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Abstract. Asymptotic expansions of renormalized Feynman amplitudes in limits
of large momenta and/or masses are proved. The corresponding asymptotic ope-
rator expansions for the S-matrix, composite operators and their time-ordered
products are presented. Coefficient functions of these expansions are homoge-
neous within a regularization of dimensional or analytic type. Furthermore, they
are explicitly expressed in terms of renormalized Feynman amplitudes (at the
diagrammatic level) and certain Green functions (at the operator level).

1. Introduction

Thirty years ago Weinberg described the leading large momentum behavior of
Feynman amplitudes [44]. Logarithmic corrections were characterized by Fink
[20], and Slavnov [32] proved that the large momentum asymptotic expansions
are always performed in powers and logarithms of the expansion parameter.
Recently Hurd applied the three expansion renormalization method (see [24] and
references therein) and analyzed the large momentum asymptotic behavior in
the coordinate-space language in terms of short-distance expansion of Feynman
amplitudes GΓ(xi,X2,- ) at xi —• X2

In papers [4-6, 18, 25, 30] asymptotic expansions in various large momentum
limits were obtained. A typical result is the expansion of a Feynman integral

where Q(q) are large (small) momenta. However the coefficient functions C^i in
these papers are rather cumbersome. For instance, they are expressed in terms of
numerous parametric integrals [4] or in terms of Mellin integrals [5, 6, 18, 25, 30].
At least, they are not naturally associated with renormalized and/or regularized
Feynman amplitudes.
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Some time ago, the situation for operator asymptotic expansions was reversed
in its character. For example, coefficient functions of Wilson expansion [45]

TMx + Qξι)Ji{x + ρξ2)
 e ~°X QiQξuQξiWάx) (1.2)

were naturally expressed by Zimmermann [50], and by Anikin and Zavialov [2,
3, 46], in terms of Green functions of composite operators J\ and Jh (here [Θi]
is a basis of composite operators). However this expansion is not in powers
and logarithms of the expansion parameter ρ because the coefficient functions
QiQζuQζi) depend on it nontrivially. This is the reason why Zimmermann's
method was not really applied at the diagrammatic level. On the other hand,
the above mentioned results on the expansion (1.1) were never generalized to
the operator level since the corresponding coefficient functions are not naturally
characterized as Green functions of composite operators.

In a number of papers [9, 11, 12, 21-23, 26, 29, 36, 37] the asymptotic
expansions with two desired properties were derived both at the diagrammatic
and the operator level. In particular, at the diagrammatic level, the coefficients
Ck,ι are renormalized (or R*-normalized - see below) Feynman integrals. In turn,
the corresponding operator expansions, e.g. (1.2), are in powers and logarithms
of the expansion parameter and the coefficient functions are Green functions of
composite operators. However these results have not been analytically justified.
For example, in papers [21, 29] the authors implicitly assume the validity of
some asymptotic expansion which serves as a starting point of combinatorial
manipulations. Furthermore, in asymptotic expansions of Refs. [21-23, 26, 29]
there is no explicit infrared (IR) flniteness. An alternative approach - the method
of glueing [9, 11, 12] - is based on the existence of some asymptotic expansion.
Note also that in the textbooks by Collins and Muta [17, 29] the proof of the
expansions is substituted by lower order arguments.

The main purpose of this paper is to prove asymptotic expansions in limits
of large momenta and/or masses with both above mentioned properties: the
expansions are in powers and logarithms, and coefficient functions are written as
renormalized Feynman amplitudes (at the diagrammatic level) or Green functions
of composite operators (at the operator level). We shall apply a straightforward
generalization of the method of Zimmermann, Anikin and Zavialov [2, 3, 46, 50]
that is based on pre-subtractions in certain subgraphs. This procedure removes
the ultraviolet (UY) divergences which are generated in the limit under conside-
ration. However we define the pre-subtracting operator that provides the desired
properties of the expansions. It is this technique that was applied in Refs. [36,
37] to derive the expansion of the effective action of low-energy theory in inverse
powers of the heavy mass and the Wilson expansion for a product of several
composite operators.

To derive the asymptotic expansions in limits of large momenta and/or masses
it is natural to use the minimal subtraction scheme [7, 41] within the dimensional
[42, 7] or analytic [40] regularization. It is also possible to derive "simple"
asymptotic expansions in other renormalization schemes. If one wants, however,
to provide the two basic properties of the expansions, then it is natural to turn
to expansions with composite operators renormalized in the minimal subtraction
scheme or its analytic generalization.
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We shall derive asymptotic expansions in two forms. In the first form, some
terms in the expansion may be divergent. To show that the divergences are cancel-
led we shall use the second form of the expansion where the coefficient functions
are explicitly finite due to the R* -operation [13-15] which is a generalization of
the dimensional renormalization when both ultraviolet and infrared divergences
are involved. In fact, the JR*-operation removes here the IR divergences that are
induced by "naive" Taylor expansions of Feynman integrals around zero values
of small momenta and masses.

In the next section we introduce definitions and notations relevant to Feyn-
man graphs, amplitudes, integrals, and to the jR-operation. We use the analytic
renormalization in the style of the dimensional one: instead of Speer's evaluator
which performs the renormalization and, at the same time, removes the regula-
rization [40], we imply the recursive insertion of counterterms and do not remove
the regularization to the very end.

In Sect. 3 diagrammatic expansions are derived, using Zimmermann identities
[48] which connect the initial renormalization and an appropriate pre-subtracting
procedure. In Sect. 4 these asymptotic expansions are written in the explicitly fi-
nite form. Section 5 contains the main result of the present work - a proof of the
asymptotic estimate of the remainder. This proof is based on the α-representation
technique. The corresponding asymptotic expansions at the operator level are de-
rived in Sect. 6. The key method for this purpose turns out to be the counterterm
technique of Anikin and Zavialov [1, 46] generalized to the case of Lagrangians
and composite operators without normal ordering [39]. It is this technique in
which operator Zimmermann identities are naturally written. Finally, in Appen-
dix, integrands of α-representations are described and corresponding factorization
formulae are listed.

2. Renormalized Feynman Amplitudes

Let Γ be a connected graph with L lines and V vertices. The corresponding
dimensionally regularized Feynman amplitude is written as

GΓ(£,m;ε) = (2π)dδ{d> ( ^ qλ F Γ ( £ ,m;β), (2.1)

where Fr{q,m\έ) is a dimensionally regularized Feynman integral depending on
masses m = (mi,... ,mL) and external momenta £ = (#1,... ,#jv-i)> and d = 4 — 2ε
is the space-time dimension. The Feynman integral may be formally represented
as an integral over loop momenta. It is unambiguously defined in terms of the
α-representation [7, 46]

GO

dcdr (q> ΐϋ> oc ε ) , If — IΓ

 e x P f ^ m ? α / I ?
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Here Z/(p/) is the numerator of the propagator of the /th line (it is implied
that vertex factors are included in Z\ which are supposed to be homogeneous
polynomials with degrees n\) 91 = L — V + 1 is the number of independent
circuits (loops), and A, B, K are standard polylinear forms (see the Appendix).

To define the dimensional regularization we regard the parameter d in (2.2) as a
complex number. Moreover, monomials in qi and u\ which appear after the action
of operators Zι(—id/dui)9 as well as the metric tensor gμv, are regarded as elements
of the algebra of covariants where, in particular, one has [d/duμ)u], = gv

μδw9

gμ

μ = d. Furthermore, this algebra includes, if necessary, the y-matrices, the tensor
£κλμv etc. The algebra is characterized by the basis in which any element is
supposed to be uniquely expanded. In other words, an element is transformed
into the "normal form" - see detailed definitions in [7]. However, in the present
work an explicit construction of such a basis is not essential.

Thus, any dimensionally regularized Feynman integral is defined by Eq.
(2.2). It is a sum of tensor monomials which are built from external momenta
multiplied by functions of scalar products gzg,. If all masses m\ are non-zero
then, at sufficiently large Reε, the α-integral (2.2) is convergent. At other values
of ε it is understood in the sense of analytic continuation. In case of zero masses
one cannot always find a domain of complex values of ε where the α-integral
would be convergent, if both UV and IR divergences are involved. Then, to
define dimensionally regularized Feynman integrals it is convenient to introduce
the analytic regularization by inserting the factor Y[ aλι into the integrand of the

α-representation (such analytic regularization coincides with the "standard" one
[40] up to a trivial product of Γ-functions). If there is a massless detachable
subgraph (i.e. with zero external momenta) the Feynman integral is equal to zero.
For a graph without such subgraphs, there is a domain of parameters (ε, λ) where
analytically and dimensionally regularized α-integral is absolutely convergent. It
turns out to be a meromorphic function of (ε, λ), and the dimensionally regularized
Feynman integral is defined through analytic continuation to the point (ε,0) [38].
An alternative definition of dimensionally regularized Feynman integrals is based
on the use of Mellin transformation [19].

In the framework of the dimensional regularization one may regard Feynman
integrals as tempered distributions when the regularization is not "completely"
removed, i.e. when the momenta are considered as four-dimensional objects and
the regularization parameter d is not yet equal to four. However this procedure
seems unnatural. For instance, it is sensible to consider, at d φ 4, the "formal"
d-dimensional Fourier transform rather than the "true" Fourier transform that
is always uniquely defined for any tempered distribution. Thus, in what follows,
we shall imply that dimensionally regularized Feynman integrals are regarded in
the domain of non-exceptional Euclidean momenta where (qiγ + qh -f... ) 2 < 0
for any subset of indices i\9 z*2,

We shall define an analytically regularized Feynman integral as a Feynman
integral with one analytic regularization parameter: it is obtained by the analytic
continuation to the point λ = (λ\9... 9λι) with λ\ = λ for / = 1,... ,L. As in
the case of the dimensional regularization, a massless Feynman integral with
zero external momenta is equal to zero. An analytically regularized Feynman
amplitude is also naturally understood as a tempered distribution. It can be
defined in terms of the α-representation
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GΓ (£, m λ) = (2π)4δ ί ]Γ qλ f da J | a\lΓ {qy m, α). (2.3)

When proving the estimate of the remainder of the asymptotic expansion we
shall use the α-representation (2.3) and various "mixed" representations which
are obtained from it by the Fourier transformation with respect to a part of
momenta. This representation looks like [33, 35]

(2.4)

[] Zt-
M=0

Here Γx is the graph obtained from Γ by adding an extra vertex vx which
A

is connected by extra lines (they form the set J£x) with vertices considered in
coordinate space. Explicit formulae for a part of polylinear forms in (2.4) are
listed in the Appendix. Note that a Fourier transform in a part of the variables
is denoted, for brevity, by the same letter withouth tilde.

As it was proved in [34, 35], both in dimensional and analytic regularization
it is possible to perform explicitly the above mentioned analytic continuation
procedure, respectively, to the points (ε,λ) with λ = 0 and λ with λ\ — λ,
I = 1,... ,L. To do this, it is necessary to insert into the α-integrand an operator
that has the structure of the R* -operation.

In theories with normally non-ordered Lagrangians the JR-operation is based
on subtractions in all divergent one-particle-irreducible (1PI) subgraphs:

(2.5)

Here the sum is over spinneys of Γ consisting of divergent 1PI subgraphs. A
spinney [8] is a set of pairwise disjoint subgraphs. Counterterm operations are
defined by the following recursive relations:

j l, if se = 0
I Π ^ (VOJ if y — {y •> J yl5 } >
v i

where

A<y) = \-M'IR» i ΐ y i S m (2.7)
UJ \ 0, otherwise v ;

are counterterm operations for subgraphs, and My is some subtraction opera-
tor that specifies a renormalization scheme. A resolution of recursive relations
(2.5)-(2.7) is given by the forest formula [47, 48]

- M ? ) > ( 2 8 )
F yeF
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the sum taken over forests (sets of non-overlapping subgraphs) consisting of 1PI
subgraphs.

The minimal subtraction scheme [41, 7] is defined by the subtraction operator
which picks out the singular part of the Laurent expansion at ε = 0. The action
of the counterterm operation Δ(Sf) = A(γ1)... A(yk) on a Feynman integral FΓ

reduces, in this case, to inserting polynomials ^y«, with degrees ω(yι) in masses of
subgraphs yι and their external momenta, into the Feynman integral FΓ/y for the
reduced graph Γ IU f [16]. Here ω(y) = 49t(y) - 2L(y) + n(y) is the UV-degree

/ i
of divergence where n(y) = Σ n\ is the total degree of propagators' numerators

ley

of a subgraph y, 9l(y) is the loop number, and L(y) is the number of lines.
Coefficients of monomials in έ?γ are represented in the form Σ α, ε 7.

Let us analogously define the analytic renormalization using the subtraction
operator that picks out the pole part of the Laurent expansion at λ = 0. In
this case, analytic counterterms ^ R are linear combinations of poles in λ. As
in the case of the dimensional renormalization, let us call a Feynman amplitude
analytically renormalized if the regularization is not yet removed, i.e. for λ φ 0.

3. Diagrammatic Asymptotic Expansions

At a fixed energy scale some masses and momenta of a Feynman amplitude
are considered to be large. Generally, the momentum flowing into an external
vertex of a Feynman graph is written as the sum Qt + qt of its large part Qi
and small part q\. Similarly, the masses are subdivided into heavy (large) masses
M = {Mi 11 G £?M} and light (small) masses m = {m/11 G J£m}, and the set <£ of
lines of the graph is represented as the union of subsets of heavy and light lines
&M and sem.

A limit of large momenta and/or masses of a Feynman amplitude is charac-
terized by a specific subdivision of masses and external momenta into large and
small ones. The large and small momenta satisfy the momentum conservation law
Σ Qi = 0> Σ 4i = 0 I n general, a limit may be defined with exceptional momenta,

i i

i.e. certain conditions of the type Σ Qi = 0 m a y ^ e imposed for some sets ^. The

momenta may be also "essentially exceptional" when these sums are equal to zero
for overlapping sets c€. The simplest example of such a limit is given by the equa-
lities Qί=Q3 = -Q2 = -Q4 when Qx + Qi = βi + QA = Qi + βs = Qτ> + QA = 0.

We define the asymptotic behavior of Feynman amplitudes GΓ(Q,q,M.,m) in
the limit of large momenta and masses in terms of the asymptotic behavior of
Feynman integrals FΓ(Q/ρ,g,ML/ρ,m) for ρ —• 0. We shall consider two cases.
First, the Feynman amplitude may be regarded as a tempered distribution in β.
Second, the corresponding Feynman integral may be regarded as a function in the
domain of Euclidean non-exceptional momenta. In particular, in the framework
of dimensional regularization we shall always imply the latter case. As to the small
momenta q, they are always supposed to be Euclidean and non-exceptional. Note
that for the Fourier transform of a tempered distribution F G y ' (R") one has
F(ρx) = ρ~nF(Q/ρ). Thus, the asymptotic behavior to be considered is uniquely
connected with the small distance behavior which is understood in terms of the
limit F(ρx) at ρ —> 0. Note that if auxiliary exceptional restrictions are imposed
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then one may also consider the Feynman amplitude as a tempered distribution
or as a function.

To derive the asymptotic expansion of a Feynman amplitude in the given
limit let us apply the method [2, 3, 46, 50] that reduces to the construction of
the remainder of the expansion. This remainder is nothing but the initial Feyn-
man amplitude renormalized in a special subtraction procedure. Such "auxiliary"
renormalization is constructed not only to remove UV divergences but also to
provide a zero of sufficiently large order in the expansion parameter. Conse-
quently, the terms of the expansion result from the difference between initial and
auxiliary renormalizations. To transform this difference into a sum of terms of
asymptotic expansion one may use the Zimmermann identity [48-50]

Π Wy ~ Mr) % > P 1)

the sum running over non-empty spinneys of Γ. Here RΓ and $r are the R-

operations based, respectively, on subtraction operators M and Jί, 01 τ ^ =

Σ Π (—Λϊγ)> a n d t n e symbol F~ST means that Vy e F, y' £ Sf one has y g /
F y γeF
or φ(Λy' = 0. Note that in practically all important cases the action of subtraction
operators reduces to the contraction of subgraphs to points and to the insertion
of polynomials into reduced vertices of the graph ΓI£f. After such action the
operation 0ίTιse is equal to Rr/y - the /^-operation for the reduced graph.

For a given limit, the identity (3.1) is applied as follows. Let us insert the
initial subtraction operator as My and, instead Jiy, let us use some auxiliary
"pre-subtracting" operator which is certainly fixed by the considered limit. In
particular, the limit characterizes the set of subgraphs on which this operator is
defined. First, pre-subtraction operator My coincides with My on some subset of
1PI subgraphs. Second, it is defined on the set of subgraphs which will be called
asymptotically irreducible (AT). Note that such sets may be different when the
Feynman amplitude is defined as a tempered distribution or a function.

To be specific, let us consider the limit of large non-exceptional momenta
which is characterized by the following external momenta of the Feynman graph:
Qi for i = 1,... ,n— 1; q} for i = n, n + 1 , . . . , V — 1 and — ]Γ Qv—]£ qv for i = 0. Let
us suppose that the Feynman integral FΓ(Q,q,m;λ) is analytically renormalized
and that it is considered in the domain of non-exceptional momenta. Remember
that λ ψ 0 and λ is in a vicinity of the origin. In this limit, a pre-subtraction
procedure is constructed as follows. Let Ψ~A be the set of external vertices with
large momenta, and let Ψ"Ί denote the set of subgraph's vertices. If i^A\i^Ί φ. 0
let the pre-subtraction operator coincide with the given subtraction operator
defined on 1PI subgraphs. If i^A c yy let us define the pre-subtraction operator
on the subgraphs which are connected and 1PI after contraction of vertices /frA.
These are the subgraphs which will be called AI in the considered limit. As a pre-
subtraction operator Jίy, let us use the operator Jίa

y = ^~a^my: it performs Taylor
expansion of order ay in subgraph's masses my and all its external momenta except
large momenta Qτ = Q. (We denote by 3Γa^ the Taylor expansion operator of
degree a in the corresponding set of variables.) This Taylor expansion is implied
either in integrands of Feynman integrals over loop momenta, or in integrands
of α-representations. Using the latter prescription and applying the well-known
representation of the subtraction operator in the BPHZ renormalization [2, 3,
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46] we obtain the definition

(Q9q9m;λ) = J daYl <4&ΐ {κ4^)+n^Ir(Q/κ,q,m,Φ))}\κ=ι (3.2)

with ocι(κ) = K2OLU I € <&y; α/(κ) = α/, / £ ££y.

Note that polynomial dependence of counterterms on momenta and masses
[16] provides the equations Jty(-My%) = JiyAf = Λf, so that (Λr y -M y )'JR^ =
JίyR^. Futhermore, spinneys of AI subgraphs for the considered limit consist of
exactly one element. Therefore the Zimmermann identity (3.1) takes the form

RΓ = ]Γ kΓhJ(a

Ί

ΊRΊ + mτ , (3.3)
y

the sum taken over AI subgraphs.
Observe now that after the action of the operator Jia

Ί

Ί the Feynman integral
RγFΓ is transformed into the Feynman integral FΓ/y for the graph Γ /γ with
the factor Jia

yRyFy inserted into the reduced vertex. (An explicit proof of this
proposition is done by a slight modification of the corresponding proof for the
operator which performs Taylor expansion in all momenta - see [7, Lemma 5].)
The Feynman integral FΓ/y is no longer dependent on large momenta. Hence

the subtraction operators Jta

yί in Mτ /y perform Taylor expansions in all external

momenta qy of subgraphs / c Γ /y. Thus, the action of such operators produces
Feynman integrals for massless subgraphs with zero external momenta which, in
the analytic and dimensional regularizations, are nullified. Hence, <kΓ/γ a c t s a s

Rr/y, and in RΓ/y there remains only the contribution of subtracting operators
for subgraphs / without the vertex υy into which the subgraph y was reduced.
As a result, we arrive at the following equation:

RFΓ(Q,q,m;λ) = ] Γ R™FΓ/y(q,m;λ) o ^mRFy(Q,q,m;λ)

7

+ <%FΓ(Q,q,m;λ), (3.4)

where Run = Σ Δ(Sf), and the symbol o shows that the latter factor is

inserted into the reduced vertex of the former factor. Let the subtraction degrees
ay be sufficiently large with ay = ω(y) + α. Here γ is the graph obtained from y
by contracting the vertices /VA. In Sect. 5 a proof of the asymptotic estimate for
Feynman amplitudes as tempered distributions is described. This result shows
that the function Y* = @FΓ(Q,q,miλ) behaves like Yf(Q/ρ,q,m;λ) - ρM for
ρ —• 0 up to powers ρkλ, k — 1,... ,L. Therefore it is natural to refer to this
function as the remainder, and to treat Eq. (3.4) as the asymptotic expansion
in the considered limit of large non-exceptional momenta. Tending a to infinity
yields the asymptotic expansion

Σ RUΏFΓ/y(ίm;λ) o^qimRFy(Q,q,m;λ) (3.5)
y

with ^... = ^°° = &
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It should be noted that this asymptotic expansion is over homogeneous
functions because

and, for various contributions to the jR-operation R, similar properties are valid.
In particular, this fact trivially provides the asymptotic behaviors of Feynman
integrals which are claimed by the Weinberg theorem [44, 17, 27].

Observe that the presence of a regularization is a rather essential condition
since the terms in the right-hand side of (3.4) and (3.5), are, in general, divergent:
in &~qjmRFy, there appear IR divergences because of Taylor expansions at zero
momenta and masses, and in RunFΓ/y, there is lack of counterterms to remove
all UV divergences. However, after summation, the expansion is finite, i.e. all the
λ- (or, ε-) poles are cancelled. To prove this important property we shall write, in
the next section, the asymptotic expansion in an explicitly finite form.

Let us now regard the Feynman amplitude

GΓ too, β, g, m λ) = (2π)4δ fa, + Σ Qi + Σ **)*> (β, % m; λ)

as a tempered distribution. In coordinate-space language, the considered limit is

described as Gp(x + Qζ,q,rniλ) for ρ —• 0, i.e. it is the short-distance limit (the

variables x and ξ are defined as x = Σ hxu ζi = Xi — x with Σ h — 1 )• I n this

case, one should call a subgraph asymptotically irreducible if Y*Ί => i^A, and if
it becomes 1PI after contraction of vertices /VA. For instance, the disconnected
subgraph TA consisting of isolated vertices i^A is AI. Let us use, as a pre-
subtraction operator, the operator (3.2) which, in coordinate space, looks like

1. (3.6)

For disconnected subgraphs, the action of the pre-subtraction operator is also
graphically described by the contraction procedure, but in Γ rather than in the
initial graph Γ - this property may be proved by means of a generalization of the
corresponding proof of Ref. [7]. Thus, the asymptotic expansion of the Feynman
amplitude as a tempered distribution takes the form

iim^RFγ(ξ_,q,m;λ). (3.7)

Here <f is the set of variables which are difference of coordinates for distinct
components of disconnected subgraphs γ. In this expansion, there appears a
series of terms which are local in ξ_ and correspond to disconnected AI subgraphs
(e.g. ΓA).

It is the expansion (3.7) for which the basic asymptotic estimate will be
proved. Let the subtraction degrees be aγ = ω(γ) + a, let άά be the corresponding
pre-subtracting operation, and let Y" — MaGγ(x + ζ,q,m',λ) be the remainder.
Then the following proposition is valid.

Theorem. The remainder 7/ regarded as a tempered distribution in ξ_ and as a

function at non-exceptional Euclidean momenta q behaves like Yr(x,Qζ,q,Ul' >λ) =

for ρ _^ Qf χ ^ o, and λ in a vicinity of the origin.
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A proof of this theorem will be performed in two steps. In Sect. 4 we shall
prove that the asymptotic expansion is finite for λ = 0 whence the finiteness of the
remainder follows immediately. In Sect. 5 the second step is done: the remainder
is decomposed into various terms that are meromorphic in the regularization
parameter, and for each term, the necessary asymptotic estimate is established.
Note that using this proof one may easily maintain the corresponding estimate
for Feynman integrals considered at non-exceptional momenta. One may also
straightforwardly obtain generalizations of this proof for other limits of large
momenta and masses: the only crucial point is to use an appropriate notion of
AI subgraphs that is fixed by the considered limit (see below).

Let us now discuss generalizations of asymptotic expansions to other limits.
Consider first the large mass limit for which masses M are essentially large than
the light masses m and all momenta g which are regarded as non-exceptional
and Euclidean. In this case one should consider to be AI the subgraphs with
j£?(y) ID JS?M, every connectivity component yι being heavy (i.e. <£M Π J£(yι) φ 0)
and 1PI in respect to light lines. Furthermore, in this case it is sensible to
choose the pre-subtraction operator βΓ0^ ml that performs Taylor expansion in all

external momenta and light masses of a subgraph. If a subgraph is disconnected
the operator expands the product of Feynman integrals corresponding to its
connectivity components. Thus the large mass expansion takes the form

m £ y,{q,m;λ) o ̂ q^RFy{q,M,m;λ). (3.8)

Here the sum is over disjoint subgraphs {/} with AI union (J y\
i

Let us consider the limit of large non-exceptional momenta and large masses.
In this case, a subgraph is called AI if Vy => irΛ and the connectivity component
containing the vertices /VA is 1PI after their identification while other components
/ are heavy [i.e. <£M Π <£?(/) φ 0] and 1PI in respect to the light lines. We shall
not write the corresponding pre-subtraction operator as well as the asymptotic
expansion that turns out to be a hybrid of expansions (3.5) (or (3.7)) and (3.8).
Some of the corresponding generalizations at the operator level will be described
in Sect. 6.

As to various limits of exceptional momenta, let us briefly discuss the simplest
case. Let the external momenta be — q — Q\ — Σ qu Q\, Q2, q — Q2, #4, qs, (two

ί>4

large momenta). In coordinate-space language, this limit is described as follows:
*o —• xi, *2 —• X3. In this case, one should consider a subgraph to be AI if
after identifying each subset of vertices (0,1) and (2,3) it is 1PI or it consists of
exactly two 1PI connectivity components. We shall not write the diagrammatic
expansion. However the corresponding operator expansion will be described in
Sect. 6 - see (6.13).

4. Explicitly Finite Expansions

To prove UV and IR finiteness of asymptotic expansions derived in Sect. 3 let
us derive them in an explicitly finite form and show that these two forms of
expansions are equivalent. As in Sect. 3, let us first consider the limit of large
non-exceptional momenta. Let us apply the Zimmermann identity (3.3) with
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operator Jty replaced now by operator %y

y = RyJίa

y = Ry>^a

q\my rather than by

Jίa

y . Here Ry is the R-operation i.e. the IR part of the R*-operation [13-15]

The sum is over sets Sf = {y1} and Sf1 = I/-7'} such that subgraphs from y are
1PI and pairwise disjoint, and subgraphs from ίf1 have not lines in common,
any union of them being IR-reducible. (At least, if y is IR-irreducible then
γ = Γ /(Γ\γ) is one-vertex-irreducible - detailed definitions may be found in [13,
14].) IR-counterterm operations A(&") = JJ A(γi) are defined for IR-irreducible
subgraphs. The existence of the R* -operation was conjectured by Parisi [28]. It
was described in [13, 15], and in [14], the basic theorem on the R* -operation was
proved: it states that any "R*-normalized" Feynman integral R*FΓ is both UV-
and IR-finite.

The R-operation looks like

Ry=

One may represent R* as the product RR in the following sense: first, the
R-operation transforms a Feynman integral into a sum of Feynman integrals
with inserted UV-counterterms, and then each term is operated by R. Thus,
the R* -operation removes all divergences, and the R-operation removes only IR
divergences. In particular, in the pre-subtracting operator Xy the R-operation
cancels IR-divergences induced by nullification of masses and external momenta
of a subgraph. Note that in all above formulae we use JR*- and ^-operation
based on dimensional or on analytic regularization.

When deriving asymptotic expansions we shall employ the following proposi-
tion proved in [36, 37].

Proposition 1. Let external momenta of a subgraph be small, and let subtraction
degrees satisfy ay > ωy. Then the R-operation R* and UV-counterterm operations
Ax based on the operator X are, respectively, equal to the R-operation and UV-
counterterm operations based on the initial minimal subtractions in respect to the
regularization parameter.

Repeating the arguments of Sect. 3 with operator Jίy substituted by Hy yields
a relation similar to (3.3). Using Proposition 1 we have that, after preliminary

action of operator X, the operation R*r/y i
s transformed into the operation RΓ/y

based on the initial subtraction procedure. As a result, we obtain the expansion

RFr(Q,q,m;λ) =

(4.3)
and - in the asymptotic form -

RFr(Q,q,m;λ)=-'ZOΣ RFr/γ(q,m;λ) o R*^^Fy(Q,q,m;λ). (4.4)
y

Because of the basic property of the R* -operation, the expansions (4.3) and (4.4)
are explicitly finite so that one may remove the regularization by setting λ = 0.
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It is possible, similarly, to derive explicitly finite expansions in other limits.
They may be formally obtained from the corresponding expansions of Sect. 3 by
substituting Rψ^ by RΓ/y, and Ry by R^. Let us now prove that the expansions
(3.4) and (4.3) are equivalent and, therefore, the remainders coincide, i.e. 0t¥τ =
&XFΓ. Here we present a brief version of the proof of the equivalence which was
developed by Chetyrkin [10]. For this purpose, let us apply the formula [10] that
expresses IR-counterterm operation A in terms of UV one. Let FΓ be a massless
Feynman integral with zero external momenta. Then

F3Γ

The sum runs over forests of Γ consisting of 1PI subgraphs, and the product of
counterterm operations in Δ(F) = Π ^(y) *s s u c n t n a t ^(/)^(y) = Δ(y'/γ)Δ(γ)
for / ϋ y. y^F

Furthermore, it is necessary to use the equality

Rm(Γ), (4.6)
γ3v0 F<y',F3y

where VQ is a fixed vertex, F < y is the set of forests of y, and RUΏ(Γ) = Σ

To prove this equality one should represent R(Γ /y) according to the counterterm
formula (2.5), use the equation Δ(S?)Δ(F) = Δ(γ° U F)Δ{9") with Sf = S? U {y0}
(here y° is the element of 9 with the vertex vo), and sum over F and F' = y°UF.

Let us first take the asymptotic expansion in the form (4.4) and let us there
insert R» =Σ ^y\^(^\ the sum running over sets of IR-disjoint subgraphs in

sr
y. According to the definition of IR-counterterm operation [13, 14], the action
of A{9) on a Feynman integral 2Γ_FΊ equals (Δ(y")Fy>) o (έF_Ry\yFy\cf) with
y" = (yr u £f)H — y/{y\y), and yr = y\Sf. Furthermore, from summation over
y and £f with ^ g γ, it is necessary to turn to summation over / and Sf with
9> Π i = 0. Let then apply (4.6) with Γ -+ Γ/y', Γ/y -> Γ / ( / U Sf), y -* y"
and, as vo, take the vertex into which the subgraph yf was reduced. Finally the
expansion takes the form (3.5). The equivalence of (3.7) and the corresponding
explicitly finite expansion is demonstrated in the same way.

5. Proof of Asymptotic Estimate

Let us represent the operation 01 = 0ί* as

* = Σ % > % = ( Σ Π (-<<)) Π
where the first sum is over spinneys £f such that i^A\i^Ί φ 0 Vy G £f, and the
second sum is over nests (a set Jί is a nest if for any y, y' G / either y g yr

or / g y) of AI subgraphs. As before the symbol Jf^ϊf means that y g y '
or y Π / = 0 Vy e Jί, yr € 5^. To prove the asymptotic estimate of 01GΓ it
suffices to prove it for any term 0t{cf)Gr. We shall consider only the case Sf = 0
because the corresponding generalization for 9* ψ 0 is rather straightforward
(see comments in the end of this section). Note that @tφ)Gr, as well as other
contributions with 9* =f= 0, may contain UV poles in the regularization parameter
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λ. Thus, the regularization will not be removed to the very end. We shall prove
that &(φ)Gr is represented as the finite sum

Gi(x + ξ, q,mμ' + G0(x + ξ, q,m;λ), (5.2)
ί<0

where Go is analytic in λ and any G; has necessary asymptotic behavior. In
accordance with the results of Sect. 4, the poles in λ should be cancelled after
summation in (5.1). Therefore the asymptotic property of Gz will provide the
desired asymptotic estimate of &Gp.

To be specific let us consider the short distance limit (see Sect. 3) with λo = 1
λi = 0, ί > 1, i.e. %i = xo + &. Using the translation invariance we may fix
xo = 0. Let us analyze the behavior of &(0)Gr(ρξ_9q,m;λ) at ρ —• 0, with

^(0) = Σ Π (—Λty*)' ^ e s u m running over the nests of AI subgraphs. Using
Jf yeJί

the scaling of variables α/ —• αj = ρ2α/ in the α-representation we have

ξ, q,m;λ)= ρ " ω ( f )+2Lλ@m GΓ (ξ, ρ 2 , ρm; λ). (5.3)

Let us pick out the overall subtraction in 0t^:

0ίmGΓ {ξ, ρq, ρm; λ) = (1 - Mr)'®{%Gr {ξ, Qg, ρm; λ)

= (1 - r*)'%,Gr (i, ρ£, ρm; λ). (5.4)

To prove the necessary asymptotic estimate we shall demonstrate that the function

GΓ(ξ,ρq,ρm;λ) has aΓ continuous derivatives in ρ and the (aΓ + l)-st derivative

behaves as a linear combination of powers of the type ρkλ.
Let us now use the fact that due to the homogeneity of the propagators'

numerators Z\ the Feynman integral for any graph y satisfies $~k

ρFy(ρq, ρm; λ) — 0
for k < ωy and λ in a sufficiently small neighbourhood of the origin. Thus we
may include in the operation 0ί^ additional (trivial) subtractions of the degree
Oγ = ωy — 1 in masses and momenta in all 1PI subgraphs with Vy Π i^A = 0.
Futhermore, let us include in 0t^ trivial subtractions (with ay = — 1) in the single
lines and let us extend the summation in the forest formula to UV-forests [35].
By definition, a set F of 1PI subgraphs and/or single lines is called UV-forest if
a) Vγ, yr e F either y gi / , or y' g y or L(γ Π / ) = 0 b) for any subset y1,... , yk

of pairwise disjoint elements of F the subgraph [j yι is disconnected or one-
i

particle-reducible. Let us denote the obtained operation by RQ. It is represented
as RQ = Σ Yl (—Jίy

y), where the sum is over UV-forests which consist of 1PI
F yeF

subgraphs and single lines with i^Λ Π Y°{y) = 0 (respectively, with ay = ωy — 1
and ay = — 1) and AI subgraphs.

Let us use the α-representation (2.3) or (2.4) for the Feynman amplitude
Gr(^,£,m;A) and let us decompose the integration region over the sectors [33,
35]

Λpj = fe I αP(D ^ ^ aP(ΰ ^ l ^ αp(ί+l) ^ ^ αP(i)}

which are characterized by permutations p of the numbers 1,... ,L and by the
number I Without loss of generality let us consider only the contribution GΛ of
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the sector with p(ϊ) — I. For I > 7+ 1 let us introduce the variables βι = 1/α/, and
let us turn to the (sector) variables

7 = 1,... ,7— 1; tΊ = otj;

τι = βi/βi-i, Z = 7+ 2,... ,L; τ I + 1 = a~M . (5.5)

The corresponding Jakobian is fj ί/1 Π τ/^~1

To analyze the asymptotic behavior of the sector contribution RoGΔ(ξJρg,
ρm λ) at ρ —• 0 it is convenient to rearrange the terms in JRO according to some
equivalence relation and to prove the necessary estimate for the contribution
of any equivalence class. To define an appropriate equivalence relation let us
introduce the operation F —> F that transforms any given UV-forest F into the
corresponding maximal UV-forest F = 3F as follows. First we include in F the
elements ΓA and Γ (if they were not in F from the very beginning). We may do
this since Γ does not overlap with any other subgraph, and ΓA overlaps only
with subgraphs y with i^A\i^y φ 0 and YΊ C\i^A φ 0. However in the considered
situation such subgraphs cannot contribute to RQ. Let now y e F, and let y_
be the union of elements of F which are inside y. Let us consider the family
{/ I / = y Π yι U y_, / = 1,... , L} where by y/ we denote the subgraph consisting
of the lines {1,... , /}. There are L(y) — L(yJ) distinct elements in this family. Let
us enumerate them in the natural order: γ1 §j y2 g ... If i^Λ Π i^iy1) = 0 let
us include, for any i = 1,... ,L(γ) — L(y_) — 1, in the UV-forest F the subgraph
which is the bridge (i.e. a cut-line) or lPI-component of subgraph yι containing
the line if (/Xy1"1). If i^y ==> irA then we include in F the Al-component of the
subgraph y1 U i^A with the line J S f W " 1 ) .

As a result, for any given UV-forest it is possible to construct the maximal
UV-forest F which consists of L + 1 elements. Let us now call two UV-forests
equivalent if F\ = F^ The set of all UV-forests is naturally decomposed over
classes in respect to this equivalence relation, and the operation RQ is represented
as the sum over maximal UV-forests (with F = F)

F:F=F F' .F'=F JeF'

(Observe that the notion of UV-forest is closely related with that of labelled
forest [7] and other related notions.) Let us represent a maximal UV-forest F as
3F U {ΓA} and introduce, for the contribution R$GΛ of an equivalence class of
UV-forests, the auxiliary sector variables f = {ty\y e ^} (they will not be used
as integration variables)

t γ " \ a (Γ\ V = Γ

Here y+ is the minimal element of !F that includes y, and σ : #" -» if is the
mapping such that σ(y) 6 if(y) and σ(y) ^ £?{y') Vyr g y. We shall shortly use
a factorization of integrands in α-representations in these variables. Now, let
us write the formulae which connect the auxiliary variables and the real sector
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variables:
Γ Mi)-

tσ(γ)

)~ σ(y+) < σ(y) < 7

σ(γ) < 7 <

)~
(5.8)

. τσ{y+),

)~

if y φΓ, and

I < σ(y) < σ(y+)

7<σ(y+) <σ(y)

σ(Γ) < Ί

σ(Γ) > 7.
(5.9)

Let F be a maximal UV-forest. Let us decompose $F = F\ΓA as the union
J^ + U ̂  with ^ + Π ̂ ~ = 0 as follows. By definition, y φ Γ belongs to J^ + if
σ{y) < σ(y+), and Γ G J ^ + if σ(Γ) < /. In all other cases y e #"~". It is clear that
the UV-forest ^ = F\ΓA is built from F by elements of the subset ^ + (and by
the element Γ e #"" , if σ(Γ) > /). Therefore, an element of an equivalence class
of UV-forests is characterized by the set 3F~ and by some subset of the set J^+
Thus, the contribution JR^ of the equivalence class corresponding to the maximal
UV-forest F = !F U {ΓA} is represented as

= Π ( - π - £aΛ - (5.10)

Let us use the mixed representation (2.4):

'RξGA(ξ,Q,q,m;λ) = j .
A

and rewrite the integrand as

i,Q,q,m,&β),

This relation follows from the formulae that connect polylinear forms defined at
different choices of variables (α',/?') and (gt9β) [35] (in the case under consideration
there are no auxiliary IR variables). As a result we have

1

'RξG%Q,q,m;λ) = ί dtdτ. Π τf(L-!'+1)λ+L~l'ΓΓ;

(ιcy

where ξ' = Π *yl> & = Π ^
yeJf y&JT

subgraph of Γx composed of lines

Π t) Π (~

, m, αfe; ί, τ))
;7=lVy (5.11)

}, and yx is the

and
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Let us enumerate the elements of the nest Jί cz £F of AI subgraphs as y1 g= y2

§i Let us first analyze the case (A) when σiy1) > 7, σ(Γ) > 7. In this situation
it is convenient to consider in coordinate space all the variables corresponding
to the vertices Ψ~A. (Remember that the variables corresponding to the vertices
which do not belong to irA are always considered in momentum space.) This trick
provides a smooth dependence of the exponent of the parametric representation
on the auxiliary parameters κy. Furthermore, we have a possibility to regard the
given contribution to the Feynman amplitude as a tempered distribution of the
variables ξ because, after the action of the operators in (5.11), the terms of the
exponent depending on ξ_ turn to be infinitely differentiable in (ί,τj. To see that
both above conditions are satisfied it suffices to apply the factorization (A.I).

If the auxiliary parameters κy are involved then the polylinear forms in the
integrand of the α-representation are expressed in terms of the sums of products

Π fe*> = Π α < Π K ) 2 L ( Λ T ) = Π ( κ % ) L ( Λ r )

T ι$τ yeF γeF

over various sets of pseudo-, 1- and 2-trees of the graph Γx (in the considered
case Γx = Γ). We shall obtain the factorization of the integrand in respect to
variables (ί,τ_) from the factorization (A.4). To do this let us remember that,
after the action of subtraction operators for y 6 ϊF~, parameters κy (which are
coefficients at t'y) are nullified only if y φ Γ. Therefore, at y — Γ, it is necessary to
factorize maximal, rather than minimal power of the variable tf

Γ. If we properly
change the arguments in proving factorization (A.4) [35] then we obtain the
power of t'Γ which equals — [(ω(Γx) +1)/2] — L. (The square brackets are used to
denote the integer part of a number.) Using factorizations (A.1)-(A.4) we come
to the representation

yeF\Γ

h{ξ,q,m,t!,κ)= £ Π KJ Π

+ Σ Π κyuϋ

Σ ^ (5 1 2)

Here the symbol iy ~ j(iy ^ j) means that vertices ί and j are (not) connected

in γ; the functions f(ξ,q,t',κ) and Uij(j?,κ) depend (smoothly) on f and K only

through combinations Kyt
f

y (for y φ Γ). Furthermore, wι; do not depend on ί'Γ,

and / polynomially depends on (tr

Γ)~ι.
The formulae (5.8) and (5.9) show that ty contains negative powers of the

variables (t,τ) if, and only if y G J^~. However, due to the action of corresponding
operators ZΓa

y\ parameters κy (for y ψ Γ) are nullified. Hence, the representation
(5.12) produces a factorization of the integrand in (5.11) in variables t\ and τj
as well. Since κΓ φ 0, the non-analytic dependence in (5.12) enters through the
exponent h due to the terms quadratic in (<j,m), where negative powers of τ\
appear because of the variable t'Γ [see (5.9)] which enters trivially: as {t'Γ)

k for
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fc = 0, ± 1 . By means of the standard factorization technique [35, 46] the sum of
terms Σ A*itqiqi'/Ax quadratic in g takes the form (τj+1 . . . τ / J ^ P f e t τ j , where
ίo < σ(Γ) and P is a polynomial that is quadratic and positive, at Euclidean
q, whose coefficients are infinitely diίferentiable in (£,!)• The massive terms are
similarly transformed. Thus,

1

fRξGΔRξGΔ{ξ,q9m;λ) = / dtdτ_ f[ t^lλ ft τ?ι-{^M)λg(ξ,q,m,t9τ), (5.13)
o ι<ί ι>Ί

where

= Σ 8k(i>g?m,LI) exp I - ^ (τ Γ + 1 . . . τm)~ιPk{g, ί, τ)

and the prime over the sum implies that it is over / ̂  if(y) Vy G 3F \Γ.
The differentiability properties of the integral (5.13) in g and m are governed

by the values of the degrees JV/ for Ί < I < σ(Γ), because the following proposition
is valid.

Proposition 2. The integral

1

ί (Q) = / I I dxγiγ ι n exp(—ΪQ/X\ . . . ΪL)Φ(JL) (5.14)

J .

with φ G C°°, integer iV/, and r\ > Γ2 > ... , has the asymptotic expansion

r\ oo

Σ Σ Σ (5.15)
n=AΓ+l i=0 n=0

where N =

Thus, this propostion shows that / G CN

9 and the (iV + l)-st derivative of
/ possesses singularities of the type ρ~kιλ. A proof of the proposition may be
reduced to the asymptotic estimate of integrals (5.14) with φ = 1. Using the
change of variables τ/ = βι/βι-u I = 2,.., ,L; τ\ = β\ with dτ_ = ]\ βf{dβ, one

gets

J Π dτ,τ*- Γ ' λ expί-iρ/τ! . . . τ L ) = J dβLβ^~ιL-l Q-iρ/βL
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with Nι = Nι — riλ. Taking explicitly L — 1 integrals over βu... ,/?L-I we obtain
1

the integral / dβt e~ιρ/βLH(βL), the function H being a sum of powers β^\
o

Z = 1,... ,L. Using the asymptotic expansion

f
n=N+l n=0

for λ φ 0, λ ~ 0, we obtain (5.14) and (5.15).
Note that the unregularized version (for λ = 0) of the asymptotic expansion

(5.15) looks like [46]

Therefore, / e C*, and / ( i*+ 1) behaves as log* ρ.
Thus, after a suitable change of variables the asymptotic analysis of the

integral (5.13) for q,m —> Qq,ρm and ρ —• 0 reduces to estimates of integrals of
the type (5.14) andL consequently, to the power counting for ΛΓ/. As for the powers
of variables τ/ at / < / < σ(Γ), which may present in a negative power in the
exponent, we shall prove that they are sufficiently large. For other variables τ/,
as well as for UV variables ί/, we shall not perform such power counting. When
the corresponding powers are negative, there appear poles in λ: if the integration
with tfι+lλ is considered as a result of the action of a distribution of the type x^
then this fact follows from its well-known meromorphic properties in λ. However
the results of Sect. 4 show that after summation over sectors, maximal forests,
and spinneys in (5.1), these poles are to be cancelled. Thus, we shall prove that
the integral (5.13) takes the form (5.2) where any term has necessary asymptotic
behavior.

We perform the power counting of variables τ\ for Ί < I < σ(Γ) by means of
the technique of [35, 46]. Let us denote by Nj~ minimal powers of variables t'y, for
y £ J^"1", in the function Jf in (5.11), and let N~ be maximal powers of variables
tf

y for y G #""". These powers are represented as sums of contributions of factors
in the representation (5.12), of the factor Γ K ^ ) 2 1 ^ ' a n d of contributions that
appear after the action of operators in (5.11). Using representations (5.8) and
(5.9) we have

JV, > ( L - Z + 1 ) - 1 + Σ Nΐ- Σ N~ + Nξ(l), (5.16)

where &+ = {γejV\ σ(γ) < I < σ(y+)}, Fγ = {y e Jf \ σ{y+) < I < σ(y)} (for
convenience we set σ(Γ+) = 0), and Nξ(l) is the contribution of the operator

Note that when differentiating in κγ one also obtains powers of other auxiliary
variables tf,, e.g. for / G J^~. However, for y' ψ Γ, the corresponding parameters
κy> are nullified. Therefore it is sufficient to take into account the variable t'Γ.
But the representation (5.13) shows that powers of τf1 are accompanied by
powers of masses m and small momenta q. These powers explicitly improve the
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differentiability in (g,m) of the considered contribution 'R^GΔ. This makes it

possible, according to Proposition 2, a weaker estimate of powers JV/. Thus, for
simplicitly, it suffices to imply that derivatives d/dκy in (5.11) do not act on the
terms which are quadratic in q_ and m.

In the case γ £ £F~ the relations (5.11), (5.12) and the described properties
of functions in (5.11), in auxiliary parameters and variables ί', give the following
estimates:

N-<W/2]+L(y) y G J ;

N~ < L(y) - 1 y € &\JT. (5.17)

i i
For y e &+, let us use the formula (1 - &Ί)g(κ)\κ=i = — f dκ(l - κ)ng^n+x\κ).

n! 0Thus, as far as the power counting is concerned, the action of operators (1 — «
is equivalent to the action of operations (d/dκ)n+ι which results in appearing
auxiliary (convergent) integrals in K. Let us now suppose that derivatives d/dκγ

do not operate on the terms of the exponent in (5.12) which depend on ξ. Then
the relations (5.11) and (5.12) lead to the inequalities

7 —

>L(y) ye^\JT. (5.18)

Let us apply the estimates (5.17), (5.18) and the relations

L(γ) =

- Σ
y :σ(γ+)>l σ(γ), σ(γ+)

L(y)= Σ Σ W-

By adding and subtracting the absent contribution from Jir and using conditions
ay = aγ — ω(y) = a Vy £ Jί, we come, from (5.16), to the inequalities

[δ/2] - (N'(l) - N+(l)) [a/2]

-l (5.20)

for Ί < I < σ(Γ). Here N±(l) = \^f\ are the numbers of elements in the
corresponding sets. The difference N~(l) — N+(l) takes the form ]Γ (— 1 ) ^ with

yeJf

θι(y) = (ει(y) + l)/2, and ε/(y) = ± 1 for γ e SFγ. Hence the sign in this sum
is alternating and the last term equals +1. Therefore, N~(l) — N+(l) = 1 for
σ(yι) > I, and = 0, otherwise.

Let us now analyze the action of the operator \—JίrA — 1~^Ίjo ( n e r e ^o is the

parameter on which ξ_ is multiplied). It reduces to differentiating (d/dκo)a+ι. Let

this derivative act on the term of the exponent with (ξt — ξj)2. The representation

(5.12) shows that the contribution Nξ(l) equals ([α/2] + 1)Λ^(/), where N${1) is

due to the product J\ κ2 Y[ (tf

γ)~ . The latter of these factors increases
γ eJί :ΐ> <*j γ ejV :P ~j
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the power of τ, by N~(l;P ~ ) - N+(l;iy - j); here JV^/ F ~ j) is the
contribution to N±(l) of elements 7 with ίy ~ j . As to the former factor, it
decreases the degrees of all operators JίΊ with ίy no j this is equivalent to the
contribution N~(l;iy no j) — N+(l;iy no j). Thus, the considered factor leads to
the total contribution N~(I) — N+(l) that does not depend on i and j . Let now
the derivative act in (5.12) on the linear terms in respect to ξ. Then, because
of the factor ^ κy, this action effectively reduces degrees of all operators My

yeJί

for y G Jί whence the same estimate follows. Therefore, we have the inequality
Nξ(l) > ([α/2] + 1) (ΛT(ί) - iV+(/)). Now, by virtue of condition N~(l) - 1 > 0,
we obtain

f [a/2\. (5.21)

Let now the derivative d/dκγ (for disconnected γ) act on the terms of the exponent
depending on ξ. If y e jFj~ then differentiating the terms with (ξi — ξj)2 does

not at all reduce the powers of τ/. If 7 € ^f this procedure gives the factor

Π κy Π fa/)"1- Using the same arguments as for Nξ(l) we come to

the estimates obtained in the previous case.
Let us now turn to case (B): σ(/) < 7, σ(Γ) > I. Let yk be the first of the

elements of Jί Π J^~, and suppose that

σ(yι) < ... < σ(f) < Ί < σ(yr+ι) < ... < σ(yk) > σ{yM).

Let us represent the product \[ (1 — Jίf) with 70 = ΓΛ as — ^ Jiγ \\
0<ί<r 0<i<r i<j<r

(1 - JίyJ) + 1. As a result, rRζGΔ equals ^ ^ ( 0 ' t n e ( r + 1 ) " s t t e r m c o r "

responding to the unity. For the ith term, with i < r, let us choose the mixed
representation as follows. Let us include in the set i^x exactly one vertex of the
set i^A from any connectivity component of the subgraph y\ and let us consider
in the momentum space all the variables corresponding to other external vertices.
For the (r + l)-st term in the sum over i, let us similarly choose the mixed
representation: it is necessary to include into the set irx exactly one vertex from
any connectivity component of yk.

In case (B) it is also necessary to consider the situation σ(/) < ... < σ(yk) >
σ(y fe+1); σ(yk) > I. Then one should use the equality

j

and represent rRζGΔ as the sum ]Γ G(l), where the kth term corresponds to
0<ι</c

unity. The choice of the mixed representation is similarly performed. For the zth

term it is determined by the subgraph y1.
As in case (A) the described choice of the mixed representation leads to

the absence of negative powers of auxiliary variables κy in the corresponding
exponent. Furthermore, factorizations (A.I) and (A.2) show that there are no
negative powers of the variables (ί,τ) in the terms of the exponent depending
on ξ_; this makes trivial the definition of the considered contribution G w as a
tempered distribution in (ξ,Q). The factorization of the integrand in respect to
the variables f and K is obtained with minimal modifications of arguments: in
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(5.12) it is necessary to take into account the dependence on Q (for vertices

and to add to the function h(ξ?Q9rn9^9κ) the terms

Π tyUijtf'^QiQj + Σ Π Kγfajtt'&Qrtj '

Then one should use the same arguments as in case (A) which result in power
counting. It is also necessary to use the equalities ω(Γx) — ω(yx) = ω(Γ) — ω(y),
for y e Jί, which hold for the described choice of the mixed representation. The
estimate on the power N\ of the variable τ/ for 7 < / < σ(Γ) is described by
(5.16) where, in this case, one should drop the term Nξ(l). Then this inequality
leads, similarly, to the estimate (5.20) (with Nξ(l) = 0). Since, however, σ(yx) < /,
in case (B) for any / with I <l < σ(Γ) we have N~(l) = N+(l) and N+(l) > 1.
Hence, the estimate (5.21) is again valid.

Now it suffices to consider case (C) when σ(Γ) < 7. However, the described
factorizations show that in this case the exponent of the properly chosen mixed
representation does not involve negative powers of the variables τ_. Therefore
the infinite differentiability offRQ GA(ξ,ρq,ρm;λ) in ρ is provided. Now, applying
Proposition 2 (with ρ replaced by ρ2) and summing over sectors and maximal
forests, we see that'Ί%^GΓ(ξ,ρq,ρm;λ) behaves like ρα)(Γ)+5+1

 U p to powers ρ~2kλ

with 1 < k < L. Hence, the operator (1 — 3Γa

Q

Γ) in (5.4) gives the asymptotic

behavior described by this power. Taking into account the power ρ~ω(Γ)+2Lλ i n

(5.3) we obtain the desired behavior ρa+i for &$)GΓ {ξ, ρq,ρm; λ) (up to corrections
ρ2kλ with 1 < k < L).

Finally we observe that the proof of the asymptotic estimate on the other terms
in the sum over ^ in (5.1) follows straightforwardly from the proof described
above. In fact, the action of counterterm operation Δ(^) in (5.1) on GΓ produces
the Feynman amplitude Gτ^ o j j zj(/)iy for the graph Γ j£f where counterterms

i

Δ(γι)Fγι, polynomially dependent on masses of yι and its external momenta, are
inserted into reduced vertices. As it was shown in this section, the asymptotic
estimate is governed by differences ay — ω(y) for AI subgraphs. Let yr be an
AI subgraph of Γ /'£f obtained by reduction of some y a Γ : yf = y/(y Π Sf).
Let us consider the contribution to counterterms for y Π £f of a monomial of
degree ω(y Π £?) = ω i ( y Π ^ ) + <x*2{y Π £f). Here the first term is the power
of internal (in respect to / ) momenta, and the second term is the power of
masses and internal momenta. The first term effectively increases the degree of
divergence of subgraph y' to ω(f) + ω\(y Π £f), and the second term implies that
the subtracting operator JίΊ is transformed into the subtracting operator for / ,
with degree ay> = ay — ω2(y Π 9"). Since ω(yf) = ω(y) — ω(y Π y ) , the difference
ay — ω(y') is again equal to ά. Thus, we obtain the same estimate as in the case

0

6. Operator Asymptotic Expansions

To derive operator asymptotic expansions one may also use pre-subtraction ope-
rators and Zimmermann identities. At the operator level, these identities are
naturally written with the help of the counterterm technique of Anikin and Za-
vialov [1, 46]. In this section we shall describe various asymptotoc expansions of
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the S-matrix, composite operators and their products. Now, let us list definitions
of these operators as well as formulae of counterterm technique generalized for
Lagrangians and composite operators without normal ordering.

The renormalized S-matrix, composite operators Jj and their time-ordered
products TJ i(x i ) . . . Jn(xn) are represented in perturbation theory by normal
symbols off the mass shell [46, 49],

F(x) = F(xl9... ,xn) = Σ TΪT / FlkM\l) J[k](y) : dy, (6.1)
[k] W

which are regarded as functional in classical fields. The sum in (6.1) is over

normal products of asymptotic fields : j\k](y) • = : Φi(yi) - Φkiyk) '• A monomial

j[k] involves fcj fields of the i th type, and Σ k = K [k] = Π ^ •• The index i may

include, if necessary, all Lorentz and internal indices. The dimension d[k] of j ^

equals N% + \N{, where N^ is the number of boson (fermion) fields in y^.
In the framework of counterterm technique [1, 46] without normal ordering

[39] the renormalized S-matrix, composite operators and their time-ordered
products are represented as

S = Re s = eSr, (6.2)

Ji(x) = S+® Mx), Ji(x) = Res7 (x) = E0(sr)
 rJi(x),

/ J ( ) ^ ) ( 6 ' 3 )

(Jι(xi)...Ju(xu)) = Resji(xι)...jn(xn) = E0(sr)K: f j 'Mxd •• (6.4)
i

Here s = i J J£int(x)dx; sr = i f J£r(x)dx is the counterterm and interaction
part of the action multiplied by I The symbol Θ denotes the ordinary product of
functionals while the symbol T of time-ordering is everywhere omitted for brevity.
The asymptotic m-currents ji(x) are monomials in fields and their derivatives.
Furthermore, Eo(sr) = eSrΨ* = E\(sr) + 1, where iV is the operation [39] which
removes normal ordering when applied to functionals (6.1), i.e. if\ ]ψ\ = j[k]>
Finally,

R = Σ Π (~pv) Ξ (1 ~ P)'», (6-5)
F veF

the sum taken over non-overlapping subsets F of indices J* = {1,... ,n} with
|v| > 1. The operation Pv acts according to the rule

with P = P^. Here and in (6.3) X is the subtraction operator which, in our case,
specifies the analytic or dimensional minimal subtraction scheme. Its action on
a functional (6.1) reduces to actions on diagrammatic contributions of Feynman
amplitudes to coefficient functions F[k].
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To derive the expansion of the product ί Π Λ(x + ξk)λ at short distances, i.e.

at ξk —» 0, let us use the identity

J^o(sr). (6.6)

Here ^# f l is the "functional" version of the diagrammatic pre-subtraction operator
Jίay'. In strictly renormalizable theories, its action on an arbitrary functional (6.1)

reduces to actions of operators Jia

Ί~
 m on the graphs' contributions to coefficient

functions F[k]. To obtain an explicit representation of the operator Ma it suffices
to use the corresponding formula for the operator W*x applied for the Wilson
expansion in the BPHZ renormalization [2, 3, 46] and to include Taylor expansion
in masses:

J(a¥(x + ξ) = Σ c{λ]^7d{λ](F(ξ)J{λ](0))M • j{λ}(x) :, (6.7)
[l],W:d{λ}<a

where

is a collection of Lorentz indices: d^ = Σ (^ -f dimφj ) is the dimension of j ^
i

7) ( A ) ( A )

cμ} = (—0^ r7W Π r i The symbol AI denotes the contribution of AI graphs
(in which the external lines corresponding to fields φι are amputated).

Inserting the identity (6.6) into (6.4) and using the relation (1 — 0>a) (1 — P) =
1 — &a yields the Zimmermann operator identity

Π J^χ+&)) = Eofe) 1 + ^ f l £ i ( g ) ^ f l ( Π J ^ ( χ + ^ ) ) + y α ( χ >ί) ' (6 8)

where
Ya(x, ξ) = E0(sr) (1 - &a) r R : Π 'Mxk) ' (6.9)

fe

is the remainder. Note that the action of the operator Jίa after Eι(sr) produces
massless Feynman integrals with zero external momenta which are nullified in
the considered regularizations. Hence,

E { ) J { ) E { ) J { ) J ( )

is nonrenormalized composite operator (in its expansion in Feynman amplitudes,
all UV divergences, except those connected with the vertex x9 are removed). Thus
we obtain the Wilson expansion

( Π Jk(χ + ξk)) £~° Σ cWR:r>n(eS Π Jk(ξk)I{ί)(Sb)AMJfλ](x) • (6.10)
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The explicitly finite expansion is derived by the same arguments with Jίa replaced
by the IR-finite operator Xa = RJia. It takes the form (6.10) with JB -» J and
R -> R* [37].

The validity of the asymptotic expansion (6.10) follows immediately from the
theorem proved in Sects. 4 and 5. The fact is that any diagrammatic contribution
to the remainder (6.9) turns out to be a remainder of expansion of some Feynman
amplitude. The analogous assertion holds for asymptotic operator expansions that
will be described below.

The operator expansion (6.10) is written with the use of the monomial basis
of fields {j{χ}} In gauge theories this basis becomes rather non-convenient since
one should choose gauge-invariant combinations of fields and their derivatives.
If some basis {0f}, with 0, = Re so l 5 is fixed one may define the set of operators
Πi (projectors) which satisfy the conditions 77/ oy = δn>. For example, for the
monomial basis, we have

Π{λ] F(x) = c{λ}(F(x)j{λ](0))mj{λ}.

Furthermore, in schemes with polynomial dependence of counterterms in masses
it is natural to include powers of masses into composite operators: therefore,
coefficient functions will not at all depend on masses. In this case, the elements
of an arbitrary basis are equal to linear combinations of composite operators
Jμi with coefficients which are polynomial in masses. Using the equation Θ\ =

f where Zu> is the renormalization matrix of composite operators, we
i

obtain the Wilson expansion in an arbitrary basis [23]:

~ ° Σ Πf(Jι...Jn)
AiZΰιGi(x)9 (6.11)

and - in the explicitly finite form [9, 11, 37] -

The limits of large exceptional momenta, with non-intersecting sets # (see Sect. 3),
are also connected with short distances. In these limits, coordinates are subdivided
into groups, and coordinates of any group tend to each other. Let us write, in
the monomial basis, the asymptotic expansion of the product

F(X,ξ) = ί Π MXl + ξk)

in the case of two groups (it is also derived with the use of an appropriate
pre-subtracting operator):

xfdxδM(χ-X)j{ι)(χ)+ ]Γ C[λi)C{λ2)

UrWr}

(6.13)
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where Xr = ]Γ λkXk, with Σ λ& = 1, are the "centers" of the groups Vf;
kerf

{μ} = {(μθ, (μ2)}, (μ,) = (μ r l,.. , μ ^ ) ,

AI

(2π)4c5 ^ Λ + P 2

In the first sum in (6.13) the symbol AI denotes the contribution of graphs which
are 1PI after identifying the vertices of each group, and in the second sum, it
denotes the contribution of graphs with two connectivity components, each of
them being 1PI after the corresponding set yf is contracted.

In limits with essentially exceptional large momenta (when the sets # are
overlapping - see Sect. 3) in the operator expansions there appear products of
operators whose coordinates are linear dependent (in [29] it was noted that in
these limits local and multilocal operators are not sufficient, and "paralocaΓ
operators appear). For instance, the expansion in the limit described in Sect. 3
involves products like Jι(X + Xι)J2(X - X2)J\X - Xι)J4(X + X2).

Let us now briefly describe operator expansions in limits of large masses. They
may be also derived with the help of a pre-subtraction operator. The expansion
of the contribution (Re5)L of the graphs with light external lines to the S -matrix
looks like [36]:

(Re s)L

 M-°° ReSeff seff = / ^effWΛc, (6.14)

^effM = &L{x) + y X R*Πi ((es)Al - l)Oi(x). (6.15)

Here seff is multiplied by i effective action of the low-energy theory, ££& is the
effective Lagrangian, jSf L is the light part of the initial Lagrangian (it consists of
light fields) as before the symbol AI specifies the contribution of AI graphs (see
the definition for the large mass limit in the end of Sect. 3).

Generalizing the arguments of [36] one straightforwardly gets the expansion
of the contribution of graphs with light external lines (Resj(x))L to a composite
operator J(x):

(Rcsj(x))L

 M^°° £ R Πi (JM)Θf(x), (6.16)

where 0fff(x) = ReSeffθi(x), and the effective action is defined in (6.14) and (6.15).
One may similarly derive the expansions of products of composite operators in
the large mass limits. Let us consider only the case n — 2 and write the expansion
in momentum space:

(Ji(q)J2(0))L =Re s Ji(ί)72(0)-~ T

£ 0 ) ) ^ , (6.17)
U ϊ
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with (0j(x)0i'(y))eff = RQs*0i(x)0iiy) and seff, Θf defined by (6.14)-(6.16).
Furthermore, let us describe the expansion of the contribution of graphs with

light external lines to an operator product in the limit of short distances (ξ —> 0)
and large masses (M —• oo):

(ΠkJk(x + ξk))L =

The symbol AI denotes the contribution of graphs which are AI in the considered
limit (for any such graph, one of connectivity components includes all the vertices
yA and, after their identifying, becomes 1PI in respect to the light lines, and
other components are heavy and 1PI in respect to light lines).

Asymptotic expansions in a form similar to (6.11) are not so compact. Some
of them were obtained in [22].

Finally, it should be noted that operator asymptotic expansions have a great
number of applications which are beyond the scope of this paper. Applications
for deep-inelastic scattering are well-known [17, 27]. Moreover, in the past decade,
operator expansions in various limits of large momenta and/or masses turned
out to be an essential ingredient of the QCD sum rules method - see, e.g., [31].

Appendix

Polylinear forms in (2.2) are defined as follows [7, 35, 46]:

^ / / ^ ( α ) ,

ί'=i

ί v 1

Πτ (α),

TeTm

Here qt = ]Γ enqu en is the incidence matrix, T [ l ί is the set of trees of Γ, and T ϊ?]

leg
is the set of 2-trees including the ιth and the i/th vertex in the same connectivity
component and the vertex with i = 0 - in the other component.

The sum of terms quadratic in x and q in the function Wx in (2.4)) is

- 2 Σ ΛiJ(^xJ ~ Σ ΛUi<lλ>
jf



Asymptotic Expansions in Limits of Large Momenta and Masses 135

where polylinear forms (implicitly depending on the choice of the set Ψ"x) are
written as [33, 35]

Ax(a) = ]Γ Πτ(a) AxJ(*) = Σ Πτ &)>
τef[i] τetWj

Πτ(a) Ax^(a) = £ Πτ (α).

f τef[0]jJ'

Here the sums are over pseudo-, 1- and 2-trees of the graph Γx including all the

set &x : T is the set of all trees of Γx; Tt is the subset of trees in which the
vertex i is connected with the vertex j by a path without other vetices from nVx

A [2]

on it; TiV is the set of 2-trees in which the vertices i and i are in the connectivity
component without the vertex ϋx T is the set of pseudo-trees with a circuit
going through the vertices y, ύx, and / .

The functions in the exponent of the mixed representation are factorized as
follows [34, 35] :

A^f (a)/Ax{a) = Π (t^' W'W (j!), (A.I)

(t'yf"(y)"iJα'). (A.2)

(A.3)

Here a (f) e C 0 0; dxJf (y) = 0 if j , f e t~x are connected in yx by a path
which does not go through other vertices from i^x, and dXi^' (y) = 1 otherwise;
dx'J (y) = 1 if the vertex ί is connected with j e i^ x in yx, and any such path
goes through some other vertex from i^x, and dx'j (y) = 0 otherwise; dx

v{y) = 0
if the vertices i and ϊ are not connected in yx with 0x, and dfv(γ) > 1 otherwise.

The rest of the integrand in (2.4),

(AxΓ2Zx(x,q,a) = ( ^ ) ~ 2 [ ] Z,(-i3/3u,)exp ( ^

(here B^, Kx are certain polylinear forms - see [35]), is factorized as

2 Π l{r)/2]Li) (A.4)

with z e C r o
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