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Abstract. We show the existence of the crystal base for the basic representation
of Uq($l(n)) by giving an explicit description in terms of Young diagrams.

0. Introduction

In [5] Kashiwara introduces the notion of crystal base for integrable representa-
tions of Uq(§), where g is any symmetrizable Kac-Moody Lie algebra. The crystal
base has a simple structure at q = 0. Let {ei9 fi91*} be a set of generators of Uq(o).
Suppose M is an integrable L^(g)-module. Kashiwara [5] constructs certain
operators eh / f acting on M. These operators are obtained by modifying the simple
root vectors ei and / f . When M is an irreducible highest weight module with highest
weight vecctor w, define:

(0.1)
and

J ϊ 0 } , (0.2)

where AczK = Q(q) is the ring of rational functions in q without pole at q = 0.
Kashiwara [5] conjectures that (L,B) satisfies the following crucial properties:

etL cz L and J{L a L, for all i, (0.3)

βiBciBu {0} and fiBcBu {0}, for all i, (0.4)

u = etv if and only if v=fιU, for all i and w, veB. (0.5)

He proves his conjecture for g = sί(n), o(2n + 1), sp(2n) and o(2π) and calls (L,B)
the crystal base.

In this paper we prove this conjecture for the basic representation of Uq(*l(n))
with highest weight Λo ( ^ ( ί * ) = q±ιδit0). We start with the Fock space representa-
tion of Uq(ξ>l(n)) constructed by Hayashi [3]. We identify the Fock space J^ with
the space spanned by Young diagrams [4]. Then for each i, we decompose $F with
respect to ί/q(sl(2))(i) generated by {ehfht^} (see, Theorem 3.1). This leads to the



80 K. C. Misra and T. Miwa

construction of crystal base (L(#"), B{^)) for & (Theorem 3.2). The set B{^) has
a structure of a colored oriented graph which Kashiwara [5] calls a crystal graph.
Let B(^)φ be the connected component of φ (the empty Young diagram) in the
graph of B{ίF\ The submodule of 3? generated by φ is the basic (7^(6l(n))-module
M(Λ0) with highest weight Λo. We can identify B{&)φ with the set of paths 0>(ΛO)
(see [2]). As shown in [1,2], the number of Λ0-paths with weight μ is equal
to dimM(Λ0)μ. Using these we prove Kashiwara's conjecture for M(ΛQ)
(Theorem 4.7).

1. Preliminaries

WeΛfollow the notations in [5]. We recall some essential facts. The ^-analogue
L/9(sI(n)) of the enveloping algebra of the affine Lie algebra ύ{ή) is generated by
{ei>fi>t? =zq±hi\0^ ifLn — 1}. These generators satisfy the following important
relations:

t j Γ q j 9 (1.2)

and

tΐfjtΓ=q-2«t>«)fj9 (1.3)

where (αt ,α( ) = 1. We will need the algebra Uq(gl(co)) which is generated by
{*?> /i°> *»* °° = q±h*° I ίeZ} (see [3]). These generators also satisfy the corresponding
relations (1.1)—(1.3).

Let M be any integrable t/€(sl(n))-module. For each i = 0, l,...,n— 1, let
l/€(sI(2))(/) denote the subalgebra of L^(sl(n)) generated by ehft and if. Note that
M is a union of finite-dimensional representations over C/ί(sI(2))(ί). Kashiwara [5]
defines the following operators on M:

^toMj- 1 ^, and J^tΐiqtt^r^U (1-4)

for i = 0,1,.. ., n — 1, where 4 t is certain element in the center of l/q(sl(2))(i). The
action of the operator (qt?Δ?)~1/2 is given as follows. Let v be a weight vector in
an(/+ l)-dimensional irreducible t/,(sl(2))(i) submodule of M. Suppose tfv = qι~2kv.
Then

^ = (^ + 1 - 2 + ^ i - > , (1.5)
and

(qt + Ar^v^q'il-q^T'v. (1.6)

Let K = Q(g) and >1 be the ring of rational functions in q without pole at q = 0.
Let L be a free ^-module such that K®AL^M and let B be a base of the Q-vector
space L/qL. The pair (L, B) is called a crystal base [5] of M if it satisfies the
following conditions:

L = ψLλ, (1.7)

where Lλ = LnMλ and M λ is the A - weight space of M,
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B=\jBλ where Bλ = Bn(Lλ/qLλ), (1.8)
λ

etL c L and JtL a L, for all ί, (1.9)

e f£cz£u{0} and /^cf iufO}, for all i, (1.10)

u = βfι; if and only if u =/ iu, for all i and u, veB. (l l 1)

As noted in [5] 5 has a structure of colored oriented graph. The colors are

labelled by i (O^i^n— 1). For u,veB, M-UI? when v = f(u. This is called the
crystal graph of M.

2. The Fock Space Representation of Uq(*\(ή))

In this section we will briefly describe the Fock space representation of Uq($\(co))
and ί/β(sl(n)) given in [3] with appropriate modifications. For more details we
refer the reader to [3].

Consider the lattice on the fourth quadrant of the xy-plane with sites
{(i,j)eZ2\i ^0, j S 0}. We consider edges on the lattice as oriented, starting from
(ίj) and ending at (i -h 1,j) or (ij +1), and labelled by the integer i +j. Any oriented
path on this lattice determines uniquely a Young diagram Y and conversely. For
example,

-2

-3

-4

-5

0

-4

1 2

0

-2

3

I 2

4 5 6

J 4

Fig. 1

In other words, given by Young diagram Y, we superimpose it on the lattice with
upper left corner at the site (0,0). Let 9 be the set of all Young diagrams. Let
J^ = ΣYeyK Y be the X-vector space having all the Young diagrams as base vectors.
A Young diagram viewed as a lattice path has several corners. We say the corner

is concave or convex depending on whether it is of the form »-i Γ" or _J *'.
i— 1

The lagebra Uq(ql(oo)) acts on the Fock space J*\ The actions of its generators
{eTJT^f = q±hΓ\ieZ} are given as follows. For 7 e ^ ,

ef Y = Ύ\ if Y has the convex corner J S
i— 1

then Y' is same as Y except this corner

becomes concave «-1 Γ~,

= 0, otherwise, (2.1)
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/?° Y = γ\ if Y has the concave corner «-1 Γ ,

then Y" is same as Y except this corner

becomes convex J »,
ί - 1

= 0, otherwise, (2.2)

t ϊ °° y = q ± ί γ9 if y has the convcave corner ί - i f ,

= g ** y, if y has the convex corner J *,
i— 1

= y, otherwise. (2.3)

Under the above action J* becomes an irreducible integrable L^(gl(oo))-module
with highest weight Λo (Λ0(h™) = δit0) and highest weight vector φ (the empty
Young diagram).

As in [3] (with suitable normalization) SF becomes and ί/^stywJJ-module where
the actions of the generators {ei9 fi9 tf = q±hι |0 ^ i < n} are given by the following
equations:

j = imodn \λ= 1 /

/«- Σ /

f± — π f± o° n fs\
j = imodn

Under the above action J* is an integrable L^(sl(rc))-module. However, it is not
irreducible as an Uq(Si(n))-module. Observe that as an L^(sΐ(«))-module the vector
φe^ is a highest weight vector with highest weight Λθ9 (/lo(^i) = δitΛ The space
M(Λ0) = Uq($l(ή))φ is the irreducible integrable highest weight L^(d(rc))-module
with highest weight Λo.

Given any Young diagram YeΦ/ we color the boxes in Y with n colors
i = 0,1,.. ., n — 1, as follows. The box with the upper left corner at site (ij) is colored
with (i -f X-color where (ί +j)' = (i +;) modft. Then observe that the action of et

(respectively / f) on YeW given by (2.4) (respectively (2.5)) is just removing
(respectively adding) a box of color i. For YEW, the weight of Y (denoted by wt(Y))

is Λo — Σ m ί α ί if Y contains m, boxes of color i, 0 ^ i < n.

3. Uq{*>\(2)) Decomposition of the Fock Space

For each / (0 ^ i < n\ let Uq(zl(2)){i) denote the subalgebra of Uq(Sl(n)) generated
by {^vfiytf}. We say a Young diagram is anti i-convex if all its convex corners
are non i-color. Given any Young diagram Ye®/ let Y(i) denote its maximal
subdiagram which is anti /-convex. Then Y is uniquely determined by the pair
(Y(i)9ε), where ε = (εl9 ε2,. ., εm), m = #{concave corners in Y(i) of color i},
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' 0, if the ; t h (counted from left to right)

concave corner of color i is vacant in Y,
and ε, =<

1, if the / h concave corner of color ί

is occupied in Y.

For example, let n = 2 and let white be color 0 and black be color 1. Then by
choosing i = 0, we have:

Y 7(0) ε

D Φ (1)

•i αι (0)

§
Πi ΓJi (1,0,0)

ΓJI (1,1,0)

Π i (1,0,1)

For any fixed ε = (ε l 9 ε 2,. . ., ε j we partition the set

into disjoint subsets by the following inductive procedure:

(1) If there is no j such that (ε J ,ε J + 1 ) = (0,1) then define J = {1,2,...,m}.
(2) If there is some j such that (εJ , ε J + 1 ) = (0,1) then define Ki = {jJ + 1} and

apply (1) and (2) to {1,2,..., m}\Kί to choose J or K2. Repeat this as necessary.

For example, if ε = (1,0,1,0,0,1,1,0), then m = 8 and J = {1,8}, Kί = {2,3}9

K2 = {5,6}, K3 = {4,7}. Note that this partition is unique up to rearrangements
of the sets Ks, l^s^t.

Let k = # {jeJ\8j = 1}. For any Young diagram Y = (Y(i),ε), ε = (ε 1 ? ε 2 , . . . ,ε m ),
and partition {1,2,...,m} = J LJ Kx LJ LJ Kt, we define

LYili Σ Σ qmJoJίK-

wnere

such that

Tj = 0 if jeJo,Tj=\ if jeJγ

andfor)</, {jJ'}eKs9

(τj,τr) = (l,0) if sεS
and

(τJ-,τ/) = (0,l) if sφS.
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For example, if Y = (7(0,(1,0,1,0)), then

Theorem 3.1. Fix an anti i-convex Young diagram Y(i) and a partition {1,2,..., m} =
" / U ^ i U U ^ t such that \J\ = l. For each fc = 0 , 1 , . . . , / there is a unique diagram
Yk with the data (7(0, J,Kl9...,Kt) such that #{jeJ\ε}= 1} = k. Furthermore,

yι== 0 χ [ y j . is the (I + l)-dimensional irreducible integrable Uq(sl(2)){i)-module

with highest weight vector [y 0 ],. . Set L{ = ® A\Yk~\i and Bt = {[yk],|fc = 0,1,...,/}.
fc O

(Li,Bi) is a crystal base for the Όq{ύ(2)){i)-module Vh

Proof. The first assertion is clear, for if J = {iu..., iξ} then there are precisely / + 1
choices for ( ε ^ , . . . , ^ , ) , namely, (0,0,...,0), (1,0,...,0),(l, 1,0,...,0),...,(1,1,...,1).

Now observe that if Y = (7(0, (ε l9 ε2,..., εm)), then the action of et and / ; on 7
are given by the following formulas:

l , . . . , β j - i , . . . , f i j ) , (3.2)

^ i j . . . , f i j + ^ . . ^ e j ) . (3.3)

It follows from (3.2) and (3.3) that when e( or / f act on [Y]f (see (3.1)) the terms
corresponding to JG{Γ, r H- p} = Ks for any se{l, 2,..., t} cancel each other. Further-
more, for any jeJ the sum of the contributions of j'e{r,r + p} = Ks for any
se{l,2,...,ί}, to the exponent of q in (3.2) or (3.3) is zero. Hence in order to
compute ^ [ 7 ^ or / ί [7 f c ] ί for any k = 0,1,..., /, without loss of generality we can
and do assume t = 0, m = l so J = {1,2,...,/}. Then by (3.1) we have

[l*]ι= Σ f^m^A)), (3-4)

where

and

such that ^ = 0 if jeJ0 and τ7 = 1 iijeJι.
Now applying ê  (respectively ft) to Eq. (3.4) and using formula (3.2) (respectively

(3.3)) we easily get, for 0 ^ k ^ /,

(3.6)

(3.7)
and

ΐm \ 1 l (3.8)

where [ y . J ^ O , and [^ + ^ = 0.
Observe that (see [5]) by the definitions,
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Now it follows from (3.5)-(3.8) that for 1 ̂  k ^ / we have

i ] < , (3-9)

and

i ] ί (3-10)

Hence the theorem follows. •

Theorem 3.2. Lei L(jF) = © AY and B{^) = <Sf. Then the pair (L(^), B{&)) is a
YsW Λ

crystal base for the integrable U q(ύ(ή))-module J*\

Proof. By the definition (see (3.1)), for each 0 <> i ^ n - 1, [Y^eL^) and
Y + qΣaΓY',aΓeA. For any weight μ, the μ-weight space J ^ of ^ is finite-

y

dimensional. Suppose dimx(^μ) = nμ. Choose a basis {Yl5 Y2,..., YΆμ} of !Fμ. Then
for each i,

([^i],, , [ i ; j i ) = ( n , ..,Y,,W + qX,l (3.11)

where X, is a nμx nμ matrix with coefficients in A. Since / + qXt is invertible in
A, it follows from (3.11) that for each i,

(3.12)Σ
Y"

So by using Theorem 3.1, we have

and

which gives the required result. •

The next proposition is an immediate consequence of Theorems (3.1), (3.2) and
the definition of crystal graph (see [5]).

Proposition 3.3. Let 7, YreB{^). In the crystal graph ofB{^\ Y -U Y' if and only if

ii) the partition {1,2,..., m} = J LJ K λ [_\ LJ Kt is the same for both Y and Y\
iϋ) £j = β'j far j Φr for some r e J, εr = 0, ε'r= 1, and for jeJ, Sj = ε'j = 1 if j < r,

ε. = ε^ = 0 Ϊ / ; > r.

4. Crystal Base for M(Λ0)

As in Sect. 2, let M(Λ0) a ^ be the irreducible highest weight Uq{ύ{ήj

with highest weight Λo and highest weight vector φ. For 7 e ^ , let [/1? / 2 , . . . , / m ]
denote the signature of Y.Let (gug2,...,gm) be the largest m-tuple of nonnegative
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integers (in lexicographic ordering) such that:

(1) gι^g2^ ^gm,

and

(2) fί-ng1^f2-ng2ϊ:.. ^fm-ngm^0.

Note that they are determined by the recursive formula

gj = gj+! + — — , ([x] denotes the integral part),

where gj = O for 7 » 0 . Define σ(Y) to be the Young diagram with signature
[ngί,ng2;...,ngm]. We say σ(Y) is the σ-component of Y.

Lemma 4.1. For Y9 YΈW.Y -U Y' for some U implies that σ(Y) = σ(Y').

Proof. Recall Proposition 3.3 which gives the condition for 7 - U f . Suppose that
σ(Y) has signature lngu...,ngm] and σ(Y') has signature [ng'u...,ng'm]. If
σ(Y) φ σ(Y'\ then g3 Φ g) for some . Let [/l9 / 2 , . . . , fp~] be the signature of Y{ί).
Then we must have the following situation:

(1) fj — fj+ι=(n— 1) mod n and we have concave corners of color i at the end
of the / h and (j + l) t h rows of Y(i). Suppose that these are the rth and ( r + l) t h

corners in the decomposition of Y = (Y(i),ε).
(2) (i) Either εr = έr — 0, εr +1 — 0 and ε'r + 1 = l,

(ii) or εr+ί=ε'r+ι=0, εr = 0 and ε'r = 1.

In the case of (i), r + l e J since ε r + 1 = 0 in Y and ε r + 1 = 1 in T. But in Y',
(εr, ε r + j) = (0,1), hence {r,r + 1}GKS for some s, which is a contradiction. Similarly,
(ii) also leads to contradiction. •

Lemma 4.2. For any Ye®/, Y = σ(Y) if and only if Y is highest in the sense of crystal

graph (i.e., there is no Y'e®/ such that Y' -U Y).

Proof Let \_fx, f 2 , . . . , / k ] be the signature of Y Suppose Y=σ( Y). Then fj -fj+i =
0 mod n. Hence the color of the last box of each row is the same as the color of
the concave corner of the subsequent row. So for any fixed z, if Y = (Y(ί), (ε l 9 . . . , εm))
with the partition {l,2,...,m} = J L J ^ i U ••• \JKt, then J = {m} with εw = 0 or
J = (/>(empty). In either case Y is highest in the sense of crystal graph.

Now suppose Y φσ( Y). Let \ng γ,..., ngk~\ be the signature of σ( Y). Then fj Φ ng^
for some j . Assume j to be the largest integer such that fj Φ ngj. Let i be the color
of the last box in the / h row of Y. Then Y = (Y(0, (fii,...,εj), {l,2,...,m} =
J U &i U LJ Kt and εr = 1, reJ, where the rth corner of color i which is occupied
corresponds to the last box of the / h row in Y Hence by Proposition 3.3 we can
find Γ e f such that Y' -U Y. So Y cannot be highest. •

Proposition 4.3. Let ZeW such that σ(Z) = Z. Let B(^)z denote the connected
component of Z in the crystal graph of B(&). Then B(^)z = {Ye^|σ(Y) = Z}.

Proof It follows from Lemma 4.1 that B(^)z^{Ye(3/\σ(Y) = Z}. Now suppose
YeΦ and σ(Y) = Z. We want to show that YeB(^)z. If Y = Z then there is nothing
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to prove. If Y Φ Z, then by Lemma 4.2, there exists Y1e
(W such that Yγ -> Y. Hence

using induction we get YeB{^)z as desired. •
Now define

L= Σ A7JH-7I*Φ (4.1)

and

B={v = fJi2 .fikφeL/qL\v*O}. (4.2)

Let M(ΛQ) C #" denote the irreducible integrable U q(s\(n))-module with highest
weight Λo (i.e., /lo(ίi±) = <?±1^io) a n d highest weight vector </>. Then M(Λ0) =
Uq(£l(n))φ.

Proposition 4.4. M(Λ0) = K®AL.

n-l

Proof. By definition, M(/lo)=>K®^L. For μ = Λo — £ m̂ α,- let M(Λ0)μ denote
i = 0

the μ weight space of M(/l0). By Theorem 5.4 in [2] (also see Theorem
in [1]) dim(M{Λo)μ) = #0>(Λo)μ, where 0>(Λo)μ denotes the set of Λ0-paths of
weight μ. But there is a one-to-one correspondence between 0>{Λo)μ and the set
{YeB(^)φ\wt(Y) = μ). (See [2]. Young diagrams in this paper and those in
[2] are transposed to each other.) For any YeB(^)φ by Proposition 4.3
there exists some (ίi,ί2> Λ) s u c ^ that Y = fiji2-'fihφ in L(^)lqUJF\ Hence
dim x (M (Λ0)μ) ^ dimK (K ®AL)μ for each weight μ. Therefore, M(ΛΌ) = K®AL. •

Lemma 4.5. (K ®A L) n L(#") = L.

Proo/. Let Lo = ]£ ^liJiτ"Ίi^Φ^ where for each YsB(^)φ we choose a

sequence (ϊ'l9Ϊ2> ••»*'*) s u c h t h a t fiιfi2'"fikΦ
=γ i n U^)IΦ^\ Then by an

argument similar to the proof of Proposition 4.4 we get M{Λ0) — K®AL0. Hence
K®AL=K®AL0.

Clearly L<=:(K®AL)nL(^) = (K®AL0)nL(βr). Now let ve(K®AL0)nL(^).
Then Z GL(J^) and i eKCx^Lo = M(/\o). Let t;eM(/io)μ for some weight μ and

άim(M(Λ0))μ = nμ. Then u = X c ^ , c feK5 y^L0. Also since I G L ( ^ ) , we have
i l

t;= ^ α.y., α l G Λ Y/G^. Then
t = 1

where X is an nμ x n# matrix with coefficients in A. Hence
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So

But since ateA, i = 1,2,...,nμ and / + qX is invertible in Λ, it follows that c{eA.
Hence v = Ϋ^Ciy^L, which completes the proof. •

Corollary 4.6. L/qLciL{^)lqL{^). So B is a subset of

Proof. It is enough to show that qL(^)nL = qL. It follows from Proposition 4.4
and Lemma 4.5 that

n L ( ^ ) n M(ΛΌ)

Theorem 4.7. The pair (L, B) is a crystal base for the irreducible integrable highest
weight Uq{ύ(n))-module M(Λ0).

Proof Let veL. By the definition fveL for all i = 0, l, . . . ,n — 1. For each
i,eit;eM(yl0) = K® i 4 L. Since LgL(J^), by Theorem 3.2 epsl^). Hence by
Lemma 4.5, eive(K®AL)nL{tF) = L. Now the result follows from Theorem 3.2,
Proposition 4.4 and Corollary 4.6. •
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