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Abstract Let / be a "flat spot" circle map with irrational rotation number. Located
at the edges of the flat spot are non-flat critical points {S: x-+Axv, v ̂  1). First, we
define scalings associated with the closest returns of the orbit of the critical point.
Under the assumption that these scalings go to zero, we prove that the derivative of
long iterates of the critical value can be expressed in the scalings. The asymptotic
behavior of the derivatives and the scalings can then be calculated. We concentrate
on the cases for which one can prove the above assumption. In particular, let one of
the singularities be linear. These maps arise for example as the lower bound of the
non-decreasing truncations of non-invertible bimodal circle maps. It follows that
the derivatives grow at a sub-exponential rate.

I. Introduction

It is, in our opinion, an important problem how for a smooth family of dynamical
systems the varying dynamics in the configuration space is reflected in the
parameter space. In one dimension (in the context of unimodal maps of the interval
and homeomorphisms of the circle) this problem has been studied in great detail in
the case renormalization on a compact set of such maps is uniformly hyperbolic.
We will refer to this case as being renormalizable. The context in which we propose
to investigate this problem is that of a smooth one-parameter family of bimodal
maps ft of the circle.

As for the parameter space, the quantity we are interested in is the lower
bound ρ(t) of the rotation interval associated with ft. It turns out that ft always
has an order-preserving non-wandering set Ωt with rotation number ρ(t\ such
that ,. _f,

Jt\Ωt—Jt\Ωt

Here ft is the lowest bound on the non-decreasing truncations of ft [as described in
Veerman (1989)]. This then reduces the setting to a more manageable one as it
allows us to study families of monotone maps with a "flat spot." The precise
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definitions in Sect. 2 actually allow for a somewhat more general context, but this
is certainly the most important case.

This simplification pays us a service in the following sense. We can assign
natural (configuration) scalings σ(ή) to closest returns of the critical orbit (ratio of
the distance between the critical point c and its closest return fqn(c) and the
distance between c and the previous closest return, see below for more precise
definitions). If ρ(t) is irrational and of bounded type, these scalings tend to zero as
shown in Sect. 5. (This is in contrast with the situation for maps with non-flat
singularities where the scalings are bounded away from zero and one.) We will
show in Sect. 4 that then distortions of high iterates (on appropriate intervals) also
tend to zero. This is sufficient to show that the scalings σ(ή) are related to the long
term derivatives Dfqn(fc) by a relation of the following type:

Df9nifc)'φ)^ const.

(The precise relation in Theorem 4.6 is a modication of this.)
This relation in turn is sufficient to find and solve the recursion relation for

scalings, which is done in Sect. 6. One obtains estimates for the scalings as well as
for the derivatives of high iterates. We find that the behavior of the orbit of the
critical value is not hyperbolic (Lyapunov exponent is zero), but

where 0 < y ^ l depends exclusively on the singularity type.
Finally, in Sect. 7 we demonstrate once more the usefulness of the notion of

scalings by utilizing it to prove that the non-wandering sets (if ρ(t) is irrational and
of bounded type) have Hausdorff dimension zero. We add here that it is not clear
whether any of our conclusions hold if the rotation number is irrational but not of
bounded type.

The tools we use to prove our results could be collectively described by the
words "Koebe principle and negative Schwarzian derivative." We capitalize on
ratios, not on cross-ratios as was done before (Yoccoz 1984; De Melo and Van
Strien 1986; Swiatek 1986,1988), because that seems to be the way one has to study
scalings. Our results are also valid if ft has negative Schwarzian only in a
neighborhood of the criticality and bounded distortion elsewhere (Sullivan 1987,
1988).

In the sequel to this paper we show how parameter scalings for one-parameter
families are related to dynamic scalings.

II. Definitions and Notation

In this section, we define the notions that will be used throughout the work. Most
important among these is the definition of close returns and a one parameter
family. To simplify the formulae, we also introduce some notation.

From now on we will write D for — . We consider circle maps satisfying the
following requirements. x

1. / has degree one and preserves orientation.
2. There is an open interval U in S1 containing the point x = 0 such that Df(x) = 0
for x in U.
3. f(x) is C3 on S1-clos(ί7) and has negative Schwarzian on S1-clos((7).
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4. In a half-neighborhood Nr of the right end-point of U, f has the form Sr(x)
= Ar(xVr), where v r ^l. At the left end-point / has the form St(x) — A^x*1), where
Vj ̂  1. Here Ar and At have bounded distortion.

Remark. The assumption that Sf be negative is very restrictive. With additional
work this assumption can be relaxed to S/5^0 near the endpoints of U and
bounded distortion elsewhere (Swiatek 1989).

We will refer to the derivative lim[/(j;)—f(x)]/{y — x\ for both x and y in

S \U (note that this is a one-sided derivative on dU\ simply as Df(x). We will
denote the points in d U by r(0) and 1(0).

Unless otherwise specified, we will work with an irrational rotation number ρ
that is of bounded type. Its continued fraction coefficients will be denoted by an

and its continued fraction approximants by pjqn. We use the (for coefficients
somewhat unusual) convention that:

Pn + 1 = anPn + Pn - 1 > In + 1 = an<ln + <ln - 1 ,

and
PlJ<l2n<Q<P2n-l/<l2n-l

Suppose / has rotation number ρ. By closest returns we mean the collection of
points {fqi(U)}™= 1. Iterates of a point x will be denoted by xm or, if we are dealing
more particularly with closest returns, by their index only. Thus q2n stands for

Lemma 2.1. Let f satisfy conditions 1,2,3, and 4. Iff has irrational rotation number
ρ then {qn} converges to the boundary of U as

Proof. Suppose that either q2n or qln+i ( o r both) do not limit on clos(U). For
definiteness, assume that {q2n} does not limit on the boundary of U. There is an
interval J bounded by r(0), the right endpoint of U, and lim q2n. This interval
cannot intersect an inverse image of 17, since in that case the critical point would be
periodic. Therefore J has to be a wandering interval. But then we can change / on
clos(J)uclos(L/) so that we obtain a C1 critical map (a homeomorphism with one
non-flat critical point and with negative Schwarzian in a neighborhood of the
critical point), see Fig .2.2. By construction this map has a wandering interval,
namely J\J U. This is in contradiction with a theorem by Yoccoz (1984) that states
that such maps have no wandering intervals. •

Similarly, U(—ή) will denote the nth inverse image of £/, and its boundary
points will be referred to as r(ή) and l(n). The derivative of the nih iterate of/ at the
critical value will be of special importance and we will denote it by D(n).

The scalings σ^ri) for ΪG{1,2, ...,αn} are defined as follows. Consider the
sequence of points (see Fig. 2.1):

q n 9 2 q n , . . . , ( a n - l ) q n , a n q n , ( a n + l ) q n , q n - 2 , . . . .

For a point P in this sequence we denote its neighbors by I(P) and O(P). The
symbol / is used for the neighbor closest to U; 0 for the other neighbor. Now we
define:

O(iqn)-iqn
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Fig. 2.1. Definition of the scalings

Fig. 2.2. The construction of Lemma 2.1.

We can extend the previous sequence to include the appropriate inverse images of
U. This is the configuration drawn in Fig. 2.1. We define two extra scalings we need
for the discourse. Note that U( — [(an — i + ί)qn + qn_ J ) is contained in the interval
[I(jgn),zgJ. Denote by ι((an — i + ί)qn + qn-ι) its inside (closest to U) boundary
point, and by o((an — i + \)qn + qn-ιi its outside boundary point,

and
, + gn - x) -

In order to express limits conveniently, we use the following notation:

a(ή)πb(n)

means
lim a{ή)/b{ή) = ί.

W-+00

III. Calculus of Distortions

In this section, we briefly exhibit the essentials of the theory that enables one to
calculate distortions for high iterates of one-dimensional circle maps with negative
Schwarzian. The theory of distortions has been developed by Van Strien (1981),
Yoccoz (1984), De Melo and Van Strien (1986), and Swiatek (1986,1988,1989). We
have used Sullivan (1987, 1988) for reference.

The fundamental idea is to study how the ratio of lengths of two abutting
intervals is changed under repeated iteration. So, let / be an interval [α, b] that
contains the point y, and /:[α,b] -»[/(#),/(b)] a homeomorphism. One would
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like to bound the distortion of / at y defined as follows:

dist(//,y) = /(y)-/(a)

y-a f(b)-f(y)_

Define the distortion of / on / as:

dist(/,J)=supdist(/,/,y).

One has:
(1) dist(//) = 0<s>/ is affine
(2) dist(/ o g, /) S dist(/ g(/)) + distfe, /)

A standard estimate is:

(3.1)

dist(/J)^ sup In gj|n/(x)|dx, (3.2)
/

pP/(Q]
where

Combining the previous, one has:
k

dist(/w,/)^ Σ $ \nf{x)\dx^swp{\nf\}Σ\Ii\ (3.3)
i = 0 Ii

Here, the subscript i means f\ We will refer to (3.3) as the estimate for the
distortion based on bounded non-linearity.

Near a critical point of/ nf becomes large. Nevertheless, distortion estimates
can be obtained by virtue of the Koebe principle. Assume that / = [a, b] is near a
critical point for /. We assume S/^0 on /. Consider g = f~1 :/' = /(/)->/. Then
Sg^O. Integrating this differential inequality and knowing that ng is bounded on
Γ, one obtains the

Koebe Principle. For any point x' e /',

Here, \x' — dΓ\ denotes the distance of x' to the boundary of/'. As a consequence we
have that if J is a sub-interval of / and Γ = f(J) then:

distαj) = dist(f,J')^ J ΓT^jΓ.dx'. (3.5)
j ' \x oi I

One observes that in order to show that dist(/, J) is small, one must find / and Γ
such that J' is small with respect to /'. One particular example where we will
evaluate (3.5) is where J' is close to one of the endpoints of /'.

Proposition 3.1. Assume J' = \_c\d'~\ and J' is contained in J' = [α',fr']. 1/ f:I->Γ,
Sf^Oandifforx'eJ',

\x'-dΓ\ = \x'-a'\,
then
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. Γ

Fig. 3.1. Geometry of the Koebe principle

As a further application of the Koebe principle, we state the one-sided Koebe
principle.

Proposition 3.2 (one-sided Koebe): If (see Fig. 3.ί)

(i) W-
and

(ϋ)

then

d'-d

c —a

d-c

b-c
<4

d'-d

c'-a'

Proof. Pick any point z with d<z<b such that

\z'-dl'\ = \z'-a'\.
Then

d—c d—c d'-d
b-C = Z-C = Z'-C' ξ.nεlc.zl

2

Dfiξίl
Df(η)\

dx\ =

d'-

z —c

d'-dίz'-a'^2

z'-c' \c'-a
xexp<; ^ - u

d'-d (z'-af

c'-a'{z'-d)(c'-a')'

The assumptions imply that we can choose z such that the last factor in the above
equation is minimized and equal to 4. •

Remark. Both propositions are proved under the assumption that the Schwarzian
of / is not positive. As remarked before, this condition can be replaced by the
requirement that / is non-flat near the end-points of U and has bounded distortion
elsewhere. The main technical tool goes by the name of "Shuffling lemma"
(Swiatek 1988a).

To calculate derivatives, one of the main purposes of this work, one uses the
mean value theorem, and then Eq. (3.5) to estimate the error. In the situation of
Fig. (3.1) (with Sg positive on /') we have that for η in [c, d] there is a y in [c, d~]:

d'-

where
Df(y)

In

d-c

c'-a

d'-a'

(1+ε),

(3.7)
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IV. Derivatives and Scalings

In this section, we show that scalings and derivatives of high iterates along the
critical orbit, provided the orbit has a rotation number of bounded type, are
intimately related. According to the arguments in the previous section, estimates
are accurate when the scalings {σt(n)} go to zero as n-+oo. We will assume
throughout this section that the σ^n) are asymptotically equal to zero. In Sect. 5,
we will prove that this is indeed the case for some cases of interest. In addition, we
assume the rotation number to be an irrational number of bounded type. We will
not state this assumption in the results.

The first four lemmas in this section describe certain relations among various
points of the non-wandering set. The purpose is to establish that the inverse images
of U take up a large fraction of the interval contained between its two neighbors. In
fact, this fraction converges to one. This implies that high iterates of the map in the
intervals between two inverse images are (asymptotically) linear. The information
in the last part of this section we will use to express the derivative in terms of the
scalings.

The proofs of following results rely upon an understanding of Fig. 4.1. The first
and most important observation one should make is that suitable iterates of/ are
(asymptotically) linear on appropriate intervals. To see this we will apply the
Koebe principle as described in Sect. 3. One can include parts of U in the
consideration when one uses the one-sided Koebe principle (this is done in
Lemma 4.3.).

The second observation, which is used in Lemma 4.2, is that, since

\kn\ = \iqn - AnΛ (1 + 0 fmax σί

the distance \ίqn — I(ίqn)\ can be replaced by \iqn\ when necessary.
Finally, we note that long compositions of / (on appropriate domains) are

composed of maps with very small distortion and singular maps of the form Λxv.

Lemma 4.1. (i) dist(f~q2n~\ [>(0),α2n42π)]->0 as n-+oo.
1 0 as n->oo.

Proof, (i) f~^n~ι extends as a diffeomorphism to [/(0), {a2n+i + l)#2J
Koebe principle (Proposition 3.1), we obtain that

^Oίσ^βrήίi + maxσfin))).
<*2n<l2n-(<t2n+l+l)<l2n

Since the scalings σ^n) are small, this proves (i). The proof of (ii) is analogous to
that of (i). •

Lemma 4.2. For all i, 1 <i<an, the following relations (see Fig. 4.1) hold:

«»-i + i(ln\ ~ [An -1 + (i -1)9»

where v = vt for n even and v = vr for n odd.
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I
Y//////77λ

a
2n*2

Fig. 4.1. The configuration for irrational number of the forward and backward orbit of the flat spot

Proof. The situation for even n is drawn in Fig. 4.1. We prove it for n even only.
The proof for n is odd is similar.

The three points in the lemma are images of (i+ί)q2n, iq2n, (i — tym under
fq2n'K Now

y«2»-ι = y*2n-i-i o S r 9

where Sr is the singularity near the right boundary of U. The interval

is contained in [(tf2n-i + l)#2n-i>'(0)] Thus according to Lemma 4.1
has small distortion. We obtain:

\Aln - 1 + ίtf 2 J - l<Ϊ2n - 1 + 0' + 1 )$2 J

« +1)92 J

We have used that Λr has small distortion and that the scalings σ&ri) are
small. •

Lemma 4.3. af(n)->0.

Proof. Consider the scaling α^n). Upon iterating N times under /, where N = (a2n

— i + \)q2n + q2n-v t h e three points that define the scaling map to q2n+151(0), and
q2n+1+q2n, respectively. Consider f~N. This map extends as a diffeomorphism to
the interval [{a2n — i + ί)q2n + q2n-15 r(0)] Applying the one-sided Koebe principle
(Proposition 3.2), we obtain:

α f(2n)<4

By Lemma 4.2 (g2n + x = ̂ 2 n - I + α2«^2π)w e obtain that the denominator is of order
\q2n-i — (l2n+i\' Since the scalings σf(2n + l) are small, the αf(2n) must also be
small. Π

Lemma 4.4. β^rή^O.

Proof. Consider βi(2n) as indicated in Fig. 2.1. We map the triple of points defining
this scaling by fN, where N = (a2n — i)q2n + q2n-x. The points get mapped to:

l ) 4 2 n ) > 1 ( 9 2 , 1 + 1 ) >
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respectively. The ratio defined by these points will be denoted by R and is
(asymptotically) equal to σa2n+ι(2n + l) by Lemmas 4.2 and 4.3.

We will now study the effect of fN on the ratio βi{2ή). After one application of
/ f e ~ 1 ) o S r , we now have a ratio Rί which satisfies:

So, after repeating this a2n — i times, using an argument like that in the proof of
Lemma 4.2, one obtains the ratio Rt:

(Note that the last time we did this, we had to use Lemma 4.3.) To map this to R, we
now apply βq2n~1~1)°Sr, in keeping with the above observations. The result is:

In effect, we have applied (a2n — i +1) times a power law to a ratio. Since a2n — i is
uniformly bounded by max{απ}, if σai l(2n-hl) goes to zero, then so does
β&). D

The above lemmas prove that the pre-images of the flat spot take up ever more
space. The sizes of the left-overs are dictated by max {an} and by σ^n). Note that

n

only in the last lemma it is important that the rotation number is of bounded type.
We can now formulate and prove the estimates for the long-term derivative along
the orbit of the critical value.

From now on, we will not distinguish Sι from Sr in our notation. It is always
clear from the context, since it depends only on the argument of S.

Proposition^, i) D(iqn)KD({i-l)qn)D{qn)^j (for iίaj.

i - l ) 2

(Here, S = Sr if n is even, and S = Sι if n is odd.)

Proof. First write for i ̂  aw

D(iqn) = D((i - \)qn)Dfqn({i -1)«»

Since fqn~ι has small distortion,

The first equality now immediately follows.
To obtain ii), observe that by the same reasoning

qn-i)

Applying (i) repeatedly now yields (ii). •

By a different argument we can express derivatives in terms of scalings.
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Theorem 4.6. The derivative D(q2n+1) satisfies:

£(42« + i)~—~

(Similar for In.)

Proof. To prove this, consider the intervals

and
Ia2n+ί = ί^2n-ί+(a2n ~ 1)<?2«> <?2n+ J

in Fig. 4.1. According to Lemma 4.1, we have that fq2n~1 is linear on S{Ii) if 0^z
5Ξ α 2 π — 1 and / ί 2 n ~ x ~x is linear on S(Ia2n). By composing these linear maps with the
singularities as explained before, one finds that the derivative satisfies:

i^s ' ί/O— cu" Itt

where the derivatives of iS are taken in the outermost endpoint of It. We have the
equality:

and

By Lemma 4.4, we may replace / 0 by la2n+1q2n + u /(0)]. Moreover /α 2 n + « [<?2π_ 1?

/(0)]. Thus,

σa2n+ι(2n

n+l

Π [ σ ^ + l)]"'-1- D

Combining Proposition 4.5 and Theorem 4.6 yields recursion relations be-
tween the scalings, {σf(m)}, me {2n — 1,2n, 2n +1}. We will consider an example of
this in Sect. 6. For completeness, we list the relations below.

Corollary 4.7. The scalings satisfy:

α 2 n + i-i

π, cσ

x Π [σ i (2n)] β 2 »" ( β 2 »" i ) ( v ' " 1 ) « v Γ β 2 " β 2 Λ - 1 v l Γ
β 2 n - 2 .

ί = l
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Proof. Substitute Theorem 4.6 in Proposition 4.5. •

This corollary still contains a -f 1 scalings in one equation. The next lemma
shows how for fixed n the scalings σ^ή) are related.

Lemma 4.8. i)
ii) σin^σ^nγ for 2gi^α n .
Here v equals vr if n is even and vι if odd.

Proof.

(i) o M

 q q

J - [«J ίqnTD(qn -1) qnS\qn)D{qn -1) D(qn)'

(ii) ^ L t l ^ D f o - i ) for 0 ^

Therefore

We obtain

V. The Truncated Family

Let / be a map as defined in Sect. 2, but with vt = 1. Such maps arise as the lower
bound of the non-decreasing truncations of non-invertible bimodal circle maps.
Assume that the rotation number of / is irrational of bounded type. We prove in
this section that the scalings o^ri) go to zero as n tends to infinity. As is clear from
the previous section, this is sufficient to insure that all scalings (also the ones of type
α and β) go to zero.

Since vt = 1, we can find a half neighborhood JV of r(0) such that:
- f"{x)>0onN, and
- nf(x) is bounded on the complement of U and N.

Lemma 5.1. Let 1= \_a,b~\ be an interval such that its first iterates {/J are disjoint
and contained in S1 — U. There exists a constant C, independent of n, I, such that:

Proof Since the intervals I( are disjoint and contained in S1 — U, all except possibly
one are contained either in N or in the complement of U and N. lϊlt is contained in
IV then (/">0)

f{f\b))~f{f\x)) f Kb)-f(x)
f%x)-fXa)'

If Ii is contained in the complement of U and JV, then

f(f\b))-f(f\x))
/(/'(*)) -f(fU) f\x)-f\aϊ
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In case It intersects both N and its complement, we get two distortion estimates.
Combining both yields a constant C for the distortion in Jf. We obtain:

fn(b)-f»(x) UΛb-x
/"(x)-/«(α) > θ e x-a U

Lemma 5.2. // n is odd, then σ^rή-^O as n-»oo.

Proof. We have (see Fig. 4.1):

and U(-lq

Furthermore, the scaling σ f l 2 n + l_ i(2n + l) is formed by the points

(a2n + 1-i+l)q2n+l9 (a2n + 1-i)q2n + 1 and {a2n + 1-i-ί)q2n + 1.

We map this configuration forward by fq, where

Then U( — [q2n + iq2n+i]) lands on [7, and the three points map to

2. qm + 2 and ^2« + 2-^2« + i

Since the ratio ί^2w+1 ^ " + 2 - i — L ^ 2 w + 2 ^ i s small (large denominator) we can now
D? J Ά qJ

apply Lemma 5.1. Thus σα2n+1_f(2n + l) is small. •

Theorem 5.3. If vt=l and the rotation number has bounded type, then σ^ήj-^O as
n-+co.

Proof. In view of Lemma 5.1, it is sufficient to prove this for even n only.
Consider the triple of points (Fig. 4.1):

Here x' is a point to be determined from the one-sided Koebe principle. The map

g = y-(«2n-i-D extends as a diffeomorphism to [2q2n_1, r(0)]. Now choose x such

that

(i) ί ^ +

(ii) g has small distortion on
Then

is small.
Since S has a power law singularity, this implies that

is small. Note that σa2n(2ή) is still smaller.
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Next we transport this control by f~q2n. The procedure is analogous. Choose
xeU( — q2n-i) s u c h

(i) l[(^lk2JCα^2Jl is

(ϋ) g' = /-«2»-1 has small distortion on [/(0), (a2n + 1)<?2J
Using the same argument we obtain that σa2n-γ{2ϊί) is small. Because a2n is
bounded, we can continue to obtain that σ^ln) are small for all i.

Notice that the best one can expect is (Lemma 4.8.)

That is: if we repeat the procedure outlined above, the successive σf(2n)'s increase
rapidly. One therefore should expect that if {αj is not a bounded sequence, the
scalings σx(2n) need not tend to zero. •

This establishes that for a map with one "linear" singularity the scalings
approach zero (for irrational rotation number of bounded type). We will argue,
though not prove, in the next section that this is not the only case.

VI. Recursion on the Scalings

In Sect. 4 we proved that, essentially, scalings correspond to inverse derivatives. A
natural recursion on the derivatives (reflecting the number theoretic properties of
the rotation number and the nature of the singularities) then gave rise to relations
between the scalings. In this section we work out some of the consequences of these
relations. In particular, for the cases that are of interest to us here (see below), we
solve for the rates at which the scalings decrease and therefore the rate at which the
derivatives grow.

Having established in previous sections that the treatment of rotation numbers
of bounded type is analogous to that of the golden mean (denoted by g), we will
limit ourselves to that case. This is done in order to not needlessly complicate the
equations.

In the continuation of this section, there are two cases that will occupy us. The
first case is the one discussed in the previous section, namely vt = 1. The second case
is where both singularities are equal to v. We note here that these cases overlap
when both singularities are linear. The latter case has been studied in detail by
Veerman [1987]. Again, in principle all cases can be investigated by the same
methods, but we do not wish to bury the arguments in details.

Note that in dealing only with golden mean scalings, the subscript of σf(n) may
be omitted. The recursion for the scalings described in Corollary 4.7, then runs as
follows:

Lemma 6.1.
(l+β(2n

(6.1a)
σ(2n)σ(2n-l) v,vr

σ(2nTl)σ(2n) = ^ . v T ' ( 6 - l b )
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and

Proof. Combine Proposition 4.5 and Proposition 4.6. •

In the remainder of this work we use a slightly weaker version of « :

means
| l n | φ ) / % ) | | ^ const.

Theorem 6.2. // v, = 1, then

where

Proof. Rewrite Eq. (6.1) with v = vn vt = ί9 and logarithmic variables:

ξ(n)=-lnσ(2n-l), η(n)=-lnσ(2n), fc(n) = lnv

One obtains

η(n +1) = l/v{η(n) + ξ(n +1) + k(2n + 2)} .

To study the second iterate of these equations, substitute the first in the last. This
yields a simple iterative scheme of the following form:

(ξ(n +1)\ / ξ(n) + η(n) + k(2n + 1) \ ίξ(n)\

\η(n + ί))~ \ί/v{ξ(n) + 2η(n) + fc(2n + 2) + *(2n + ί)}J n \η(n)J ' l ' ]

where Tπ is a translation and L is the matrix ( I.

We are interested in the asymptotic behavior of (ξ(n\ η{ή)). According to
Theorem 5.3, both ξ(ή) and η(ή) tend to infinity. The eigenvalues of L satisfy:

1 f 2

{1 +
1 / 2

These eigenvalues are distinct and one of them (denoted by λ) is greater than 1.
The behavior of (ξ{ri), η(n)) will thus be dominated by the largest eigenvalue λ of L:

( i \
where I I is the unstable eigenvector of L and q(ή) the unstable component of

\λ — lj
k(2n + ί) \ x τ

Note that
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The term written as 0(1) contains the contributions in the stable direction. So,

But by Lemma 6.1,

lim \q(ΐ) — q(oo)\ < const lim a(ί) = 0,
i i

so that the summation converges geometrically in λ. The expression between
brackets then converges to C with a O(λ~n) error. •

In the case that both singularities are linear (v = l), one easily checks that

λ(l) = g-\ where g = ^ ^

So,

With some care, this is also an estimate for Dfqn on the whole of the non- wandering
set which is therefore uniformly hyperbolic (as was proved by an altogether
different method in Veerman (1989)).

Now let

and
y(v, g) = In λ(v)/\n g2 (y(2, g) = 0.55568...).

The following corollary is a reformulation of the above theorem. It introduces the
"universal exponent" γ which depends exclusively on the nature of the singularity
and the rotation number. This exponent describes the asymptotic behavior of
scalings and derivatives.

We remark here that from the proof of the theorem one concludes that the
constant C depends on the size of the initial σ(n) (n small). That is: the constant C is
sensitive to the details of the map and is not universal. In the case that y = 1, this
constant is the Lyapunov exponent.

Corollary6.3. D(«2»-i) = ̂ n - 1 ; % n - i ) = V μ " l h H where 0 < y ^ l , and
equality holds only if v = l.

Proof. Use the above definitions of τ and γ to rewrite the theorem. The estimate in
the proposition for y follows from

Kλ(vUg-2. •

We will now briefly describe the analysis for the case that both singularities are
of order v. In this case, we do not know how to generalize the reasoning of Sect. 5.
Instead, we have the conjecture:

Conjecture 6.4. If both singularities are of order v, then for v<2 all scalings
approach zero, and

l/σ(n)πeCλiv)n.

For v > 2, all scalings are bounded away from zero and one.



104 J. J. P. Veerman and F. M. Tangerman

The evidence for this conjecture is embodied in the last two results of this
section.

Proposition 6.6. For v < 2, there is an s such that if there is a k with σ(k) < ε and
σ(fc+l)<ε then l/σ(n)^eCλn as n-κx).

Proof. If σ(k) and σ(k +1) are small enough, then Eq. (6.1) is correct (according to
Eq. 3.5, distortions obtained by the Koebe principle are comparable to scalings).
In that case, as in Theorem 6.2, the behavior of the scalings is governed by the
largest eigenvalue if it is larger than one.

Because both singularities are identical, it is sufficient to analyze the first iterate
of Eq. (6.1). In logarithmic variables, one obtains

GKM{+v»,H(i)
where

fc = 21nv.

The eigenvalues of L satisfy

Thus

and

Proposition 6.7. For v > 2, there is an ε such that

σ(k) < ε and σ{k — 1) < ε => σ(fc +1) > min{σ(fc), σ(k — 1)} .

Proof. As before, if σ(k — 1) and σ(/c) are sufficiently small Eq. (6.3) holds. Therefore
(take σ(/c —1) and σ(k) even greater if necessary),

Numerical experiments (for the golden mean rotation number) indicate that
for v > 2 the scalings are bounded away from zero. This suggests that for certain flat
spot singularities, the renormalization theory is analogous to that of a single
critical point.

VII. The Non-Wandering Set

Consider a circle map with irrational rotation number of bounded type and with
one linear singularity. We prove that the non-wandering set is equal to the

oo

complement of (J U(—i) and that it has Hausdorff dimension zero. For the

definitions related to the Hausdorff dimension we refer to Falconer (1985).

Denote by Ωn the set S1 — (j U( — i). This set consists of qn + 1 closed intervals
i = 0

which will be denoted by A". We remark that a closed covering {A"} of Ωn also
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defines an open covering of Ωn (just add arbitrarily small pieces to the boundaries
oϊAΊ).

Theorem 7.1. Let f be a flat spot map with one linear singularity and irrational
rotation number of bounded type. Then its non-wandering set has Hausdorff
dimension zero.

Proof This is a consequence of the fact that scalings around the critical point tend
to zero and that by bounded distortions this property can be propagated along the
orbit. The proof uses the techniques explained in Sects. 3 and 4. Below we give an
outline.

We define ε(n) to be a sequence whose terms converge to zero sufficiently slowly
so that the following is true (recall that the scalings converge to zero). Since

is comparable to a scaling, we have that either

or else:

Suppose (without loss of generality) the first is true.
Cover Ω2n-2 with {Λfn~2} and set

n2n-2~
2Π-2\S

IL
i = 0

At the next level of construction {A2"} covers Ω2n.
Choose X'Q" e U, and

xf

i

2neU(-t(a2n-ί-ί)q2n_1+q2n_2]) for ίe{l, . . . , α 2 n _ 1 } ,

such that one can use the one-sided Koebe principle to see that the maps indicated
by solid lines in Fig. 7.1 have the following properties:
i) They are almost linear,

V/////////////λ
u

a2n-1cl2n-1 q2n-1

Fig. 7.1. Propagation of the scalings along an orbit
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ii) The pieces intersecting Ω2n make up a fraction less than s(n) of the pieces
represented by the braces.
This can be achieved by noting that all relevant scalings tend to zero and applying
the one-sided Koebe principle. It is easy to check that the intersection with Ω2n

with the domains of the above maps together with their q2n-1 — 1 forward images
under / (except for the leftmost where one applies at most q2n-2 ~ 1 iterates of/)
form a covering of Ω2n with the following properties:
i) Each interval Λfn~2 of Ω2n-2 is split up in at least two intervals A2n whose

length satisfies \Ajn\<^2n)\Afn~2\.
ii) Each interval A2n~2 is split up in at most 1 -f 2max{α/c} sub-intervals.

Consequently,

Hs

2n= Σ \Afrm+2max{ak})s(2n)sHs

2n_2.
ί = 0

Since all relevant scalings tend to zero, we can easily pick a sequence ε(ή) such
that all the above holds. Since also the maximum diameter of the covering {̂ 4"} of
Ωn goes to zero as n increases, the Hausdorff s-measure of Ω must be zero for each
positive x. This implies the theorem. •

VIII. Concluding Remarks

We suspect that Theorem 4.6 for the orbit of the critical point is much more
general than the current content. A relation of the type

clearly also holds for renormalizable maps: the relevant case here is that of folding
maps with period doubling kneading sequence and (critical) circle maps with
golden mean rotation number. There is no simple proof of such a relation,
however. What one can prove for the unimodal maps (period doubling) is that
(Sullivan 1987,1988) the scalings are bounded away from one and therefore that
there is a K with

~<D{qn)σ{n)<K.

We also conjecture in the context of Sect. 7 that the Hausdorff dimension of the
set of parameters such that the rotation number of ft is irrational has Hausdorff
dimension zero. This is eminently reasonable, because scalings in that set are
(asymptotically) equal to zero.

Finally we wish to emphasize again that the exponent y solely depends on the
criticality. It might be a good tool to probe higher dimensional systems that can be
characterized by rotation intervals, for example Birkhoff attractors in a two
dimensional dissipative twist map. To such a Birkhoff attractor one can assign a
rotation interval.
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