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Abstract. Solutions to the Knizhnik-Zamolodchikov equation for Verma modules
of the Lie algebra sI(n + l,C) are explicitly given by certain integrals called
Aomoto-Gelfand hypergeometric functions.

1. Introduction

The starting point of our study was the result of Christe and Flume [4], which
gave explicit integral representations of the 4-point functions of the Si/(2)
Wess-Zumino-Witten model as solutions to the Knizhnik-Zamolodchikov
equation. Similar results were previously obtained by Zamolodchikov and Fateev
[13]. On the other hand, Aomoto [1],[2] studied the integrals of the following
kind and derived a system of differential equations for them with respect to variables
zί9...,zN:

φ = Π (ί< - z « ) λ α ι Π (ί. - hYiJ Π (*« -
i>α i,j a,b

Here φ are rational functions whose poles are contained in the diagonal set
\J {tι = za} u (J {tt = tj} u[j{za = zb}, and λai, vij9 μab are complex parameters. This
i,a i,j a,b

kind of integrals are generalizations of hypergeometric function, and Gelfand and
others studied a class of generalized hypergeometric functions including (1.1) ([12]).
We call them 'Aomoto-Gelfand hypergeometric functions'.

If the parameters λai,vipμab take certain values, then the integral (1.1) reduces
to the one of Christe and Flume. In* this case, Aomoto's differential equation is
nothing but the Knizhnik-Zamolodchikov equation. A similar result on the n-point
functions was obtained by Date et al. [6].

In this paper, we shall generalize the last result to the SU(ή) Knizhnik-
Zamolodchikov equation. We briefly sketch our construction.
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Let g = s l ( n + l , C ) and let (,) be the Cartan-Killing form normalized by
(α,α) = 2 for any root α. Let FJ 1 ? . . . , VfN_ι9 V%N be irreducible Verma modules of
the lowest weight —λl9...9 — λN. The Knizhnik-Zamolodchikov equation is the
following system of differential equations for function Ψ(z) with values in

F ί J V , F ί 1 ® . . . ® F J J V _ 1 ) :

dΨ(z) = v X Ψ{z) Ωabd\og{za-zb). (1.2)

The operator Ωab will be defined by (2.1). Note that we have set Zjy= oo for
simplicity.

We have the following isomorphism.

^ {v*eVft® '--® VfN_ι\υ* is a lowest weight vector of weight — λN}. (1.3)

We fix a basis {w*(]?)} of weight space of weight — λN of representation
V*x® * ® ̂ * N _r For each index /?, we assign an Aomoto-Gelfand hyper-
geometric function

with the Φ determined by the data of the representations. We define

For certain choice of u*(p) and φ("p), w*(z) becomes a lowest weight vector
in Vfι®" ®VfN_ι of weight — λN9 and therefore determines *F(z) in
H o m ^ F J ^ F ^ ® . . " ® ^ ^ ) by (1.3). This «F(z) satisfies the Knizhnik-
Zamolodchikov equation.

In Sect. 2, we will give the detailed description of the result. Its proof will be
given in Sect. 5, for which we will prepare Sects. 3 and 4.

After completing this work, the author received the announcement of Schechtman
and Varchenko [9]. It covers any symmetrizable Kac-Moody Lie algebra using
different expressions of the integrands from the present ones.

2. Statement of the Theorem

Let g be a simple Lie algebra and (,) a fixed invariant bilinear form of g. Let Xt

be a basis of g and X( the dual basis with respect to (,). Let Vf denote a lowest
weight g-module with the lowest weight — λ. For a given sequence of weights
λu...,λjy_ 1 ? λ N 9 we consider the following operator acting on FJ t ® ® VfN_ι

where pa(x) signifies the action of xeg on the a-th component of the tensor product
^ * t ® ® ^λw-i Qb d ° e s not depend on the choice of {Xj. The Knizhnik-
Zamolodchikov equation is the following system of differential equations for a
function Ψ(z)= Ψ(zί9...9zN^ί) with values in Hom g(FJN, F J t ® •• ® VtN_J:

d Ψ(z) = v X Ψ(z)Ωabd log (za - zb). (2.1)
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In this paper, it is assumed that Vf. is the Verma module with the lowest weight
— λt and v is a generic complex parameter.

We have the following isomorphism of vector spaces which commutes with the
action of Ωab.

^ {v* e V\x (x) (g> VfN _ j I y* is a lowest weight vector of weight — λN}. (2.2)

Note that this depends on the choice of the lowest weight vector in V*N.
From now on, we assume that g = ύ(n + 1,C), the simple Lie algebra of type

An9 and (,) is the Cartan-Killing form normalized by (α,α) = 2 for any root α.
Let Eij denote the elementary matrix:

We set ^ ' J

Hij = Eu - EjP Fij = Eβ

for any i, j such that 1 ̂  ί < j f^ n -f 1, and

for any i such that 1 ̂  i: rg n. Let α̂  be the simple root corresponding to //f and let
a.j = oCj H- -I- Oy_ i, (Ϊ < /) be the positive roots.

We set

Vector of the representation space shall be parametrized by elements of P(n, N).
Fix a lowest weight vector vfaeVfa. We define the ordering on {£ ί ; } by

^ ^ jj>l or
Eij>Eklo< . (2.4)

y = / and i > k.
The following vectors form a basis of V\a by the Poincare-Birkhoff-Witt theorem.

Here Eu are arranged according to the ordering (2.4), and ~pa = {pa

tj} runs over all
sequences of non-negative integers.

Suppose that there exist non-negative integers mi such that

( 2 ' 5 )

We consider the following vector

(2.6)
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where ~p = {pa

hj}eP(n,N) and they satisfy

Σ Σ "Σ **/=«< (2 7)
^NlΛ 1 j i+l

Σ
-lΛ = 1 j

for each i (1 :§ i g n). This condition means that the weight of u*(~p) equals to — λN.
We shall describe certain integrals also parametrized by ~peP(n,N).
Let Si denote an index set with m, elements for each i (1 g i g n). We prepare

the following integration variables:

(2.8)

Introduce a total ordering « on the set {(Ϊ,S); 1 S i ύ n, seSt} and define

Uι,s)«(iV) l O' * ) b = 1

For each ~peP(n,N), consider the following sets.

S(p) = {(α,h, ;,g); 1 ̂  α ^ JV - 1,1 ^ Λ < j ^ n + 1,1 <

S£(p) = {5 = (a,Kh^)eS(p);h£i< j}. (2.10)

If "p satisfies (2.7), then SiCp) has mt elements. We therefore take a bijection

Pi'Siypj—tbi. (^ H)

For

and

each s = (ι

define

a9hJ,q)eS(p), we

ί} >

set

1
_ ί ( s , + i ) Jtfi

Π
seS(p)

1

φis\ (2.12)
seS(p)

The integral is defined by

I(p)(z)=SΦφ(p)dt, dt=Y\dtγ\
Γ (us)

Here the Γ, a closed contour as a cycle of the twisted homology defined by the Φ, is
assumed to satisfy the following condition. Let S m . be the group of all permutations
on the variables {ίj^ s e S j for each i. It is the symmetric group of mΓth order. We

n

define Θ(m l9..., mj= f ] Sm., then it acts on the set of variables {t\s); 1 ̂ ί ^ n , seSj.
i = l

Let D denote the diagonal set:

D = \J{ti = ze}<j\J{tt = tj}. (2.13)

Then the condition for the contour Γ is given by

Assumption 2.1. For any rational function φ with poles in D, the integral { Φφdt
is invariant with respect to any permutation in (Z(mu..., mn). Γ

Remark 2.2. The first product in the right hand side of (2.9) is invariant with respect
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to (Z(m1,..., mj, because if i = i' then (αt , αΓ) = 2. The second one is also invariant
obviously. Hence we have no ambiguity of choice of branch of Φ under the
permutation. The integral I(p) is uniquely determined by ~p and JΓ; it does not
depend on the choice of the bijection (2.11).

We finally define

w*W = Π (*« - zb)
{λa λ b ) v Σ Πp)u*(n (2.14)

a<b -β

where the summation is taken over all sequences ~p satisfying (2.7).

Proposition 2.3. w*(z) is a lowest weight vector, that means that the equality

Jyw*(z) = 0

holds for any i (1 ^ i 5Ξ rc).

/ί determines an element Ψ(z)sHomςi (V*N, Vf{ (x) ® KJN_ t), because the weight
ofw*(z) equals to — λN. Then we obtain the theorem.
Theorem 2.4. Ψ(z) satisfies the Knizhnik-Zamolodchikov Eq. (2.1).

3. Lemmas on Partial Fraction Expansion

The results in this section is independent of the ~peP(n, N). We will define two
equivalence relations in the set of rational functions whose poles are contained in
the diagonal set D defined by (2.13). Let φ, φ' be two such rational functions. We
write φ ~ φ' if φ — φ' is anti-symmetric under a permutation of (δ(m l 5 . . ., mn), and
write φ&φ' if there exists a rational form η with poles in D such that
Φ(φ — φ')dt = d(Φη). Here d denotes the exterior differentiation with respect to
the variables {tf}}. We consider the equivalence relation generated by ~ and write
it by the same symbol. The equality

J Φφdt= J Φφ'dt
r r

is then implied by these equivalence relations. Note that for ~ this follows from
Assumption 2.1, and for « from the assumption that the contour Γ is closed. For
example, let

φ =
1

(s) _ As')
ί ι\'

then φ ~ 0 and we have J Φφdt = 0.

For any a,h,j such that l ^ α ^ i V - 1 , \<,h<ji^n+l and for any set of
variables {fί50}/,^^, we set

a (t(sh) t(Sj - , ) \ _ | π * » *
Ψhj\lh > 5 r j - l j — '

Remark 3.1. Consider the equivalence class of the product Y\ φ ^ J ί j ^ ' ^ , . . . ,
k=l

tj*iJ\~ι)) with respect to ~ where the 5 f c ίeS ί(/c= l , . . . ,m) are distinct for each i.
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m

Since it does not depend on the choice of sM, it will be written by f ] φ{£Jk in the
sequel. If Λ =7 then we understand φa

hj=l. k = 1

We set

Θ(C):={1 i ff i s t r u e '
(0 otherwise,

for any statement C.

Lemma 3.2. For any indices a,b, and ha,ja,hbjb such that l^aφb^N — 1,
1 g ha <ja g n + 1 , 1 ̂  hb <jb :g n + 1, we take s^Si for ha g i<ja and s^eSi for
/ifc g i <jb such that {sj and {s } are disjoint. Then we have

Oα-i ib-i (αf,αΓ) \ ( s (s - 0 fc s ' (s' -1)

.]JL . , L ^S.) _ ^Sί) J(f)haja(
thaa » J 0 ^ - ^ )(Phbjb(

thb

b 9 "> tjb- 1 )

K α 6 = ~ Σ o ( - l ) Γ

 t _Σ < ( (PljMon-K-uM

Here (,) denotes the Carton-Killing form and ai are simple roots.

Remark 33. Kab and Lab are explicitly written by

fja-2 X

1 1

1

L -(J°

Lemma 3.2 can be proved by easy calculation using partial fraction expansion.
Following two lemmas are corollaries to the Lemma 3.2.

i )

Lemma 3.4. For any hj and i such that 1 ̂  ft<;'^ n + 1, 1 g i ^ n, we

if ί = ft-l,

-i if * = ; - ! ,

otherwise,

provided sΊΦSi.
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Proof. We apply Lemma 3.2 to the following:

Qa

hj(t{

h

Sh\..., t{$L\ι))φb

ii + i ( ί | s f ) ) .
hti — lk

We multiply the both side by za — zb and let zb tend to infinity, then we obtain the
result.

Lemma 3.5. For any h, ij, a, b such that 1 Sh = i<j ύ n + 1 cmd \ i^aφb ^N — 1,
we have

C Z Z Z ^ 0 h

Proof. The left hand side is written as:

a (Λsh)
Asι) , ( S l + 1 ) Ψ / i ί + i i ί / 1 » > t i ; ψ i + i j l Γ i + i j > t j - i
Γ i ~~ f i 4- 1

Applying Lemma 3.2 to this, we obtain Lemma 3.5.

4. Lemmas on Action of g = sl(/ι -f 1, ^ )

In this section, we shall describe the action of elements of the Lie algebra g on the
vector u*(p) defined by (2.6). For any a,hj such that 1 ̂ a^N — 1,1 ^ / i < j ^ n + l
let ~&a

hj be the element of P(n. N) such that its ^-th component is 1 and the others
are 0. If h </:j, we understand that all components of ~εa

hj are 0. We can prove the
following lemma by straightforward calculation using the following relations.

φ Ek{] - θ(i = k){θ(j < l)Eβ + θ(j > l)Fu}

VH.φEkl~] = {θ(i = k) - θ(i = /) - 00" = k) + 00' =

Lemma 4.1. For any a, h, i and ~peP(n, N) such that l ^ α ^ N - 1 ,
we have

pa(Ehi)-u*(-p)

= Σ

Σ(-!) r Σ (
r > 0 i i < < ir = i



72 A. Matsuo

r>0

r>0

h

iι

t i

1 ̂ r

ii

Σ
< <ir = i
<h'<j<iι

Σ
< <ir = i

Σ '
< •• <ir=zi

- Σ ( - ! ) r Σ («M,.-υ « (p-'eM1--e?lll n - .
r > 0 Λ < ii - < JV = ί

if~p'$P(n,N), then we understand u*(p') = 0.
As a corollary of this lemma, we obtain Lemma 4.2.

Lemma 4.2. For any i and ~p = {pa

hj} such that 1 ̂  i ^ n, we have

pa(Fi)'U*(p)= £ ( p ? + υ + l ) M * ( p + " e ? + l j - ^ )

7=1

fe,λβ) + ' Σ Pi,- - Σ rfί+1 +1 j W*(P - ^ + 1 ) .

5. Proof of the Theorem

Proof of Proposition 2.3. For each /(I <; / ̂  /ι), let p r = { P ^ }GP(«, N) satisfy

Σ Σ "Σ P'W = ™ ( - I - (5.1)
α h = 1 j = f + 1

We set Sfc(p') as (2.10). Take bijections βk:Sk(p)^Sk for kΦU and an injection
β S i . Let sJeS,. be the unique element such that sJ ĵS^SfCp)). We define

) = Σ ̂ (s)

similarly to (2.12). Then the variable t\s'ύ is not contained in φ(pf). We have

where

(ahλa)v " (α;,αfc)v \

Σ Σ M) ΛSU) MP )•
k=lskeSk

ιi ~ lk J
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To the first term of the right hand side, we apply the following obvious identity:

f(si) _ φ(Ί>') = <P(P' + ««+1 )•

To the second term, we apply Lemma 3.4. Then we have

' Σ P'li<P(P' -Άi + Άi + 1)+ ^ PIMP' ~ e?+ U + βy)}•

We therefore obtain

! ^ ' ^ ) - Σ PΪH + 'Σ
p. α L l ft=l ( i = 1

Σrt i(F-ί!i + ̂ +i)+ "Σ

Here the first summation is over ~p' = {p'ahj} satisfying (5.1). We put ~p = ~p' + Tfi+ x

in the first term of the right hand side, /? =]Γ - "ε ίi + ^ +1 in the second, and
~p =~p' -7a

i+ u + "εy in the last. Altogether, the right hand side reads as

The summation is over ~p = {pa

hj} satisfying (2.7). Comparing (5.2) with the action
of F( on u*(p) described in Lemma 4.2, we conclude that

0 =
)Σ f ^

= - v

Proo/ of Theorem 2.4. For simplicity, we write ήs) instead of t\βi{s)) for any
s = {a,hj,q)eSi(p) a S(~p). We begin with

VZa<P(Ί>) = \ g^~log Φ + — log ψ(p)

= Σ , ( s b ) . z + Σ aiSa) _
t(tb,Sb) ιib

 za sa=(a,ha,Ja,qa)
lja-l
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On the other hand, we have the following relation for any sa = (a,haJa,qa)eS(p)
and ia(ha ^ ia <ja).

0 « Vt

, S α ) ) Γ i α " " Γ i b Γ h α ~~ lha + 1

Summing up the right hand side of this relation with respect to ia, we obtain

^ - Σ Σ ^ z y(p) + .Σfc Σ w .Σ ^ ) , ^ >

From (5.3) and (5.4), we obtain

vχ,y(p)« Σ j - Σ *(*b)_z + Σ λ -^) i-— L w Σ ^ . ^
b{Φa) I (ib,sb) ί i b 2 α (ια,sb) c ί α

 z b (iα,sα) (ib,sb)
 ι i a

 ιhb

(5.5)

The following identity follows from Lemma 3.5.

Σ Σ zj— Ψ(P)~—l— Σ Σ Σ(-Dr Σ
b(Φa) {ib,sb) tib

 Za Za Zb HΦa) sb = (b,hb,jb,qb) r ^ O h = hb

Applying this identity to the first and the second term of (5.5), and applying
Lemma 3.2 to the third term by the same way, we see that the right hand side of
(5.5) is equivalent to

^ -(Aab-Aba),
b{Φa) Za - Zh

where

Aab = Σ PljaPHbJb WK ^ Ja < h)B, + Θ(ja = jb)θ(ha > hb)B2
ha,hb,ja,jb

hb<jb ib = h

(-!)r . Σ .
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B2 =

B3 =

B< =

Hence we

-φ(p-Άbjb^

+ φ{~p)-φ{~p-

-φ(~P+~εb

haja-

~fo (~1 ) r.
have

<*Σ/(?)•"*(

ί o Σ t

H-φ(p-e h S f c A -"ε ; α Λ

+ <?(?),

•Σ Σ diog(za-zbyu
f aΦb

*(~p) $
Γ

75

(5.6)

The coefficient of v dlog(zfl — zb)I(p) is given by

i + c 2 ) +

+ Σ.
Ab.Jb

where

β # Λfc) Σ ( " n Σ
r > 0 ja<iι< <

•«*(? + Abjb + ~εlja--εa

hbja -?lh ^l-^-Ah) (from B,)

C2 = Θ(Λ6 g 7 a < jb)θ(ha Φ hb)-u*{-p + < i α + < A - T ^ . - T ί . Λ ) (from β,)

λfc) «*(^ + TJW. + TJ.;. - T j ; ^ -TJ. A ) (from B2),

6)Σ(-DΓ Σ
Γ>0 iα<»l< < i r ^ j b

•»*(?+«w,-«ί.ι, eΐ.-,i,-'«U ( f rom βi)

C4 = 0(Λfc g ;fl < jb)θ(ha Φhb)Σ(-Vr Σ

n - . v-^U) (fr°m Bi)
U-«ω ( f r o m β2),

C 5 = - β(jfl = Λ)0(*β < *»)•«*(?+T^.-Ύl jJ (from B2),

ΣΣ
r>0

- β ( ; β = jb)θ(ha = hb)-u*(p+-εb

kaJa - T ί j . ) (from B3),

{θ(ja < jb)θ(ha = hb) + θ{ja = jb)θ(ha > hb) + θ(ja = jb)θ(ha = hb)} u*(p)

-Σ(-Dr Σ Y K Λ )
Γ > 0 hb<iι< <ir^jb ίb=hb

•u*(p+-εb

hbjb--εa

hbit--εa

iιi2 T ? . l ί r - T t Λ ) (from B4),

-Kv^)"*(P) (fromBJ.



76 A. Matsuo

Note that the following identities can be proved by using the symmetry with respect
to a and b:

Σ Σ (P!.,. + I)(PU + I ) C 2 = Σ Σ 0>ί
aΦb ha,ja,hb,jb aΦb ha,ja hbjb

Σ Σ {pljaiplj, + i)Q + (ptaJa + i)pihc5}
aΦb ha,ja,hb,jb

= Σ Σ Plύiplj* +1)^45,
aΦb ha,ja,hb,jb

where

C 2 = θ(ha > hb)• u*(p + T U + ^ α

h α J < i - - ε l t J a -

cA5 = θ(hβ*hb)Σ(-iY Σ
0 j i < i ^ j

We rewrite (5.6) by these identities. Comparing the terms, except C 7 and D 2 , with
the terms of pa(Fhbi)<8)pb(Ehbi)'u*(p) described in Lemma 4.1, we obtain

Σ dlog(za-zb)I(p)\ Σ Pa(Fhbir)®Pb(Ehbir)
a>b \<hb<ir

+ Σ Pa(Ehbir)®ρb(Fhbir)- Σ Phbjb(*hbjb,K)
hb < ir hb < j b

- Σ P U ( « W . A ) + ( Σ + Σ )pljAbJb}-u*(-p). (5.7)
ha<ja \ha=hb ja = jb / )

Note that we have changed the range of the summation from aΦb to a<b. We
finally consider the action of Cartan subalgebra. Let {H1} denote the dual basis
to {Ht} with respect to (,). We have

u*{p) = (-λa+ Σ Plja«ia, -K + Σ
ha^ia<ja hb^ib<jb

.Λ)- Σ FLUKM- Σ
/lα ^ ία < ja Λb ^ l'b < Jb

+ ( Σ Plύ)( Σ fo
\ha^ia<ja J\hb^ib<jb / )

(5.8)

The following relation is easily obtained by simple calculation using the explicit
values of (<tia,a.lb).

( Σ + Σ )pljAbJb-u*(-p)
\ha = hb ja = jbj
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Comparing (5.7), (5.8), (5.9), we obtain

Σ t
h < i i = 1

This is nothing but the Knizhnik-Zamolodchikov equation (2.1).
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