponding to the decompositions (2.8) we have

A= Σ A(h\ φ= £ ψ(h) and φ= £ ιp>.
Λ = - oo Λ = 0 Λ = 0

The UV- and IR-regularized fields are (we take the UV cutoff to be the same on
the photon and electron fields)

ψ[0^ = £ <^*>, etc., (2.9)
h=I h = 0

and the corresponding cutoff propagators are

cu.ι/ι = £ cw and sιo.ιπ = £ sw
Λ = 7 Λ = 0

For the remainder of this section and until the end of Sect. 4 we shall assume that
the IR cutoff is fixed at / = 0 and we shall write Φ(~ 1} for the external field Φ(e)

k V

and Φ (= f c ) for £ Φ(/I). We also write <f " for the Gaussian expectation f] <ί(/I).
Λ = - l Λ = 0

The renormalized effective potential with UV cutoff U (and IR cutoff / = 0) is
given by

VU(Φ€) = Dog<fϋ(eKl(φ(SC7)))]o. (2.10)

The tree expansion for K17 is obtained by successively integrating out the fields
Φ(V\ Φ(U~l\ . . . , φ(0) and performing a cumulant expansion

Σ ~^(

Γ

Λ)(^ -^) (2-11)
p=\P p arguments

after each expectation. Here ̂  denotes the truncated or connected expectation.
A tree τ is a tree graph (i.e. no closed loops) with a distinguished end-vertex

at the bottom (the root), the other end-vertices at the top (called endpoints), and
each remaining vertex / (called a fork) having one line down and the other pf ^ 1
lines going up. We denote the set of endpoints by δ(τ) and forks by ^"(τ). The
structure of a tree τ determines a natural partial ordering on the set δ (τ)uJ^(τ):
vl < v2 if vλ is below v2. For example the tree

τ= /i ^Γ^ ^ (2.12)

has 4 endpoints and 3 forks with /3 < /2 < Λ < ̂ ι,/ι < e2>/3 < ^3> an<i /a < e^
Each /6«^"(τ) bears a scαίe lebel fty such that the scales h = (hf)fe^ belong to the set

hι<h2 if Λ</2}. (2.13)
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The root scale of τ is — 1. Given /e J*(τ) we let τf be the subtree of τ with lowest
fork / and root π(/), where π(/) is the fork of τ immediately below / (if / is the
lowest fork of τ then π(/) is the root of τ). If e is an endpoint of τ we let τe be
the trivial tree with single endpoint e and no forks. The root scale of τυ (υ a fork
or endpoint) is hπ(v).

The value Vυ(τ, h) of a tree is 0 if any hf > 17; if every hf ^ U the value Ku(τ, h)

is most easily described inductively: if ee£(τ) then Vu(τe,h)= Vf(Φ(=hπ(e))). If
p are the forks and endpoints immediately above a fork /, then for p > 1

ί9 .

(̂τ,, *)--!; X, fc),..., VΌ(τ0f,A))]0, (2.14a)

where /c = /ιπ(/),Z
(M/) means that the fields Φ ( f c + 1 )= ... = φ^/~1) = 0 and now

[•• ]0 means "drop terms independent of φ(=fc)"; for p = 1

F"(τ/,Λ) = lZ(k^f^(Vv(τ0l9h))-]0 - Z(k^Vυ(τv^h) (2.14b)

so that at least one contraction of a pair of fields Φ(hf) occurs.
Iteration of the cumulant expansion (2.11) yields the unrenormalized tree

expansion

vu = Σ Σ vυ(τ>V (2 15)
τ ΛeJf(τ)

Vu(τ, h) can be expressed as a sum over connected graphs whose vertices correspond
to endpoints of τ, whose lines are propagators at a specific scale hf and whose
legs correspond to external fields Φe. For example, a graph contibuting to Vu(τ, h)
for τ given by (2.12) is

(2.16)

where we write hj = hfj. Then /z^ and h2-\ines correspond to propagators S(hί)

and S(/I2) and the Λ3-lines to two C(Λ3)'s and one S(/13). The vertex x7 of G corresponds
to the endpoint ej of τ. The legs attached to the vertices x3 and x4 correspond to
external fields φe(x3) and ^e(x4).

Let Gy be the subgraph of G whose vertices correspond to endpoints of τf and
whose lines correspond to propagators formed by contractions of fields at forks
^/. In the example (2.16) the subgraphs Gfl and G/2 are boxed in. If π(/') = /
we view Gr as a generalized vertex for the graph Gf and we consider the reduced
graph

gf = Gf/{Gr\π(f') = f }

formed by contracting each Gr to a point. In the example,
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The connectivity requirement on the graphs Ge^(τ) associated with τ is that each
such gf must be connected.

The value of a graph G is as given in (1.3) except that because each line / is
sliced as in (2.5)-(2.8) there is an additional factor

/(«)= Π χ(ί/(l))te) Π χ(*/(I))(α')> (2 17)
ίe^7/ le^b

where f(ϊ) is the fork at which the line / is formed. Thus the value of G is

Gu= Σ Gh>u= Σ \Kh>u(x)Πe(xe)dx
ΛeJf(t) ΛeJf(τ)

= Σ $daχh((*)Ku(<*9x)Πe(xe)dx9 (2.18a)
ΛeJf(r)

where Ku(α,x) = 0 if any αz < M~2U and otherwise

KV*) = c Π e-m2*lβ%2pe-bl4 (2.18b)

and p and b are given by (1.4). In terms of graphs the unrenormalized tree expansion
(2.15) takes the form

vu = Σ Σ Σ & v (2-19)

For details of combinatoric factors etc., see [1]. Note that \δ(τ)\ = |τΓ(G)| = the
order of perturbation theory, and that (2.19) is interpreted as a fps in e.

Are the coefficients in this perturbation expansion finite, uniformly in UΊ We
estimate the size of Gh'u by the "pinned ZΛnorm" of its kernel:

||X* ι ; | lo = ίlK* I /WI|xκβo^ι ^κ-ι- (2 2°)
The following bound is completely elementary, and the equality follows by a
summation by parts [1, Lemma 2.1]:

Lemma 2.1.

IIX^IIo^c Π MDd(9^ = c Π MDd(G')(/l'-"'«')), (2.21)
fe^(τ) /e«^(τ)

Dd(G) is the UV degree of divergence of a graph G,

2)Lb - d(V -\) = dΛ-Lf- 2Lb (2.22)

and Lf,Lb, V and A are the number offermi lines, bose lines, vertices and independent
loops of G, respectively.

Remark. We shall use the letter c to denote various constants that are independent
of variables such as x, α, h but may depend on G, at worst like c£, where L = | JS?(G)|.

If every subgraph Gf of G has Dd(Gf) < 0, then the sums over hf > hπ(f) in
(2.18a) converge uniformly in U and the graph G is finite (this is the
Dyson- Weinberg Power Counting Theorem). If Dd(Gf) ^ 0 then the subgraph Gf

requires renormalization.
Now Gf has the general form
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where x — (x^,..., xn) and

Πf(x) = ̂  Φ\?k\Xi) d«»Φ^k\xn\ (2.23)

where the x-derivatives dqj arise from renormalization operations we are
about to define and k = hn(fγ If Πf has λb

f bose fields Φt = A, λf

f fermi fields
Φ2 = Ψ and Φ3 = t/r, and a total of #/ derivatives, then the dimension of Πf is

* + λf

f + g/ and the degree of Gr is2 J 2

= d - dim 71, = d - ̂  A* - —- λf

f-qf. (2.24)

For simplicity we assume that d = 4 in which case e is dimensionless and
δ(Gf) = D4(Gf) - qf. We select one of xl9 . . . , xπ as the localization vertex xf of G7

and let

x(tf) = ( X l ( t f ) , . . . , x^f,)), x/^) = x/ + tf(Xj - xr), (2.25)

for 0 ̂  ίy g 1. The local parts of Πj and Gf are

O

and
LG7 = J Kf(x)LΠf(x)dx. (2.26b)

The renormalization of Gy is

RG/ = (1-L)G/. (2.27)

Suppose μf = ̂ (Gr) -f 1 > 0. By Taylor's Theorem

RGf = JL JΛ^I _ t / )w-ι$K f ( X )(Δ δ)>"Πf(x(tf))dx, (2.28)

where /l θ = ̂ (xj -x/) δx.. The factor Δ*' together with the Gaussian e~bl* in

Kf produces an extra factor M~μfhf in the power counting:
fhfe~m. (2.29)

This converts the bad (unrenormalized) power counting factor into a good one:

These renormalization cancellations are introduced into the tree expansion as
follows. The label R attached to a fork / means

,R = χ(hf>hπ^)(l-L) hXf. (2.30a)
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In order to implement these subtractions with legitimate counterterms in the
potential we have to include the local parts for all hf9 not just hf > hn(fγ So we
must also include the following "useless counterterms:"

'.c = -X(h f S hπ(f.)L hXf. (2.30b)

A renormalized tree τ is a tree with a label pf = R or C at each fork / whose value
Vu(τ,p,h) is defined as in (2.14) but with the modifications (2.30). We let
^R = {fe^\pf = R} and JΓ

C = JΣΓ\JΓ

Λ. The appropriate set of scales for a
renormalized tree is

τ,p) = {h\hπ(f) < hf if/e^κ;0 g V g fcπ(/) if/e^c}. (2.31)

The counterterms (5K17 are defined as

δVv=Σ Σ Σ r"(t,P,Ό, (2-32)

where the sums are over non-trivial trees τ, p's with pF = C for the lowest fork F,
and scales h in the set J fc(τ,p) defined as in (2.31) except that the root scale hπ(F}

is taken to be U instead of - 1. Clearly δVυ is a fps in e whose coefficients are
local polynomials in the fields φ(-u\

As in (2.10) we define the renormalized effective potential

o, (2-33)

and as in (2.15) we have:

Theorem 2.2. (Renormalized Tree Expansion).

VL = Vι+Σ Σ Σ VΏ(τ,p,h\ (2.34a)

As in (2.19), F(τ, p, h) can be expanded as a sum of graphs. Each unrenormalized
graph Ge^(τ) gives rise to a number of renormalized graphs Gvene^(τ, p) according
to the choice of i in (2.26a) at a C-fork and to how the derivatives δtf act in (2.26a)
and (2.28). We write

K*(τ fp,fc)= Σ GΪ£, (2.34b)
Grene^(t,p)

where the value Gh

r£ is similar to that of Gh-u in (2.18) except that R and -L
operations are applied to each subgraph as stipulated by p and there are resulting
integrals over the interpolating parameters ί = (tf)fe^(τ} (see (2.28)):

G% = Sdμ(t)!dxKW(x,t)Π (χ (t)), (2.35)

where dμ is a positive measure, 77 e is a product of external fields and their derivatives
and xe(t) is the set of external coordinates xe, appropriately interpolated. For a
more detailed description see Appendix B of [1].

The ί-interpolated version of (1.11)

=0]
2"i (2.36)
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satisfies [1, Lemma B.2];

Lemma 2.3.

(2.37)

where λf = lf — vf+\ = \&(gf)\ — I V(#/)| + 1 is the number of independent loops
in the reduced graph gf.

As in (2.29) the coordinate differences Δ^t) introduced by R and L operations
contribute good power counting factors [3, Lemma 7]:

Lemma 2.4.
-(b(t) + £ <¥"2)/8

l\\At\e **' gcΠM-"1'*', (2.38)
i /

w/ιere Wj is ί/ie number of tf-derivatives applied at f.
Equations (2.37) and (2.38) are the two basic ingredients in the bound on a

renormalized graph:

Theorem 2.5. Let K*£ be the kernel of graph (2.35) contributing to V(τ,ρ,h) in
(2.34b). Then

(2.39a)

where δf is given by (2.24) and satisfies

δf ^ - 1 if pf = R, (2 39b)

Q£δf<d ιίρf = C.

We can always arrange that in (2.35) the vertex xv is an external vertex chosen
as the localization vertex for the bottom fork F (and hence xv has no ί-dependence).
Then we can estimate Gj;^ in terms of the norm of its kernel:

|G^|^Jί/μ(ί)J^Xι ^κ-ιl^!l;^OI|χκ = o SUP ldxv\Πe(xe(t))\

^||K^||0. (2.40)

By (2.39) the sum over h in (2.34) converges uniformly in I/, i.e. the theory is
UV-renormalizable. At "marginal" C-forks, i.e. a C-fork / with δf = 0, the sum
over hf ^ hπ(f) contributes a "logarithmic" factor hπ(f) and these powers of h can
accumulate. This leads to the following bound on a renormalized graph [1,
Theorem 2.6]:

Corollary 2.6. //Grene^(τ,p),

Σ \Gh^u

n\^cL

Qκ\, (2.41)

where c0 is a constant independent ofU and Gren, L= |^(Gren)|, and K is the number
of marginal C-forks.
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3. Dimensional Regularization of the Effective Potential

We consider the unrenormalized effective potential Vu for QEDd with IR cutoff
7 = 0 and UV cutoff U. Expanding (2.10) as a fps in e we obtain a sum over the
set ^(Vf) of nontrivial, connected, non- vacuum (i.e. there are external legs) graphs
with vertices Vj\

VV = V,+ Σ G",
Ge^(Kj)

where the fermi lines in Gϋ are S[Q<U] and the photon lines are C[0>u\ We let Gυ

v

be the dr version of Gu as defined in (1.10) and we write

vy = <gy(ev>)=VI+ £ G?, (3.1)
Ge^(F7)

where by the symbols on the left we simply mean the fps of graphs on the right.
According to (1.10),

U« = $Kl(x)Π<(xe)dx9 (3.2a)

where

α,x), (3.2b)

where K"(<*9 x) = 0 if α, < M~2V for any /.
The tree expansion (2.19) decomposes each graph by the insertion of χ*(α)'s

and summation over trees τ and scales h. Since this decomposition in α-space does
not interfere with the dr procedure in x-space we can apply dr to (2.19) to obtain
the dr tree expansion

y"=y,+ Σ Σ Σ c;-". <3 3a)
τn.t. G6^(t)fte^f(τ)

where each vertex of a graph in #(τ) is VI9

Gk.υ = lκh

v>
u(x)Πe(xe)dx (3.3b)

and

K^ = fdα/(α)K^(α,x) (3.3c)

with X^(α,x) defined by (3.2b) and χh by (2.17). The main result of this section is
that Kh

v

 u is bounded as if it came from "v dimensions" (see (2.20)-(2.22)):

Theorem 3.1.

\\Kh

v

 υ\\0£c Π MD*G'*h'-h™\ (3.4)
/e^(τ)

The bound (3.4) immediately yields the UV-regularity of Gv for sufficiently
small v:
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Corollary 3.2. For v < 2

Σ \Gh

v'
u\<«>

447

(3.5)

uniformly in the UV cutoff U.

Proof. For any graph G,

DJ(G)= (v-2)Λ-(V-2)-λf/2,

where Λ = L — V + 1 is the number of independent loops of G, and λf = 2(V — Lf)
is the number of fermi legs. Since tryμ = 0 we must have V^ 2; hence DV(G) < 0
unless Λ=09λf = 0 and V = 2. But this is impossible. Therefore Dv(Gf) < 0 in (3.4)
and the sums over hf > hπ(f) in (3.5) converge uniformly in U. Q

Before proving Theorem 3.1 we consider the example of the 4-photon loop
(without the scale restrictions AeJf (τ)),

G =

for which

where » = £ ftZ?, Zv = Xl+l -Xl with X5 = Xl9 and
/=!

where, as in (1.8),

We remind the reader that the y's are Dirac matrices whereas the fs are formal
symbols satisfying (1.5).

To evaluate §dx we apply the rule (1.9). We write

where
(3.6)

Since
(3.7)
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we have
|FH.|gc#/2#/2. (3.8)

Using (1.9) and (3.6) we contract the z's in pairs to produce factors Fw:

~ l , , 3 , t ' ^ 34 -•

Using (1.5) we move the members of a pair f f next to each other, e.g.,

f/ι=-/,T, (3.9a)

where f f = — iβ^ι/2 ± m, and using (1.7) we then eliminate the y 's by

f?* = d-v. (3.9b)

In this way we find that

fd*P*-fi/McJB|)<'-*^

+ (rf-v)2[l,l,U]F12F34 +.-.}. (3.10)

The leading term in (3.10), the polynomial p in x and β, determines the kernel of
the unregularized graph G,

The factor (cx |β|)(d~v)/2 together with Πα/d~v)/2 contributes the factor (cί C/G)(d"v)/2

(see (1.11)). Thus we find that

Here the coefficients c/v) vanish when v = d and the terms p7 (α, x) are polynomials
in x that contain a factor ft,f^ or F/Γ for each line /. All of the above quantities
can be explicitly computed but, as we do not require explicit formulas, we mention
only that for the 4-loop example UG = oq 4- — h α4.

The factor U(£~v}/2 provides the desired UV-regularizing factor, rendering Kv

integrable at α = 0. The additional terms ΣcjPρ which maintain the "v-dimensional
nature" of Kv as required for the Ward identities (see Sect. 5), make the same
power-counting contribution as the leading term p. For we estimate p by the
elementary bound

\P\e-bl*£cl\β}l2e-bl*9 (3.12)
i

each /, in p giving a factor β\12. pj satisfies the same bound, each fl or /~ giving
a factor β\12 and each Fu. a factor (ftjSΓ)1/2 (by (3.8)).

Π βll2e-m2*1. (3.13)
ίeJSf/

Lemma 3.3. For the general graph G of (3.2),

k

Proof. As in the above example, we insert F/ = // — iβ$ι/2 into the definition (1.8)
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of P and integrate the resulting polynomial in z

jdxPe~Bl4 (3.14)

by the rule (1.9). The f s occur in pairs fμ fμ as a result of the contraction of a
pair of z's as in (3.6) or of the contribution δμιvι from a photon line's Δμιvι.
Eliminating the f's by (3.9), we express (3.14) as a sum of terms of the form

*>/2 Π f± Π *ιι Π δμm Π rv, (3-15)

where J*?° a & f with \&f\&°f\ even, »s is a partition of &f\&* into pairs (//')
(corresponding to the contracted pairs z/ and zv\ £?® c J5?fr, i^" <= ̂ , and the
coefficient c(v) = 0 when v = d except in the case of the leading term for which

Estimating (3.15) as in (3.12) and (3.8), we find that its contribution to (3.2b)
is bounded by

But

and so by (1.11) we obtain (3.13). Π

Proof of Theorem 3.1. By Lemmas 3.3 and 2.3,

l e~m^9 (3.16)

where ^ = ̂ -^+1,^ = 1^ )̂1,̂  = 1^ )̂!, and lff = \&f(gf)\. Now if
hf(l) > 0 then

and if Λ/(I) = 0 and /€ Jίf / then

$dalχ
h™(<*l)e-m2*1 = m~2 = cM~2hf(l\

Therefore

|| Kh

v

 u I I o ̂  c Π Aί(vλ'+^- 2ί/)/l/ - c
/ /

from which (3.4) follows by a summation by parts (Lemma 2.1 of [1]). Π

When v < 2 we can remove the UV cutoff U on Kf : as in (3.1) and (3.3)

^ = ̂ 0^+ Gv

= Σ Σ Σ Gί, (3.17)
τ Ge^(τ)heJf(τ)

where the sum over A is convergent by Corollary 3.2.
We next show that for v < 2 dr expectations satisfy a calculus "appropriate to

v dimensions." This calculus will be needed in Sect. 5 for the proof of Ward
identities. First we define the action of <?$.,/= 1,..., V- 1, on products
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p(x)ea'xe~xBx/4

9 where p is a polynomial in x = (xl,...,xv-l) and, formally,

a * ^faf**:
i = l

Jc?: = ̂ '<5lT, dea-* = a*ea'*9 (3.18)

and we extend the action in the obvious way by linearity and the product rule.
The Gaussian integration rule (1.9) can be written

la (3.19)

from which it follows easily that

(3.20)

We write Dx. = (dx.,d^) and

By (3.20), if $Xt is applied to the vertex xt of a dr graph Gv we may replace it by
|>x., i = 1, . . . , V - 1. This replacement is possible for ί = V as wdl, provided that

K-l

we understand that d$ means — d^.v

Let b be a scalar boson line of a graph G with mass mb, endpoints X j and x2,
say, and no UV or IR cutoffs; i.e. b contributes the factor

(4πoLbΓ
d/2e~m^e-(Xί-χ2)2/4^ s k^x, - x2) (3.21)

to the kernel K(α,x) of G = JdαJdxJ£(α,x)7Ie(xe). (There may be cutoffs on the

other lines of G to ensure convergence.) Let G = G/b be the graph G with the line
b collapsed to a point so that G has vertices x2,..., xv, and lines J^(G) = &(G)\{b}
(with X j replaced by x2 when it is the endpoint of a line). If

then since

lim fe(αb, x1 - x2) = δ(xΐ - x2) (3.22a)

we obtain

lim JdxX(α, x)Πe(xe) = J<ίxK(α, x)77e(xe). (3.22b)

We claim that this same result holds for dr graphs:

Lemma 3.4. (δ-function^ Rule) Let b be a scalar boson line (with no cutoffs) of
a graph G and let G — Gib. If the corresponding dr graphs are given by
Gv = $da$dxKv(<x9x)Πe(xe) and Gv = $da$dxKv(oί9x)Πe(xe\ then

lim JdxKv(α,x)/7β(xe) = JdxXv(α,x)77e(xe). (3.23)
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Proof. We assume that G has V > 2 vertices (otherwise (3.23) is trivial) and we
choose xv to be different from the endpoints xx and x2 of b. Referring to the
definition (1.10) we see that (3.23) amounts to

lim 2 J d = f d (3.24)

where P = P and $=
IΦb Xl=X2

. If we expand P = £cm(α)Pw, where
A ι = Λ 2 *^~" ΛI—Λ2 m

each Pm is a monomial Π*2τΠ xΛ» t'ιen cm(α) is independent of αb (since ft is a
r s

boson line) and P = £cmPm, where Pm = Pw |χ1=χ2. Given (3.22), the identity
(3.24) thus follows from

lim (4παb)
(d-v)/2μ*p(*)£Γb> = Jίfίp(ί)έΓί/4,

where p(x) = Y\xfr

r. Now by (3.19)

where cί = (4π)x - ? = (4π)2 - y, and

where a = (52, ,%- iX 5 is the (V- 2) x (K - 2) matrix defined by

(i ifi^l
xBx = xBxl,,, = V Ί , and ί = <1 2 [2 i f i = l

From (3.26) it is evident that the equality (3.25) follows from

lim ab\B\ = \B\

and
lim .β . = B~j .

To prove (3.27), we write

and

Thus (3.22a) implies (3.27). As for (3.28) we have

2δμλBΓ;

l =

(3.25)

(3.26a)

(3.26b)

(3.27)

(3.28)

(by (3.22a))
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We next establish integration by parts identities for dr expectations

<fv(F(x)eW(φ+ ***\ (3.29a)

where -αx/gO, v < 2, F(x) = φ(x) or ψ(x) or ψ(x)yμ\l/(x\ which we apply for
W of the form

W(Φ) = (W, + W2 + W3)(Φ) = f MOM- tf) + a2 + a34(y))^)dy. (3.29b)

As usual, by (3.29a) we mean the sum over connected dr graphs Gv with vertices
F(x), Wl9 W2 and W3. Although #v does not arise directly from an integration over
fields, it nevertheless enjoys:

Lemma 3.5. (Integration by Parts) Let v < 2 and — oo < / ̂  0.

a) ( - i$x + m)^(ιl/(x)ew( φ+ φe>) = -J— <gv(ew< φ+ φe)), (3.30)
δψe(x)

b) «Λ*"(φ+*VM)(i + m) = ̂ <*+^)- (3.31)

c) - idx Vv(ψ(x)yψ(x)ew) = «$(x)--ew - ewj-Mx) (3.32)
V δ\l/(x) δψ(x) J

Remarks. 1. The above identities hold if in addition there is a UV cutoff on the
photon (but not the electron) lines. Because of the IR cutoff /, #v does not satisfy
a simple integration by parts identity with respect to A. ^_

2. The left Grassmannian derivative —=- in (3.30) or the right derivative —
e / * » σ C / eδψ δψ

in (3.31) may be taken inside the expectation and evaluated; e.g.,

«) = ° W( Φ+ φ )

3. An identity like (3.30) can be rewritten as

(3.33)

One might think that (3.33) could be iterated and dr graphs (without photon lines)
could be evaluated completely in terms of unregularized propagators S, i.e. dr
would have no effect! In fact this is true only for graphs without loops.

4. When the 3x's are taken inside the expectations they may, by (3.20), be
written as Dx's. Likewise the $'s in the Wl vertices may be written as |)'s. In this
way we are able to establish the α-space dr version (3.36) of the identity
( — i$ + m)S = (5, upon which the lemma depends.

5. Moreover, by (3.36), if a graph G has — i$ applied to a fermi line / then Gv

is given^ by the sum of the graph with - if replaced by - m plus the collapsed
graph Gv = Gv/ί. Hence the power counting contribution of a Wί vertex amounts
to that of a W2 vertex and so the graphs involved in the lemma are finite
for v < 2.
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Proof, a) Let Gv be a graph contributing to %v(ψ(y)ew). Gv has the form (1.10):

Gv = lda$dXd$Kv(x9 X,

where Y = (y, y) and X includes the other vertices of G. We let / L be the fermi line
joining y to another vertex xl9 say, Zl = Y-Xl9 and βl = βh -a'1. We apply
- i$y + m as - i]/)γ + w to the factors depending on Zl9 namely Fx = - iβl^l/2 + m

de-Bl = e-βlZϊ/4:

A/ι/2 + mK-iβ^/2 -f m)>-*
= (βιV/2-β2

1Z
2

1/4 + m2)e-**9 (3.34)
since

ΓT*=-v and Z^Z^ = -Z\. (3.35)

Including the other factors associated with / t we thus obtain the basic identity

(-φγ + m)e'Λιm2β\f2Fle'fίZ^4=-~e-Λtm2β\f2e-βίZ^4. (3.36a)
da1

Integration over oc1 then gives evaluation at oq = 0. By the ^-function Rule (3.23)
we obtain

where G is the graph obtained from G by collapsing the line /x to a point and

setting xi =y. G is the graph in #v( — = — ew } with the same vertices, legs and
\δψ(y) J

lines (save /J as G. Since -=-ew = — -ew this yields (3.30).
δψe δψ

b) The proof is identical to that of a). Suppose ψ(y) contracts with ψ(x2)
producing a fermi line factor

F2=-iβ222/2 + m, Z2 = X2-Y.

Then, as in (3.36a), we have

= _ e_Λ2m2 _B2

V&2

c) Suppose that ψ(y) contracts with ^(xj and ψ(y) with ψ(x2) producing fermi
line factors F^ and F2 as in a) and b). As in (3.34) we have

F2(β,v/2

= [(-/?2V/2 + /ί^/4-wVι+f2(/»ιV/2^/?

Therefore, as in (3.36a) and (3.36b),

xιm(βj2Yl2e-Bί-B\ (3.36c)
,2 i/

and (3.32) follows. Π
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Finally we observe that dr respects Euclidean covariance. If R = eτeSO(4), where
T is a real, antisymmetric 4 x 4 matrix, let S(R) = ey"Tλσrl4. Then

Rμσy'. (3.37)

Let Gv = JdαjώcKv(α,x)/Iβ(xe) = j</αGv(α) be a graph contributing to <£v(ew(φ+φe})

with W as in (3.29) and Πe(xe) = Π φUxjά where we write φe = (*ί » Φ2> Φ3» Φ4> =
k = l

(Λe, ι/fe, tp, 3^e), the dψe fields coming from the W; -vertices. For αeR4, define

G? β(α) = ί</xKv(α, x) f j (®VR(xjk ~ 4
fc=l

where
(Φe)R(Xj) = (RAe, S(R)φe, φeS(RΓ\ RS(R)d\l/e)(R-1xj).

(In the last component the R acts on d and S(R) on I/'*.) Then:

Lemma 3.6. (Euclidean Covariance) Gf ifl(α) = Gv(α).

Proof. From the fact that Kv(α, x) is a function of differences of the x/s, and from
the relations (3.37), S(RΓlyμS(R) = yμ, and

where fι(zt) = — ί///2α2 + m, it is easy to see that

Gf 'α(α) = JdxXv(α, R- xx) f j Φ^R- ̂ J = Gv(α).

4. Renormalization of the Effective Potential

For 7 = 0 and v < 2 we let δVv be the counterterms appropriate for 4 dimensions.
(Henceforth we take d = 4.) As in (2.32)

where

#c(τ,P) = {ΛIΛπ ( / ) < ft, if />/ = K; 0 g Λ, ̂  Λπ(/) if pf = C and/ > F},

and the value of Gjen v is determined from that of Gj by applying the - L and R
operations of (2.30), where L is given by (2.26) with δ(Gf) = 4 — λb- \λs - q (see
(2.24)). In the application of L and R to a dr graph the variables Xl9...,Xnaτe
interpolated just as x l 5 . . . , xn are in the unregularized graph.

<*3

For example, for the graph G = -£- >• α2 ^ associated with the tree
XjL X2 Xβ

τ =

/2
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the regularized graph is (we omit the integral over α and the factors

where F, = - β^/2 + m9Zί=X1- X29 Z2 = X2-X3, and SI = (^ + jff3)Z? +
/?2Z2. Taking x t as the localization vertex for both Gfl and G/2 = G so that
X2(ί1) = A' 1+ίι(A r2-^ιλ and noting that δ(Gfl)=\ and δ(G/2) = 0, the
renormalized graph corresponding to Gv is given by

where

F2(ί,) = - β2Z2(t,}l2 + m, Z2(f 0 = *3 -

The ^-derivatives in (4.2) produce x as well as x factors via δrιZ2(ί1) = Z1 =
Zi -\-zi. But, just as in the case of the unrenormalized bounds of Theorem 3.1, the
x factors make the same power counting contributions as the x factors (see
Lemma 2.3). In any case, for v < 2 the counterterms δVv are finite (to each order),
coming as they do from finite graphs.

For v < 2, we define the renormalized dr effective potential as in (3.1) by

y = <
* r e n , v

Gv, (4.3)

where &(Vl9δVv) is the set of non-trivial connected graphs with vertices
corresponding to monomials in Vl or δVv and with 2 or more external legs. Applying
dr to the renormalized tree expansion (2.34), we obtain:

Theorem 4.1. (Renormalized Tree Expansion) For I = 0 and v < 2

^.v^ + Σ Σ Σ Σ G?en,, (4.4)
τn.t . p:pF = R Grene^(τ,p)heje(τ,p)

As in the unrenormalized case (3.11),

v(x, ί, x)Πe(χe(t)),

where ί = (t/)/6^(τ) is the set of interpolating parameters, dμ(t) is a positive measure
(see [1. (B.10)]), Πe(xe) is the product of external fields of Gren, and the kernel
Xjeπ v has the form

where ί/G(α, ί) is given by (2.36), Kh

ren is the kernel of Gjen without dr, the kernels
Khj arise from the contractions of £'s in pairs, and the coefficients c (v) = 0 when
v = 4. The factor UG does not involve the renormalization factors 4f (see (2.28)
and (2.29)) and, except for the dependence on ί, depends only on the unrenormalized
graph G which produced Gren.
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The kernels Kj obey the same power counting bounds as Kjen. More precisely,
the bound on K*en (or Xj) contains an unrenormalized factor l/~ 2 (see the proof
of Lemma 3.3) and renormalization factors Y[ M~m/fl/ (see Lemma 2.4). The factors

2 = U-V/2 (4.6)

are bounded by Lemma 2.3, and we obtain

(4.7a)

by summation by parts, where (see (2.22) and (2.24))

δftv = Dv(Gf) -qf = δf + (v- 4)Λf. (4.7b)

Here Λf = Lf— Vf + 1 is the number of independent loops of Gf.
When v < 4 and Λf > 0 then δf v < δf and we have "over-subtracted for v

dimensions." If fe^c the sum of the /-factor in (4.7a) over Q^hf^ hπ(f) = k will
contribute a large exponential factor M~δf>vk to π(/) when δf ,v<0. If π(f)e^R

so that k is summed to oo, it is possible that such exponential factors might upset
the convergence at k = oo. However, the over-subtraction at π(/) compensates for
any such factors and we have much the same bounds as in the case v = d. More
precisely, let τf be the subtree of τ with lowest fork / and root scale fe = /zπ(/), let
Jt?f be the set Jf (τ,p) of (2.31) restricted to the scales [hr\f*zf}9 and let

5/.v(*)= Σ Π

As in [1, Sect. 2] it is easy to prove by induction on / down the tree that

B/t v(fc) ̂  2"λbf(k)M<4 ~ v) Λf\ (4.8)

where

and

If we estimate Σ Gh

ren^v in (4.4) by the bounds (2.40), (4.7) and (4.8) with / = F

we obtain: h

Theorem 4.2. For Re v ̂  4

c0 is independent o/Gren αnrf K is ί/zβ number of marginal C- forks.

Remarks. 1. The constant 1 + Σ l c j l may be quite large (~(L!)α where α>0),
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corresponding to the number of ways of contracting the z's of dr. However, since
Cj(4) = 0, this large number is irrevelant at the physical value v = 4, where we have
the bound on Gj*en = G^en 4:

Jgφd. (4.10)

2. The factor κ\ in (4.9) and (4.10) is the expected "renormalon" contribution to
Gren[H].
3. The tree representation (4.4) for Kren v together with the bound (4.9) display
K r e n v as an analytic function of v for Rev<4. For each GjC Π t V is obviously an
entire function of v, its v-dependence being contained in the factors
£/G(α,ί)(4~v)/2,jβ^? and the polynomial in v generated by the contraction of z's.
The convergence of Σ uniformly in v for Re v ̂  4 then implies that the fps Kren v

is analytic for Re v < 4. Notice that this conclusion did not entail an analysis of
the meromorphic structure of Vv as a function of v, but only the knowledge that
the renormalization cancellations in Fren v remove the divergences in Vv for all
Re v < 4.

We conclude this section with an outline of how to remove the IR cutoff /.
For full details see [1, Sect. 6]. As in (2.9), the photon lines are decomposed into
slices with scales /ι/^/; we refer to the region hf<0 as the "IR region." We
decompose the localization operator as L = L° + L+, where L° produces "marginal
counterterms" with δf = 0 and L+ produces counterterms with δf > 0. Since we
do not wish to introduce marginal counterterms into bV\ in the IR region, we
generalize the definition (2.30) of the R and C operations as follows: at / > F

R = χ(hf>hπ(f})(l-L) (4.1 la)

and

C = - χ(hf ^ hπ(f))\_L+ + χ(hf ^ 0))L°] + χ(hπ(f] <hf< 0)L°

Ξ C _ + C + , (4. lib)

whereas at F (the root scale is hπ(F) = I — 1)

R = χ(hF > hπ(F))ll -L+- χ(hF ^ 0)L°] (4.1 Ic)
and

C = C_. (4.1 Id)

Each /e^(τ) now bears a label pf = R, C_ or C+ and the scales attached to
τ, p run over the set

^(τ,p) = {h\hπ(f)<hfi{pf = RorC + ιhf^hπ(f}i{pf = C_}. (4.12)

The value K'(τ,p,/z) of a labelled tree is defined as before and may be expressed
in terms of renormalized graphs

Kί(τ,p,Λ) = Σ G^v, (4.13)

where Gj;^>v = 0 if hf < I for any /. We define the counterterms as in (4.1):

<^= Σ Σ Σ , Σ ,Gf;U (4.i4)
tn.t. p:pf = C- Grenε^(τ,j
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where tfc is defined as in (4.12) except that the root scale is hπ(F) = oo. For v < 2
and — oo < / g 0, the effective potential K'en v, defined as in (4.3), is given by the
following generalization of the tree expansion (4,4):

V\m.,= Vι+ ΣΣ Σ Σ Gj ί,,, (4.15)
τn.t. p Grene&(τ,

Now for /> — oo fixed, we know from our UV analysis that the sum over h
in (4.15) converges for Re v ̂ 4. The issue is whether the convergence is uniform
in /. Our strategy for bounding G^n v when 7 = 0 turns out to be inadequate for
two reasons: 1) In the IR region, a bound like (2.40) involving ||Kj;^v||0 is too
crude in the sense that it permits too many integrations of x/s over all of R4. 2)
The renormalization operation (2.28) can be harmful if hf<Q: a coordinate
difference Δ produces a bad factor M~hf which will not be compensated for by a
factor MM/) if the associated d acts on Π e.

The improved IR strategy of [1, pp. 99-101] was to rewrite the tree expansion
by pulling apart the operation R = 1 - Lat certain forks fε^R(τ) to yield a "1-fork"
and an "L-fork". This separation is performed, starting at the bottom of τ, for
each /e^R(τ) such that hf < 0 and such that there are some external endpoints
above / and only 1-forks below /. Let &enu(τ) be the set of 1-forks produced by
this separation procedure. By construction, if/eJ%πu and/7 </ then/' eJ%Πtt. At
a fork fe^en one then takes advantage of the fact that gf has ve

f > 0 external
vertices which need not be integrated over all of R4. This produces an improvement
factor

Π M4/I^-1} (4.16)
/e^βnu

over the bound using the L1 norm || ||0.
Can this strategy be combined with the estimation techniques of this paper

which rely critically on the cancellation (4.6) between the dr factor U(£~v)l2 and
the factor 17 ~2 arising from the bound on ||JtJen |lo? Yes, but we do not wish to
repeat the entire analysis of [1] here; we shall demonstrate only how the factor
(4.16) is extracted in a way consistent with the cancellation (4.6).

We can always arrange that given fe^enu there are ve

f external vertices xe

f in
gf which are independent of ί; e.g., choose these vertices as localization vertices
of the graphs G//,/' > /. Then they are independent of ίr,/' > /, and, since fe^enu,
they do not acquire any dependence on tf,,f'^f. Let jc = {x/l/eJ^}. By
construction, xvex. Instead of the bound (2.40) we use

sup ldxy^'*\Π (x*(t))\

-dxy^e-^lK^l \Xy,0. (4.17)
ί

Equation (4.17) holds since each x}ex occurs as an argument of Πe without any
ί-dependence.

We estimate the norm of the kernel in (4.17) by the same procedure as before.
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In addition to the usual factors from fermi lines and renormalization operations,
and the dr factor l/£~v)/2, we obtain the modified factor

U~2 = cβ2$dxe-™^\Xv = 0, (4.18)

where G is the graph G augmented by additional lines (of strength α^ = 1) pinning
the vertices of x to 0. Instead of (4.6) we have

U%-V)/2U~2^U~V/2. (4.19)

Uft2 obeys a better IR bound than U^2. The proof of the bound (2.37) on
UQ is based on dropping lines from b(t) to leave a tree T connecting G; each leT
then contributes a factor αf = M~4hf(l) to the integral in (2.36) - a bad factor in
the IR region. By dropping lines from T and replacing them by the additional

pinning lines of G to form a tree connecting G, we obtain the improved bound

l / ~ v / 2 g c Π MvhW-u γ[ Mvλ'hf. (4.20)
fe&enu fef

In this way we can extract the improvement factor (4.16) without disturbing
the bounds needed for the UV analysis. Now to carry out the IR analysis of [1]
we need the full improvement factor, i.e. with v = 4. Accordingly, we first take v -» 4
(with UV convergence guaranteed by Theorem 4.2), and then we take / -> — oo
(with IR convergence guaranteed by Theorems 6.5-6.7 of [1]).

5. Ward Identities

For fixed v < 2 and IR cutoff / g 0 we investigate here the form of the renormalized
effective potential Kfen v of (4.3) and the counterterms δV*v of (4.1). (We shall omit
the superscript / if there is no confusion.) By Corollary 3.2 we know that the order
en contribution δVvn to δVv is finite, and, by Lemma 3.6, that it is Euclidean
invariant. A priori we do not know that δVv respects gauge invariance. Thus δVyn

consists of finite, local, Euclidean invariant terms of dimension ^ 4; i.e., it has the
form

dnF
2ldx + δWn(A\ (5 la)

where

F2 = FμλFμλ, Fμλ = SμAλ - d λAμ,
and

δWn(A) = - \[_en(d'Af + fnA
2 + gnA^dx. (5.1b)

n

We say that (5 Fv ,^π= X δVv khas gauge invariant form if δWk = Q fork -^ n and if
k = 2

C2 = 0> ck = eak-ι f°Γ k = 3,...,n. (5.2)

Equation (5.2) is the ttZ1 = Z2" condition.
n

We let a^n = £ αk, etc., απ = 1+ α^, and δn = <*„/<*„- 1. Note that
k = 2

. (5.3)
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Let Ln be the part of the localization operator (2.26) which produces nth order
terms, L° the part of Ln which produces marginal terms, etc. We introduce the
effective potential at scale — 1,

)(g(i'ι+δFv)<φ0 *> + Φβ)\ /5 4\

obtained by regularizing the graphs contributing to ^>[0'00); the effective potential
renormalized up to order n,

V, = <ev(ev' + Λy»* ϊ (5.5a)

and the effective potential at scale — 1, renormalized up to order π,

F- l iB = ̂ '«>(eK' + *K^»). (5.5b)

K_! has a tree expansion like (4.15) where the root scale is hπ(F} = - 1. If we
apply L° to this expansion, the graphs with pF = C_ drop out because L°C_ = 0
(see (4. lib)), and we obtain

=L 0K 7= -ef^MV'ώc. (5.6a)

Applying L+ to (4.15) we obtain

^Kren,v = 0. (5.6b)

The relations (5.6) are the renormalization conditions of the tree expansion:
dimensionless parameters are fixed at scale - 1 (corresponding roughly to external
momentum of order 1) and parameters with nonzero dimension (such as mass)
are fixed at scale / - 1 (corresponding to zero external momentum in the limit
/-»-oo).

If we apply Lπ

+

+1 (with n > 0) to (4.3) (with general /) we obtain

L:+IV^=L:+IOVV+L:+I Σ GV, w*)
since vertices in δVVt>n cannot contribute to order n+ 1. Similarly if we apply
L°+ 1 to V_ ! we obtain

^1^-1=^1^ + ̂ -̂!,,, (5.7b)

A comparison of (5.6) and (5.7) yields:

Lemma 5.1. For v<2, — oo < / g 0, and n > 0

δV^^-L^V.-L^V.^, (5.8)

L+Vn=-L^ίδVv + 0(e'l+2), (5.9a)

L°K_ l ι B= -etfeAeψedx-L°n+lδVv + 0(en+2). (5.9b)

The following Ward identity is a first order version of Lemma 4.2 of [1]:

Theorem 5.2. Suppose v < 2 and — oo < / ̂  0. // δVv^n has gauge invariant form
then Vn and V-\^n each satisfy the identity

Tϊπ S(y' X}{S~ ' ̂ e)(x) - (^ ~ 1)(X)S(X' ̂ ι4^e(y) δψe(y)

(5.10)

ie$dy Γ κ«I
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where ψe*S~l = ψe(iji + m) = id-\j/eγ + mip.

Before proving the theorem we note that it implies:

Corollary 5.3. Suppose v <2 and — oo < / ̂  0. If δVv ^n has gauge invariant form
then so does <5F v n + 1 . Consequently, δVv has gauge invariant form.

Proof. Consider the quadratic term

Qn=lQμM(Xl-X2)AμάXl)Aμ2(x2)dXldx2

in Vn. By (5.9a) and (5.1b)

(X)Aμ2(X) = fn + ̂ A2dx. (5.11)

Setting \l/e = ψe = 0 in (5.10), we obtain

*WO,0)

* δAe(x)

which implies

SQμιμ2(y-x)3μ2Aμί(y)dy = Q. (5.12)

Choosing Aμι(y) = yμι we conclude from (5.1 1) and (5.12) that fn+l = 0.
Similarly by considering the quadratic term in F_M04,0,0), applying L° and

choosing Aμ2(y) = yμ2yσyλ we conclude from (5.12) that en+l =0. Applying L° to
the quartic term in K_ ltn(A, 0, 0) yields the conclusion gn+ 1 = 0. Hence (5^+ ! = 0.

We next consider the bilinear term

)B(Xl - X2)ψ(x2)dx1dx2

and triliftear term

n = x ι μ X l - x2, x2 -

in F_ 1 > π. By (5.9b) and (5. la)

LQBn = $ψ(x)B(-y)ydψ(x)dxdy = -an+ltfi$ψdx + O(en + 2 ) (5.13)
and

L°Tn = SΨ(x)Tμ(y,z)ψ(X)Aμ(x)dXdydz

= (-e + cn + 1)$ψAψdx + 0(e" + 2). (5.14)

As for the positive dimension part L+Bn of Bn, we cannot invoke (5.9a) which is
a normalization condition at scale / — 1, but at least we can say by Euclidean
invariance (Lemma 3.6) that for some constant b

L+Bn = IΦ(X)B(y)ψ(X)dydX = b$ψ(x)ψ(x)dx. (5.15)

We pick out the bilinear terms in (5.10) for K_M and set ψe=l and
Ψe(x2Ϊ = (X2 - x)<τ The term on the right gives - ef. The first term on the left gives

δn$dXμTμ(Xι ~ x2>
 X2 ~ x)(x2 ~ *)σdx1dx2 = δn\Tσ(y,z)dydz

= δn(-e + cn+,)y* + 0(en+2)

by integration by parts and (5.14). The second term on the left gives

ί - y)S(y9 x)( - iyσ) - m$dx2S(x, y)Bn(y - x2)(x2 - x)J. (5.16)
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Using (see (5.15) and (5.13))

$dxlB(xi) = b, $dx2B(-x2)(x2)ff=-an+1iγ
σ,

9y) = m-\ $dyS(x,y)(y- x)σ = -im~2f,

we compute that

(5Λ6) = ie[-bm~1iγσ + an+ίiy
σ + im-iγσb]

Hence we conclude from (5.10) that

and from (5.3) we deduce that cn+i=ean. Thus δVVtU+ί has gauge invariant
form. Π

Remark. The above proof corrects an oversight in the proof of Theorem 7.2 of
[1], namely a failure to control the positive dimension part L+ V_ltΛ.

Proof of Theorem 5.2. We discuss only the case of Vn since the proof of (5.10) for
K_ 1>π is identical. Like Kπ, F_ 1>n has its fermi fields integrated out at all scales and
so we may "integrate by parts" with respect to ψ, ψ. This is the key step in the proof.

Since δVv ^n has gauge invariant form

We generate formulas for functional derivatives of Vn(Φe) = ̂ v(eIn(φ+φe}) from
the corresponding formulas for functional derivatives of the effective potential
[log(^L/(e/rι)]0 in which the graphs are not dr (although /„ as given by (5.17) is still
v-dependent) and a UV cutoff U is imposed for finiteness. (This cutoff is then
removed in the formulas for Vn.) In terms of the notation

we have, for example,

δA μ(x)

= - < eαn _ ! (ψ

+ 4dSn(dχl.δx (A + A')(x) - d2

x(Aμ + Λp(x))>v, (5.18)

where, according to (3.20), the derivatives on the fields A may be taken as dx or
Dx. When we apply the derivative dχf to (5.18), the second term on the right is
eliminated. Thus

δV - -
Άe)>v (5-19)
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Next we compute that

ϊ - δ
V - ψe__ψe y

δψ* Ψ δψ*

+ (Φ + Ψe)WΊ

e*n-Me(4 + 4eW^

From (5.19) and (5.20)

(5.20)
δψ

δAe

δψ

Applying Lemma 3.5a)-c) to the first term on the right to "integrate the ψ and ψ
by parts," we obtain

0

δAe(x)
V

,y)-^δψe(y) δ\l/e(y) JJ

(5.21)

Equation (5.10) follows from (5.21) and the identities

$xS(x, y)=- imS(x, y) + iδ(x - y)

and
S(x, y)Jx = imS(y, x) - iδ(x - y). Q

The coefficient δn ̂  1 occurs in the Ward identity (5.10) because the effective
potential Vn has been renormalized up to order n only. Clearly the fully
renormalized effective potential Fren v satisfies, for v < 2,

= -ed-ψeyψe. (5.22)

But by Remark 3 following Theorem 4.2, Fren>v is an analytic function of v for
Re v < 4. Hence (5.22) analytically continues from v < 2 to Re v < 4 (the identity
(5.10) does not continue since δn and Vn are not defined for Re v ̂  2):

Corollary 5.4 (Ward Identity). For Re v ̂  4 and - oo ̂  / ̂  0, Vrent „ satisfies (5.22).

It is amusing to examine the Ward identity for some simple graphs contributing
to ^ren,v in order to see the role of the "extra terms" in a dr graph. The vacuum
polarization graph



464 L. Rosen and J. D. Wright

GVP

had dr kernel

Kμιμ2(a,x) = cβlβ2

2e-m2λλ2-v/2 trCΛy^Λ^2 + (4 - v)yμίyμ2Fl2]e'b/\

where λ = UG = o^ + α2, Λ - - iβ^/2 + w, /2 = iβ2//2 + m, z = x2 - χl9 F12 = —
.Z/ί

and b = (β1 + β2)z2. Evaluating the traces, we compute that

K^2(α,x) = cβ2

ίβ
2

2e-m2λλ2~vl2[βiβ2(2zμιzμ2 - δμιμ2z2) - 4m2δμιμ2

+ 2(4-v)λ-lδμιμ*]e-bl*. (5.23)
Using

c(βl + β2Γ
2 and z2

it is easy to see that all terms in (5.23) have norm |( ||0 bounded by cλ~1~v/2e~m2λ

and so are integrable with respect to α when v < 2.
The "extra term" 2(4- v)λ~1δμιμ2 in (5.23) is required for the Ward identity

da1dx2dzμ2K
μ>μ2(a,x) = V. (5.24)

o o

To see this we compute that

= -«*'(3.Λ + d.Λ)β~"2^2~v/W|β"*'* (5.25)

Equation (5.25) is a sum of perfect α-derίvatίves and integrates to 0, verifying (5.24).
As a consequence of (5.24) the corresponding mass counterterm

L+ GVP^ = ίdαμxK^Mμι(x2μμ2(x2) = 0 (5.26)

for v < 2.
The validity of the Ward identity (5.22) at v = 4 and / = - oo is our guarantee

that the renormalization has been carried out in a gauge invariant way. Note that
for the Ward identity to hold, the free photon measure need not be gauge invariant,
but δVv(Φ + Φe) must not contain the gauge variant terms (5.1b). Strictly speaking,
for this assertion to make sense, we must keep v < 2 and / > - oo so that the
terms in 3VV9 as defined in (4.1), are all finite.

For QED4 it is possible to make such an assertion for v < 4 provided we keep
an UV cutoff Up < oo on the photon lines (but not on the electron lines) as well
as an IR cutoff / > — oo. To analyze the situation we apply the power counting
of Theorem 3.1 to the terms in (3.17) except that we bound the /Γs of the photon
lines by βt ^M2Up. The degree of divergence DV(G) of a graph then contains no
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contributions from photon lines (compare with (2.22)):

Dv(G) = (v-l)Lf-v(V-l) = v-V-^-λf. (5.27)

As in Theorem 3.1 we have the bound on the kernel of Gj'Up,

ιι^ί' ί /piio^^^p)ΠM5v(G/)( f l /"/ lπ(/))' (5 28)/
where the constant c(Up) depends on Up.

For v < 4, DV(G) < 0 except for the vacuum polarization graph for which
DV(GVP) = v - 2. It follows from (5.28) that for v < 4,

Σ | G h Λ l < o o (5.29)
/jeJf(τ)

(with a bound depending on / and Up) unless G contains the subgraph Gf = GVP,
Accordingly, we (partially) renormalize GFP, replacing it by

RGVP^ = (I- L+)GVPtV = f dαJdx/C^ία, x ) ( A μ ι ( X ί ) - Aμι(x2))Aμ2(x2}. (5.30)

For v < 2, RGVPγ = GVPv by (5.26), but the advantage of the representation (5.30)
is that it extends (as an analytic function of v) from v < 2 t o 2 ^ v < 4 .

We similarly extend (4.1) and (4.3): δV^p is defined as in (4.1) except that in
the sum over Gren we exclude the VP mass graph (5.26); Vυ

r^ v is defined as in (4.3),

V^=vι + δV"p + Σ RGU

V*, (5.31)
Gef4(Vι,dVVp)

where R renormalizes every 2nd order VP subgraph of G as in (5.30), and only
those subgraphs. By (5.26),

and

^.'n.v=^ePn.v (5.32b)

for v<2, but, by the power counting (5.27H5.29), δVυ

v

p and V^v extend
analytically to v < 4. Now we know that the fully renormalized tree expansion
representation for K^ v extends to v ̂  4. Hence the equality (5.32b) extends to
v<4.

We conclude that for v < 4, - oo <J <; 0, and 0 g Up < oo V^p

n v is given by
(5.31) where the (finite) counterterms δVu

v

p are of gauge invariant form by virtue
of the Ward identity argument of Corollary 5.3.
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