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Abstract. Solutions to the Knizhnik—Zamolodchikov equation for Verma modules
of the Lie algebra sl(n+ 1,C) are explicitly given by certain integrals called
Aomoto-Gelfand hypergeometric functions.

1. Introduction

The starting point of our study was the result of Christe and Flume [4], which
gave explicit integral representations of the 4-point functions of the SU(2)
Wess—Zumino—-Witten model as solutions to the Knizhnik—Zamolodchikov
equation. Similar results were previously obtained by Zamolodchikov and Fateev
[13]. On the other hand, Aomoto [1],[2] studied the integrals of the following
kind and derived a system of differential equations for them with respect to variables
Ziseees Iyt

[@pdt, --dt,,
o=T1(~ 2= 16— T] o=z (L1)
,a LJ a,

Here ¢ are rational functions whose poles are contained in the diagonal set
U {ti=z,}u U {ti=t;}u U {z,=1z,}, and A, v;j, u are complex parameters. This

kmd of lntegrals are generallzatlons of hypergeometric function, and Gelfand and
others studied a class of generalized hypergeometric functions including (1.1) ([12]).
We call them ‘Aomoto—Gelfand hypergeometric functions’.

If the parameters 4, v;;, 4, take certain values, then the integral (1.1) reduces
to the one of Christe and Flume. In this case, Aomoto’s differential equation is
nothing but the Knizhnik—Zamolodchikov equation. A similar result on the n-point
functions was obtained by Date et al. [6].

In this paper, we shall generalize the last result to the SU(n) Knizhnik—
Zamolodchikov equation. We briefly sketch our construction.
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Let g=sl(n+ 1,€) and let (,) be the Cartan—Killing form normalized by
(a,) =2 for any root a. Let V% ,..., V¥, _,, V%, be irreducible Verma modules of
the lowest weight — 4,,..., — Ay. The Knizhnik—Zamolodchikov equation is the
following system of differential equations for function ¥(z) with values in
Hom, (V¥ Vi ® - ®@ V%, )

d¥P(z)=v Y Y(2)- Q,,dlog(z, — zy). (1.2)
12a<bsN-1
The operator €2, will be defined by (2.1). Note that we have set zy = oo for
simplicity.
We have the following isomorphism.

Hom,(V%,. Vi ® - ®V%,_)
~ {v*eV l® -@ V%, ,Iv* is a lowest weight vector of weight — Ay}.  (1.3)

We fix a basis {u*(p)} of weight space of weight — iy of representation
Vi®---®V%, .. For each index p, we assign an Aomoto—Gelfand hyper-
geometric function

P)=[Po(p)dt
with the @ determined by the data of the representations. We define

w¥(z) = Zl(p) u*(p).

For certain choice of u*(p) and (p(p), w*(z) becomes a lowest weight vector
in V}{®---®V%, , of weight — 1y, and therefore determines ¥(z) in
Hom, (Vi,, Vi ® - ®V%,.,) by (1.3). This Y¥(z) satisfies the Knizhnik—
Zamolodchikov equation.

In Sect. 2, we will give the detailed description of the result. Its proof will be
given in Sect. 5, for which we will prepare Sects. 3 and 4.

After completing this work, the author received the announcement of Schechtman
and Varchenko [9]. It covers any symmetrizable Kac—Moody Lie algebra using
different expressions of the integrands from the present ones.

2. Statement of the Theorem

Let g be a simple Lie algebra and (,) a fixed invariant bilinear form of g. Let X,
be a basis of g and X' the dual basis with respect to (,). Let V* denote a lowest
weight g-module with the lowest weight — A. For a given sequence of weights
Ays...An—1, Ay, we consider the following operator acting on Vi ® ---® V%, _,

Qab = Z pa(Xi)® pb(Xi)v

where p,(x) signifies the action of xeg on the a-th component of the tensor product
Vi®--®@V%,_,. 2, does not depend on the choice of {X;}. The Knizhnik—
Zamolodchikov equation is the following system of differential equations for a
function ¥(z) = ¥(z,,...,zy—,) with values in Hom (V%V} ® - ® V%, )
d¥(iz)=v Y ¥(2)Q2,,dlog(z, — zp). (2.1)

1<a<bsN-1
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In this paper, it is assumed that V% is the Verma module with the lowest weight
— 4; and v is a generic complex parameter.

We have the following isomorphism of vector spaces which commutes with the
action of ,,.

Hom (V%,,Vi® - ®Vi, )
= {v*eVi ® - ® V%, _ |v*is a lowest weight vector of weight — Ay}, (2.2)

Note that this depends on the choice of the lowest weight vector in V¥, .
From now on, we assume that g =sl(n + 1, C), the simple Lie algebra of type
A,, and (,) is the Cartan—Killing form normalized by (a,a) =2 for any root a.
Let E;; denote the elementary matrix:

We set
F..

2]

=E.

J

Hiszii_E

jis
for any i, jsuch that 1 i< j<n+1, and

H;=H;,,, Fi=Fii+1, E;=E;y

for any i such that 1 <i < n. Let o; be the simple root corresponding to H; and let
a; =0+ - +a;_y, (i < j) be the positive roots.
We set

P, N)={p={pi;}, ISasN-L1Zh<jsn+1, piels,}.

Vector of the representation space shall be parametrized by elements of P(n, N).
Fix a lowest weight vector v} e V¥ . We define the ordering on {E;;} by

j>1 or

> E 4
e "'o{j=l and i>k. 24

The following vectors form a basis of V¥, by the Poincaré—Birkhoff-Witt theorem.

PR n 47 141

v oy Enntt EF O EYR

ul (7)) =—0"——; R 1)

Pnn+1+ Pijs  DPi2:

Here E;; are arranged according to the ordering (2.4), and 7* = {p{;} runs over all
sequences of non-negative integers.

Suppose that there exist non-negative integers m; such that

/11+.“+/1N—1_/1N= Zmiai. (2‘5)
i=1

We consider the following vector

N-1
u*(p)= @ uf (peVi® - @ Vi, _, (2.6)
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where P = {p;;}€P(n, N) and they satisfy
i n+1
Z Phj=m; (2.7

12asN-1h=1 j=it+1

for each i (1 < i < n). This condition means that the weight of u*(7) equals to — 4.
We shall describe certain integrals also parametrized by peP(n, N).
Let S; denote an index set with m; elements for each i (1 <i<n). We prepare
the following integration variables:

{t9;1<i<n,seS;}. (2.8)
Introduce a total ordering « on the set {(i,s); ] <i<n, seS;} and define
N-1 Y
@:{ [T @@= T 11 (t?)—z,,)“““"”} . (2.9)
L9« (i,s) (i,s) b=1
For each peP(n, N), consider the following sets.

S(P)={(@h j,qs1<as<N-1L1Zh<j<n+1,1Zq=p;},
S{(P)={s=(a,h, j,q)eS(P)h=i< j}. (2.10)

If 7 satisfies (2.7), then S,(p) has m; elements. We therefore take a bijection

Bi:S{(P)=S.. (2.11)
For each s =(a, h, j, q)eS(P), we set

(s) = 1 1 ()
= - ) S = .S,
o=\ U m—mw Ja s F

and define
o(@) =[] o“. (2.12)

seS(P)

The integral is defined by

1P)2) = | ®o(P)dt, dt=[]dt¥.
r (i,s)

Here the I, a closed contour as a cycle of the twisted homology defined by the @, is
assumed to satisfy the following condition. Let S, be the group of all permutations
on the variables {z{%; seS ;} for each i. It is the symmetric group of m;-th order. We

define S(m,,...,m,)= H S, then it acts on the set of variables {t{7; 1 <i<n,seS;}.

Let D denote the dlagonal set:
D={){ti=zuJ{t:=1;}. (2.13)
ia i,j

Then the condition for the contour I” is given by

Assumption 2.1. For any rational function ¢ with poles in D, the integral j Dpdt
is invariant with respect to any permutation in S(m,,...,m,).

Remark 2.2. The first product in the right hand side of (2.9) is invariant with respect
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to &(m,,...,m,), because if i =i’ then (o;, ;) = 2. The second one is also invariant
obviously. Hence we have no ambiguity of choice of branch of @ under the
permutation. The integral I(7p) is uniquely determined by p and I'; it does not
depend on the choice of the bijection (2.11).
We finally define
=[] (za—z,)* ’“”“Zl(p Yu*(p), (2.19)

a<b
where the summation is taken over all sequences p satisfying (2.7).
Proposition 2.3. w*(z) is a lowest weight vector, that means that the equality
F,w*(2) =

holds for any i (1 £i<n).
It determines an element ¥(z)eHom (V1V} ® - ® V¥, ), because the weight
of w*(z) equals to — Ay. Then we obtain the theorem.

Theorem 2.4. ¥(2) satisfies the Knizhnik—~Zamolodchikov Eq. (2.1).

3. Lemmas on Partial Fraction Expansion

The results in this section is independent of the peP(n, N). We will define two
equivalence relations in the set of rational functions whose poles are contained in
the diagonal set D defined by (2.13). Let ¢, ¢’ be two such rational functions. We
write ¢ ~ ¢’ if ¢ — ¢’ is anti-symmetric under a permutation of &(m,,...,m,), and
write @ & ¢’ if there exists a rational form n with poles in D such that
D(p — ¢')dt = d(Pn). Here d denotes the exterior differentiation with respect to
the variables {t{}. We consider the equivalence relation generated by ~ and write
it by the same symbol. The equality

| @odt=| ®yp'dt
r r
is then implied by these equivalence relations. Note that for ~ this follows from

Assumption 2.1, and for ~ from the assumption that the contour I is closed. For
example, let

1
O

then ¢ ~ 0 and we have | @odt =

r
For any a,h,j such that 1 <a<N-1, 1<h<j<n+1 and for any set of
variables {t"}, ;. ;, we set

i—2
(ph (t(Sh) ‘,t(fsi-ll)): H 1 1
J i~h t(Sx)_t(.si+1) t(,si'~x)_z

Remark 3.1. Consider the equivalence class of the product H Ot (emd

t%%=) with respect to ~ where the s,;€S;(k=1,...,m) are dxstmct for each i.
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Since it does not depend on the choice of s, ;, it will be written by H @4, In the
sequel. If h = j then we understand ¢j; = 1.
We set
1 if Cis true
0(C):= ’
© {0 otherwise,

for any statement C.

Lemma 3.2. For any indices a,b, and h,,j,, h,,j, such that 1 <a#b<N —1,
1Sh,<j,En+1, 1<h,<j,sn+ 1, we take s;eS; for h,<i<j, and s.eS; for
hy <i<ji, such that {s;} and {s;} are disjoint. Then we have

Jaz1 ezl (g o) ( ) (
( 2 X s ) Praia B0 GO (0 )
T W

i=hq i'=hp

~ {0(.’41 <.] b)g(hb é]a)Kab + G(Jb <]a)0(ha g]b)Kba + G(Ja =]b)Lab}Z

’
where
— 1y a a ..mn? b
Kab__z( 1) Z PhyjaPiois " Pir— iy Pirjps
r20 i0 = ha,io <iy
JaSii<--<irZjp

Lab = - ((p:aja - (pzaja)((pgbjn - (Pl;'bja)'

Here (,) denotes the Cartan—Kiiling form and o; are simple roots.

Remark 3.3. K,, and L,, are explicitly written by

ja=2 1 1
Kab = (igbtgsé) _ t%ﬁil)) tﬁ}':—ll) —z,

ja=2 1 1 1

(igu & — tgﬁi'))<t(s’i-1‘) t(sJ" tﬁ’" e Za)
Jo=2 1 1 1 1

{ i (t?“ — i) 0 - za) Kt&f}é;" —z, 30— zb>’
ja=2 1 1 1
ja=2 1 1 1

Lemma 3.2 can be proved by easy calculation using partial fraction expansion.
Following two lemmas are corollaries to the Lemma 3.2.

Lemma 3.4. For any h,j and i such that 1 Sh<j<n+1,1<i=<n, we have

— 05 if i=h-—1,
ict (o, 04) o0 =) Ohi+ 10541 if i=j—1,
Z t(sé) t(sk) (P'U (t ° tfi 1 ) ~ a a _a : : .
k=hti == %% Ghiv1— PP A i=],

0 otherwise,

provided s; # ;.
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Proof. We apply Lemma 3.2 to the following:

IS (o, )
( Z : l [(Sk) hj(t(SH) t(sj “)goui- l(t(s ))
—

K=t

We multiply the both side by z, — z, and let z, tend to infinity, then we obtain the
result.

Lemma 3.5. For any h,i,j,a,bsuchthat | Sh<i<j<n+land1 La#b<N—1,
we have

(sn) (55-1)
qohj(ts",...,tfil‘)~ - Z (—1y Z ‘/’?oix“'(l’?rqir(l’?rj'
a " Zprzo io=h

i<ip<-<ip<j

t(sx _

Proof. The left hand side is written as:
I a (sn) $9) (si+1) (- 1)
ES) [(sl“)(ﬂhHl(th s )@ (Y, 52 Y).
[ R |

Applying Lemma 3.2 to this, we obtain Lemma 3.5.

4. Lemmas on Action of g =sl(n + 1,%)

In this section, we shall describe the action of elements of the Lie algebra g on the
vector u*(p)defined by (2.6). Foranya, h,jsuchthat | Sa<N—-1,1Zh<j<n+1
let €%; be the element of P(n. N) such that its §;-th component is 1 and the others
are 0. If h £ j, we understand that all components of €}; are 0. We can prove the
following lemma by straightforward calculation using the following relations.

[E;;, En]=0(j=k)E; — 0(i=DEj,
[Fij, Eq1=0(i=k){6(j <DE;+ 0(j > )F,;}
— 00 = D{6( <k)Fy + 0(i > k)E,;}
+ 0 = k)0(j = DH,;,
[Hy, Ed={0=k—0i=1)—0(=hk+0(=0}E,.

Lemma 4.1. Forany a,h,iand peP(n,N)suchthat 1l Sas<N—-1,1<h<ign+1,
we have

Pa(Ey) u*(P)

ijs

ij>

=j; (Phy + D)-u*(P + €5 — E5),

PalF i) u*(P)

Z (Pl + 1) u*(p — € + €5)
j=it1
+ 2 (=1 Y Pyt Du(P e — e =, —E e, — o —E )
r>0 1<+ <ip=i

h' <h=<j<iy
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+ Y (=1y Z (Pl + D u*(P + €y —€hj— Ehiy, — Ehn— - — Eroiir)
r>0 1< <ip=i
h<h' <j<i

+ Z (=1r Z P u* (P —€hi, — €, — o — €0 i)
r>0

i1 < <ip=i

h'<hsiy
+ Z (_1)’ Z phu u (p - ghn ____":”2_ e —E’?,-—ﬂr)
r>0 1< <ip=i
W <h=Ziy
+ Zo(_l Z (Phiy, — D u*(p — €, — €6, — - — €0 i)
r> < <ip=i
" h<i
- z (—l)r Z (ah”’ a) u (p - shu _E?liz_ ‘_E"izr_ﬁr)'
r>0 h<iy--<ip=i

Here if p'¢P(n, N), then we understand u*(p')=0.
As a corollary of this lemma, we obtain Lemma 4.2.

Lemma 4.2. For any i and P = {p;;} such that 1 <i<n, we have

palF) u*(p) = Z i+ 1+ 1) u*(p + &1 1j ——5?1')

j=i+2
i—-1

5+ 1) uXP + €5 —€%4 1)

i=1

i~1 i
+ {(ai”la)'i' hz Pﬁi—hzl Phi+1+ 1} u*(p —€hiv1)
=1 =

+

5. Proof of the Theorem

Proof of Proposition 2.3. For each i(1 i< n), let p’ = {p's;}€P(n, N) satisfy
k n+1

Z phi=m if k#i,
@ h=1j=F+1
i on+l

¥ ¥ phi=m—1 (5.1
a h=1j=i+1
We set S,(7") as (2.10). Take bijections fB,:S(p)— S, for k #i, and an injection
Bi:S:(P') = S;. Let s;eS; be the unique element such that s;¢p,(S;(7)). We define
o(F)= Y. oV
seS(7)
similarly to (2.12). Then the variable £ is not contained in ¢(p’). We have

| (s‘)(¢<p(ff'))dt = j OV (Pt
Ot}

where

—, a d
V,gs.‘)(p(p )= (W 51.‘(3 )IOg QD)(p(p b

(ai’ la)v “ ((X,‘, otk)v —,
=(_t§s"—z,,+ z X 250 — g o(p).

k=1 skeSk Li
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To the first term of the right hand side, we apply the following obvious identity:
1 -
t(s') (P(P)* o(p" + €hiv1).

To the second term, we apply Lemma 3.4. Then we have

i i-1
Vz?*"P(F) ~ = Vz {((ai’ Ao) — hzl Phiv1 t hz,l Pﬁi)‘/’(ﬁl +€fiv1)

n+1

i~1
—hzlp (ﬂ(p _5h|+6h:+1)+ z p (P(P l+1]+8lj)}

j=i+1

We therefore obtain

0 .
;ia—@(fbw(?))dt'u*(p’)
i i-1
= _VZ;Z[{(O%A«:)— hz,l Phis1t hZI P’;i}I(P +€5i41)

i—-1 n+1
- Z Pl —€h+ €hivy) + __Z; piI(p’ —g‘i'+lj+—é’?j)jl'u*(7;/)-

Here the first summation is over p’ = {p’} } satlsfymg (5. 1) Weput p=7 + €54,
in the first term of the right hand side, p =p' — €5 + €+, in the second, and
P =7 —€isy;+ € in the last. Altogether, the right hand side reads as

i i-1
- VZZI(ﬁ)H(ai, Ae) — hzl Phi+1+ hz:l phi+ 1 }'u*(f)' —Eh+1)

i n+1
(P;.. + D)uX(P + Ehi— Chiva) + __Z;rl(P's’j*" 1)'“*(7”+7¢"i’+u-3’i’,~)]- (5.2)

J=t

=
“M[

The summation is over p = {pj;} satisfying (2.7). Comparing (5.2) with the action
of F; on u*(p) described in Lemma 4.2, we conclude that

0
0= [Tz~ 2% Y. { 55 (PP ))de u*(F)
= -V n(za - Zb)u'"lb) Z I(P)F ;- u*(p)
P
= —v-F;w¥(2).

Proof of Theorem 2.4. For simplicity, we write ¢ instead of t# for any
s={a,h,j,q)eS;(P) = S(P). We begin with

—. 0 ~ B
V=9(P)= {52 oz }‘P(P)
(au,’ jfa) v 1 } ~
V& =z, o (©(P): 53
{(xbz;b) t(s b) __ 5a =(a,hza.ja,qa) tﬁ"_)_ L — 28 (P(P) ( )

sa€S(P)
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On the other hand, we have the following relation for any s, = (a, h,,j ., 4.)€S(P)
and ia(ha é ia <ja)'

0~ Vdf‘“’(p(_ﬁ)

0 0
{aw)lg¢-+au,bg¢0ﬂ} (?)

:__{_z(ai,lb)'v_’_ (o, ai").v—ﬂ(i =h) 1
T — 2y (i) (Fliwrsa) 102 — 15 T e — i) |

. . 1 1
+0h, <iy<jo— U( o) Ga)  16a) _ 1sa) )
0 — L L — 0

o 1 1
+0(=j.~ 1)<t§sa) ST R O R >}qo(p)

Ja—1 Ja—1

Summing up the right hand side of this relation with respect to i,, we obtain

1 oo 1 N2 (o Ab Jaz (o, 00,) v
()~ — Liar 200V o 5) + Piar i (). (5.4)
¢ | — <p(p) u.,z‘h., be t(s“) o() 1o Sha b(Fa) (inran) 162 — 1) PP

From (5.3) and (5.4), we obtain
— (ai 9)“a)'v (ai alb)'v (a' > &; )V} —
Vz ~ — b7 47 4 Y707 2Tt T .
#(P) b(;a){ (ib>,:s.,) ) —z, (ia.zs'b) tie) — z, (iaX,s:a) (il:szsb) 8 — g v(p)
(5.5)

The following identity follows from Lemma 3.5.

- r
. (p(p)~ _ 2. (=1 2
b(#a) (ib,sp) Za — Zp b(#4a) sb=(b,hb,jb.q5) r20 io=hp
hy Zip<jb ip<iy < <irZjp

+72b.

irjb/"

(0([) ahb1b+ 810¢1+ -+ 8

iy - i

Applying this identity to the first and the second term of (5.5), and applying
Lemma 3.2 to the third term by the same way, we see that the right hand side of
(5.5) is equivalent to

D)
b(#a) Zq — 2p

(Aab - Aba)s

where

Ay = Z phajaphb]b {0(hy < ju < jb)B1 + 0(ja = jb)O(h, > hy)B,

ha,hv,ja,jv

Jb
+0(ja= j»)0(h, = hy)B3} + Z Z pﬁ,,,-,,(ai,,, 42)Ba,

hy < jb ib=hp

— 1y = _ b —a —a —a
=3y (-1 Y QP —€hyjpt Ehajut Ehpjut i T
r20 io =ha,io<iy
JaSit< - <irZjp

+c¢ + awb)

ir-1ir
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BZ == (0(7’. - Tg’fu,jb + _E.:bja) + (p(ﬁ. - —gﬁbjb __éﬁnjn +3ana - T(:‘?"’j")
+0(F)—0(F —Eh,jo + Ehain)s
By = —<P(3+32,,,~,,—?Z,,,-,.) + ¢(P),
By=—3 (=1 y PP =80, + T+ T T,
rz0 io=hp
ip<iy <. <irZjp

Hence we have
d Z I(P) u*(p)=v Z ;b dlog(z, — z,) u*(p) ‘jr DA, dt. (5.6)
7 7 a

The coefficient of v dlog(z, — z,)I(P) is given by
Y APha .+ DR, + DICy + Co) + P o(Phy sy + D(C3 + Cy)

havjavhbyjb
+ (Phaju t l)pﬁ,,,-,,Cs + (Phaja — 1)(1’2,,,’,, + 1)Cq + Pz,,j..P:.,j,,C7 %
+ Z {(pibn,jb + l)Dl + pzb.ibD2}’

ho, jb
where

C,=0(h, < j, < jp)0(h, #hy) Z (=1

r>0 Ja<it < <irZjy

WP +E g+ T heja™ Ehpja™ Ehats — "~ Ehyi,— Eby,)  (from By)

Cy =0y < jo < ju)Oho # hy) u* (P + %, ju+ 0= Ehyja— Ehaj)  (from By)

+0(ja = jp)Olhy > ho) u*(P + €5, ;. + €hsju— Ehoja— Ehajp)  (from By),
C3=0(j,< jp)0(h, = hy) z (=1 Z

r>0 Ja<ii < <ir<jp
¥ (T -b wa -a -=b
U*(P+ Ehyjy— Chain— " = Eioyiy— Einjy) (from B,)

Co=00hy < ju< )0 £ 1) T (=1 T

Ja=i1<--<irZjp

.u*(ﬁ+_é‘2bjb_€'l;lbja~??1iz T ~é"i‘,-, lir_g?rjb) (from Bl)
— 0(ja = jp)O(hy < hy)-u*(p + €4, ;,— hyj.) (from B,),
Cs= — 00 = j)0lh, < hy) w*(F+ T8~ T30 (from B,),

Co = 0(ja < jb)0(hy = hy) Z,O(— 1y >

Ja=i1 < <ir<jp

’ u*(ﬁ + E'zbjb _Eflaja --E‘izx [P _E?r— lir—“é'?rjb) (from Bl)
—0(ja= jp)O(hy = hy) w*(P+E7;, — Ehil) (from Bj),
Cy = {00ja < jb)Olha = hy) + 0(ju = jy)0(hya > hy) + 0(ja = jb)O(hs = hy) } - u*(P)
(from B, B,, B;),
ih—1
Dy=—3% (=1 > Y (@A)
r>0 hp <iy < <ip<jp iv=hp
WP+ E s — s — Enin— = — € i E by (from B,),

D,=— (ahbjb’ A.) u*(p) (from B,).
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Note that the following identities can be proved by using the symmetry with respect
to a and b:

Y P A DR+ DC=3 Y (Ph+ D, + DCY,

a#b ha,ja b, jy a#b ha,ja hv,jb
b

Y AP Phis + DCy+ (Dh,;. + DPh,;,Cs)

a#b ha,ja,hv, jb

=Y Y PhlBhn+ DCis,

a#b ha,ja,hb,jb
where
— — — — —b
=0, > hy) u*(F+ €0, .+ Ehia— Ehpja— & hais)
Cus=0(h, #hy) Y (=1 Y
¥>0 Ja=ii <" <ipSjp

. * — —Db —*a ——ba _..‘_—ba —bb
u (p+8hbjb_—8hbja 8ili2 € & )

ir—1ir - irjb

We rewrite (5.6) by these identities. Comparing the terms, except C; and D,, with
the terms of p,(F,, ;) ® p,(E,, ;) u*(P) described in Lemma 4.1, we obtain

dy 1(p)yu (P)=vy Zb dlog(z, — z,)1 (?){ hZ PalFinyi,) ® po(Enyi,)
7 7 a>

b <ir

+ z pa(Ehbi,)®pb(thi,-)_ Z pﬁbjb(ahbjb"{a)
i hy < jb

hp <ir

S W OWRARY (5 R i I N S

ha<ja ha=hy Jja=Jv

Note that we have changed the range of the summation from a #b to a<b. We
finally consider the action of Cartan subalgebra. Let {H'} denote the dual basis
to {H;} with respect to (,). We have

Zpa(Hi)®p.,(H")~u*@’)=<—Aa+ Y P, At Y pz.,jba.-.,)-u*(ﬁ)

haSia<ja hy Sib<jb

={(/1m/1b)— Z ) pzaja(o‘iaala)‘ Z szjb(“ibalb)

ha<ia<ja hp S ip<jb
+< z Pf,aja>< Z Pz,,j,,>(°‘i,,,°‘i,, }u*(f)
haZia<ja hp Sib<jb
(5.8)

The following relation is easily obtained by simple calculation using the explicit
values of (a; , «;,).

<,, IR )pzaj,,pﬁ,,j;u*(m
=< Z . pzuja)( z . pzbjb>(aia’aib ‘u*(p). (5.9)

hafia<ja hy Liv < jb
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Comparing (5.7),(5.8),(5.9), we obtain

dy 1(p) p*(P)=v}, ¥ dlog(z,~2,)I(F){ X PulFu) ® py(Ew)
7 7 a<b h<i

+ Z PalEn) ® pp(Fri) + Z Po(H)® py(H') — (la,lb)}'u*(?)-
This is nothing but the Knizhnik—Zamolodchikov equation (2.1).
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