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Abstract. A proof is given for the existence of two and only two modular invariant
partition functions in affine Sΐ/(3)fe theories at heights n = k + 3 which are prime
numbers. Arithmetic properties of the ring of algebraic integers Z(ω) which is
related to SU(3) weights are extensively used.

1. Introduction

The classification of all modular invariant partition functions of a rational
conformal field theory is obviously an important problem. In the case of affine
theories, a complete answer is known, at present, only for SU(2) at all levels [1] and
for SU(ή) at level one [2], For SU(3) theories two modular invariants have been
constructed at all levels [3] and, for exceptional cases, additional invariants are
known as well [4]. However, as far as we know, there is no proof, at any level
except fc = l, that these invariants actually exhaust all possibilities.

In this paper we take ajittle step towards setting up the complete classification
of modular invariants for SU(3)k: we will prove that at prime heights n = k + 3 there
are indeed two and only two modular invariant partition functions. The proof
makes extensive use of arithmetic properties of the (quadratic) ring of algebraic
integers Z(ω) which is naturally related to SU(3) weights.

In an affine SU(3) theory, the Hubert space splits into two chiral parts, each of
which decomposes into a finite sum of subspaces corresponding to integrable
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representations of the chiral algebra. The partition functions

p,ρ'eBn

is a sum over characters χp(τ) of these representations labelled by S(7(3)-weights
which lie in a fundamental domain Bn. Physical constraints on the partition
functions, Eq. (1.1), require that the coefficients Mp p> be non-negative integers and
that M o o be equal to one.

Modular in variance of the partition functions, Eq. (1.1), requires the matrix M

to commute with the matrices of the representation of the modular group to which

the characters belong. Since the modular group is generated by the transfor-

mations T, (τ->τ + l), and S,lτ-+ j , a necessary and sufficient condition for

modular invariance is that the matrix M belongs to the commutant of S and T, i.e.,
commutes with the matrices representing the modular transformations S and X

To determine all partition functions which satisfy the physical constraints and
are modular invariant we follow the strategy outlined ref. [1]: using the SU(3)
Weyl group we first unfold the domain Bn to a larger set, namely the weight lattice
modulo n times the root lattice. We then construct for prime heights n an explicit
basis of the commutant M of the unfolded (or extended) modular transformations
S and T. Folding back these matrices M we obtain all modular invariant Z(τ)'s for
prime heights n. Imposing the physical constraints leaves us finally with two and
only two partition functions.

The paper is organized as follows: in Sect. 2 we briefly review the arithmetic
properties of the ring of algebraic integers Z(ω) which plays an essential role in
implementing the strategyjve have just sketched. We also recall some symmetry
properties of the affine SU(3) characters and establish the connection between
Z(ω) and SU(3) weights, roots and Weyl operations. In Sect. 3 we use Z(ω) to
construct an explicit basis for the (extended) commutant of the modular
representation on the extended set of characters. Folding back these matrices we
determine the general form of the matrix M in Eq. (1.1) which guarantees modular
invariance of the partition functions Z(τ).

The Z(ω) parametrization used here is useful for the construction of modular
invariant M matrices but turns out to be less convenient for the implementation of
the positivity constraints. This is discussed in Sect. 4, where we prove an arithmetic
lemma which eventually allows us to impose the positivity condition. This is
worked out in Sect. 5, where we show that, as a result of all physical constraints on
the matrix M, there remains, at each prime height n > 5, two and only two modular
invariant partition functions. At present, it is not completely clear to us how to
extend our analysis for arbitrary heights.

2. Z(ω) and Characters of SV(3)

In this section we exploit the fact that the weight lattice of SU(3) can be identified
with the ring of algebraic integers Z(ω) to re-express basic properties of SΪ7(3)
characters in a form particularly well suited for the construction of modular
invariants [5].

For the sake of completeness, we first recall some well-known arithmetic
features of Z(ω) [6].
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2.1. The Ring Z(ω)

Let ω = -ή- be a third root of unity which satisfies the algebraic equation

= 0. The ring of algebraic integers Έ(ω) is the set

Z(ω) = {z = qι-q2ω;ql9q2eZ}, (2.1)

with the usual addition and multiplication rules.

For z = qi—q2ω, its complex conjugate z is given by z = q1 —q2(b^=qγ~q2ω
2

= <?i + 42 + 42 ω ; ^ a l s o belongs to Z(ω).
The norm and the trace of an element of Έ{ω) are defined by

(2.2)

(2.3)

Obviously N(z) and Tr(z) belong to TL (henceforth called the ring of rational
integers). Elements of Έ(ω) with norm one are called units. There are precisely six
such elements, namely ± 1 , ± ω , ±ω2.

Divisibility properties of the algebraic integers are analogous to those of the
rational integers. In particular, an algebraic prime (or Z(ω)-prime) is an algebraic
integer whose only divisors are itself and the units. Z(ω)-primes whose ratio is a
unit are called associated primes.

Έ(ω) is a unique factorization domain, i.e., every non-unit of Έ{ω) can be written
uniquely (up to trivial reorderings) as a product of (non-associated) algebraic
primes. From the multiplicative properties of the norm, Eq. (2.2), the study of the
algebraic prime decomposition in Έ(ω) boils down to the Z(ω)-prime decompo-
sition of rational primes, p. The following results hold:

1. p = 2(mod3). Then p remains prime in Έ(ω) and N(p)=p2.
2. p = 1 (mod 3). Then p splits in Z(ω) as p = ππ, where N(π) = JV(π) = p. π and π are
not associated primes in Z(ω). An example is given by 19 = (3 — 2ω) (5 + 2ω).
3. p — 3 is not a Z(ω)-prime since 3 = — ω 2(l — ω)2. The algebraic number (1 — ω) is
a Z(ω)-prime and JV(1 — ω) = 3.

Congruences modulo an element t of Έ(ω) are straightforwardly defined

z = w(modί) iff t\(z — w).

The congruence ring has JV(ί) elements. It is a field (Fm) iff t is a Z(ω)-prime.
vlί-A CO)

When t decomposes as t = πιπ2 with πλ and π 2 coprime, the congruence ring
modulo t factorizes as

tZ(ω) πxZ(ω) π2Z(ω)

leading to the decomposition

t t

x . - * • { 2 A )

where zx and z2 are taken modulo πγ and π 2 respectively.
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For simplicity, let us now restrict our discussion to the case of congruences
modulo a rational prime n(n + 3). As representatives of the congruence ring mod n,
one may choose the set

nZ(ω)
(2.5)

ΊL(ω) Έ
Note that ze _. implies Tr(z), N(z)e—. Since the trace is additive, i.e.,

niL((D) n/L

Tr(z1H-z2) = Tr(z1) + Tr(z2), it can be used to define

(2.6)

which is an additive character on the ring ^ y ,. When w runs over rτy/ o

nΈ{ω) nZ(ω)
these characters χw(z) form a complete set.

An important multiplicative subgroup of Eq. (2.5) is the cyclic group of units
modulo n, U{n) (n>3):

J-; N(u) = uΰ~l (modn)l. (2.7)

J
The order of this group depends on the algebraic prime factorization of the
rational prime n. Furthermore t/(π) necessarily contains the six units of Z(ώ) as a
subgroup. Standard methods [6] lead to the result

card[/(M) = n + l if n = 2(mod3), (2.8)

card£/(Λ) = n - l if πs=l(mod3). (2.9)

Since card Uin) is a multiple of 6, we define the integer q by
(n) = 6q. (2.10)

U{n) being a cyclic group, every unit modulo n can be written as um, with u some
generator of Uin) and m e {1,2,..., 6q}. The six units of Z(ω) then correspond to m a
multiple of q. %

Since any non-zero element of — is the norm of an element in the ring,
ΐllL

Eq. (2.5), one finally arrives at the following detailed description of elements of

nZ(ω)'

n = 2 (mod 3). ^ is then a field, z = 0 is the only element with zero norm. The
nZ(co)

remaining n2 — 1 elements subdivide into (n — 1) subsets each containing the n + 1
elements which have the same norm modn. Since exactly half the non-zero

Z
elements of — are squares mod n, the following parametrization is obtained

n/L
using Eqs. (2.7), (2.8), and (2.10):

x = vρauj 1 ̂ v ^ α = 0,1; 1 ̂ y^w + 1 =6q;

ρρ not a square mod n. (2.11)
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When n = 1 (mod 4) we will use the explicit value ρ = ω — ώ with ρρ = 3. 3 is not a
square mod n because n = 2 (mod 3) implies that — 3 is not a square mod n while n
= 1 (mod 4) implies that — 1 is a square mod n. When n = 3 (mod 4) it is sufficient
for our purposes to remark that since ρ and ρ have the same norm mod n one can
always choose a ρ such that ρ = uρ with u a generator of U(n).

n= 1 (mod 3). As already mentioned, n now splits in Z(ω), i.e., n = ππ. Among the
non-zero elements of the congruence ring, there are now 2(n — 1) of them which
have zero norm mod n. They can be written as

x = ocujπ + (l-ot)ujπ α = 0,l; 1 g ^ n - l =64. (2.12)

The remaining (n — I)2 elements are not divisible by either π or π. According to
our previous discussion, they can be parametrized as

x = vρauj l ^ v g ^ — α = 0,l; l g j ^ n - 1 =64;

ρρ not a square modn. (2.13)

When n = 3 (mod 4) we may again choose ρ = ω — ω2, while for n = 1 (mod 4) we
pick a ρ such that ρ = uρ.

r-n/ \

As a final remark on congruence rings in Z(ω), we note that _* is a
(1 — ω)Έj(ω)

field with three elements (isomorphic to F3). We will choose the representatives of
the congruence classes as 0, ± 1 . Clearly the units mod(l— ώ) are ±1 and

the congruences on the norm and the trace of elements of — ,rrt/ , are now
modulo 3. (l-ω)Z(ω)

2.2. SU(3) Characters

We first recall some definitions and properties of affine ST7(3) characters and then
proceed to express these properties in terms of the algebraic integers Z(ω).

The affine SU(3) characters [7] are labelled by a highest weight λ = A1A1

+ λ2A2 with Af the fundamental weights and λ, non-negative rational integers. If
the height of affine SU(3) is n = k + 3 with k the level (fc^O), the highest weights
corresponding to unitary representations satisfy the condition λi + λ2^k. There

^ ( f c + l ) ( f c + 2 ) ( n l ) ( n 2 ) . ΓΓ. Λ . Λ .
are thus = independent affine characters. To give their
explicit form, it is convenient to define a shifted weight p = λ + Λ1+A2=/?iΛ1

+ /?2A2. Unitarity of the representations implies that p belongs to the fundamental
domain

BH = {peM*;pl9p2^ί and p 1 + p 2 ^ n - l } , (2.14)

where M* is the weight lattice generated by At and Λ2. With q = exp 2πiτ, Im τ > 0,
the restricted affine character labelled by a shifted weight p is given by

(p + nt)2

Γ8 Σ Π [« (p + nt)]« 2n (2.15)
teM α>0
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with M the root lattice and the product taken over positive roots.
η(τ) = q1/24 f] (1 —qn) is the usual Dedekind function. From Eq. (2.15), it is clear

that characters have the periodicity property

for any root t.
Furthermore, under Weyl transformations w e S3,

W p ) . (2.16)

Because of Eq. (2.16), it is convenient to consider an extended set (i.e., unfolded
M*

under the Weyl group) of affine characters χΌ for p in , namely a set of 3n2

nM
characters. Antisymmetry under odd Weyl transformations implies that this
extended set will contain null characters. There are precisely 9n — 6 such null
characters and the remaining ones fall into orbits of length 6 under the Weyl group

The modular transformations of the unfolded set of characters are well known
[8]:

χp(τ + l)= Σ tp,χp,(τ); fp,p,= Γexp2πi(^ - iYL, p , , (2.17)

These equations imply that the unfolded characters transform in a unitary
representation of SL(2,Έ).

To relate these properties of characters to the algebraic integers Z(ω), the
following correspondence is made: to each weight p = (Pi,p2)

 o n e associates the
algebraic number z=pi—p2ω thus identifying the weight lattice with Z(ω). The
positive roots are then represented by the algebraic integers a1 = 2 + ω,
α2 = — 1 — 2ω and a1 + α2 = 1 — ω. It follows that an arbitrary root t = ma1 + nα2 is
represented as t = (2m — n) — ω(2n — m) = [m + ω(m — ή)\ (1 — ω). The root lattice M
is thus identified with the (prime) ideal (1 — ω)ΊL(ω) of Z(ω). The triality of a weight
is related in ΊL(ω) to its residue mod(l — ω).

The fundamental domain Bn, Eq. (2.14), corresponds to the set

1}. (2.19)

Charge conjugation which exchanges the two components of a weight

z = a-bω-+Cz = b-aω= -ωz (2.20)

leaves Bn invariant and is a symmetry of the restricted characters

lλτ) = χ^(τ). (2.21)

Bn is also invariant under the order 3 automorphism
2 ; σ2(z) = ωz — ωn. (2.22)
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Since the weight space metric is given by the inverse Cartan matrix - ( ),
we obtain immediately \ '

(2.23)

while

P

2 = |Trzz = fiV(z). (2.24)

It is then easy to check that Eq. (2.15) becomes

1 N(z + nt(ί-ω))

X z W ^ O ί W Γ 8 Σ Tr[(l+2ω){(z + nί(l-ω))3}]q Γ. (2.25)
l o ίeZ(ω)

with z an element of the congruence ring — — * . which is of order N(n(l — ω))
n(l — ω)ιL\ω)

= 3n2.
Up to irrelevant numerical factors, the modular transformation matrices t and

§ now read

[ J ^ J ] (2.26)
(2.27)

3n2

In view of Eq. (2.6), §z z. is simply the Fourier kernel on the ring .. - _. . .
n(l—ω)£(ω)

Finally, the Weyl group operations are easily seen to have a simple
representation in Z(ω): even Weyl transformations act on Έ(ω) as

z-^>z, ωz,ω2z, (2.28)

while the odd ones correspond to

z-^>z,ωz,ω2z. (2.29)

3. The Commutant of Modular Transformations

The dimension of the commutant of § and f, Eqs. (2.26), (2.27), has been computed
by Bauer and Itzykson [9] 1 : at prime heights n( + 3) it is equal to 2(2n + 1). Using
Έ{ω) we are now in a position to construct an explicit basis of this commutant.

Z(ω)
Since (n, 3) = 1, the ring — factorizes as in Eq. (2.4), i.e.,

n(l — CO)ZL(CO)

z = x(ί-ω) + tn (3.1)

Wi t h XE^L a n d ί 6

nZ(ω) (

1 For SU(N% Bauer and Ityzkson give an abstract construction of the commutant of § and T. Its
dimension is computed in [10]
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The modular matrices § and f factorize similarly and the construction of
matrices in the commutant can be handled separately in each sector of Eq. (3.1):

M Z ) , = M , X J M ' (3.2)

It is straightforward to check that there are two independent solutions in the
Z(ω)

"triality sector" . _ . .. They are given by
(1 — ω)/L{ω)

{Jί±)ut, = δt,,±t. (3.3)

In the or x-sector, commutativity with f requires vanishing matrix
nΊL\ω)

elements Mxx, when labelled by algebraic integers which have different norms
mod ft, i.e.,

Mx,x> = 0 if N{x)*N(x')(modn). (3.4)

We are thus naturally led to consider the cyclic group of units, Eq. (2.7),
resulting in the following matrices of the commutant:

( M u m ) X t X , = δx,,umx, m=ί,...96q9 (3.5)

(Mum)x>x, = δx,fUmχ, m=l,...,6q. (3.6)

We note that these matrices simply permute elements of the ring which have
nίLyω)

the same norm.
When n = 2 (mod 3), i.e., when n remains prime in Z(ω), the 2(ft-f 1) matrices

given by Eqs. (3.5) and (3.6) are readily seen to satisfy one linear relation

*Σ {ti*n-M*>) = 0. (3.7)
m = l

There is no other linear relation among these matrices. Looking, first at the
sector of units, x = uj, x' = uj [Eq. (2.11)], it is easily seen that the matrices Mu m

(respectively Mum) realize all cyclic (respectively anticyclic) permutations on j9 f.
Hence there exist at most two linear relations. Using ρ — ukρ, k odd, the explicit
form of the matrices for x = ρu\ x' = ρur concludes the argument.

Combining this with the two solutions given by Eq. (3.3) we have thus a basis of
the commutant, namely 2[2(ft + l) — 1] independent matrices commuting with S
and t.

When n splits in ΊL(ω\ i.e., n = 1 (mod 3) and n = ππ we are still missing solutions
in the x-sector because of Eq. (2.9). They can be obtained from the zero-norm

Z(ω)
elements of namely from multiples of π or π [Eq. (2.12)]. The following four

matrices with β = π,π:

A ^ ί i iffand '̂' (3.8)
otherwise, v '

fl i f j S | $

o t h e r w i s C ) (3-9)
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are easily checked to belong to the commutant. Again one finds a single linear
relation

"Σ (Mum-Mufn)= Σ (Mβ-Mβ) (3.10)
m = l β = π,π

and the commutant basis is thus complete in this case as well.
Our next task is to "fold back" the modular matrices S, T and their commutant.

This folding back is defined from the action of the SU(3) Weyl group. Since the
ί-sector in Eq. (3.1) is invariant under Weyl transformations, the action of the Weyl
group is non-trivial in the x-sector only where it reads [Eqs. (2.28) and (2.29)]

x->w(x) = x, ωx, ω2x if d e t w = + l , (3.11)

x->w(x) = — x, -cox, — ω2x if detw=— 1. (3.12)

The folded commutant matrices are indexed by Weyl inequivalent algebraic
integers excluding those which correspond to null characters. They are explicitly
constructed from the "Weyl orbits of these integers," namely

MXtX.= Σ det(w1w2)AΪWl(JC)>W2(x0. (3.13)
Wl,W2

Equation (3.13) can be written in matrix form as

M = RMRT, (3.14)

where the "folding matrix" R is a rectangular x n2 matrix with entries
6

ίdetw whenw(>;) = x,
Kx = < . (3.1!))

'y [0 otherwise. v '

To proceed, we need the explicit parametrizations of the x-sector given by Eqs.

(2.11H2.13). It is convenient to group the non-zero elements of r}/ \ in three
ruL\ω)

distinct sectors ( + , — ,0) according to the quadratic class of their norm modn:

(3.16)

(3.17)

0,l; ; = l,...,6^}. (3.18)

The Co sector is of course empty for n = 2(3).
An explicit form of the folding matrix, Eq. (3.15) is obtained once a choice of

representatives of Weyl orbits, excluding null characters, is made. We consider the
various cases in succession.

In the Co sector, the Weyl orbit of the α= 1 subsector is given by

det w= + 1 , πuj^πuj+2q->πuj+4q,

I ( 3 1 9 )
detw= - 1 , πuq



314 Ph. Ruelle, E. Thiran, and J. Weyers

hence it covers Co three times. There are no null characters in this sector and a
possible choice of representatives whose orbits cover Co once is the following:

C 0 = {x = π ^ ; j = l,...,2«}. (3.20)

The folding matrix R then reads

where δfj) stands for the Kronecker symbol modulo 2q. The line index of K(0)

labels an element of the set Co, Eq. (3.20), while the column indices label (?0,
Eq.(3.18).

In the C± sectors, we must consider separately the cases q odd and q even as
pointed out in the remarks following Eqs. (2.11) and (2.13). When q is odd,
representatives of Weyl orbits can be taken as

^ \ (3.22)

(3.23)

Null characters occur in C _ when x=± vρω1 (I = 0,1,2). The R matrix elements are
now given by

#(4"J v =(<5(.?4). — <5(.?̂ _ •)£ , (3 24)

K(-) ) ; ( v , / ) = ( ^ ? f _ ^ l . ) ^ V j V / (3.25)

in an obvious notation for the labels.
When q is even, null characters occur in C + for x — ± vu{21+ί)q/2 (I = 0,1,2). We

take as representatives

(3.26)
I ^ J

and

and the .R matrix reads

(3.28)

(3.29)

Folding the commutant Eq. (3.14), is now straightforward. For the matrices
,m, Eq. (3.5), the result is the following: for q odd

m) (3.30)

(3-31)

(3.32)

while for q even

- m), (3.33)

m), (3.34)

(3.35)
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Folding of the matrices MuW, Eq. (3.6), brings nothing new, since

Mum=-Mum+q. (3.36)

Finally, as is easily seen, the four matrices given by Eqs. (3.8) and (3.9) fold into a
single matrix which, in the Co sector, has all its entries equal to 9 while in the C±

sectors they all vanish:

M(0) = M(0) = _ jjjjo) = _ ^(0) = 9 ( e v e r y w h e r e ) ,

Mί c

± ) = M | t

± ) = MSc

± ) = M | t

± ) = 0 . (3.37)

Using MMm = MMm+2q = Mtt-m, Eqs. (3.7) and (3.10) now read

Muo + Muq + 2 \ MMm = 0 if n = 2(mod3)
m = l

= \Mπ if n = l(mod3). (3.38)

Eliminating, e.g., Muq through this equation we obtain, for the x-sector of
Eq. (3.1), that any matrix in the commutant of the (folded) modular transfor-
mations S and T can be written as

M = J V e m M w m +ic π M π (3.39)
o m = o y

with cπ = 0 when n = 2(3).
With Eq. (3.3), one obtains the general form of

(3.40)

where the three lines and columns label ί = 4-1,0, — 1 (in that order) and M and
M' are two independent copies of the x-sector matrix given by Eq. (3.39).

The above discussion proves in particular that the dimension of the (folded)
commutant of the modular group representation is

2 < 2 = ~ for n = 2(mod3)

O Γ n + 5
- ^ - for n = l(mod3).

4. Positivity Conditions

Modular invariants expressed in terms of characters with weights in the
fundamental domain Bn must have positive coefficients.

The matrices MZtZ> written down at the end of the previous section are indexed

by a set of numbers in — — \ J E a c h z i n t h i s s e t i g m a p p e d b y a W e j
n(l—ω)Z(ω) rr J J

transformation onto one and only one element of Bn. Since

(4.1)
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2 (ω)- plane

Fig. 1. Tesselation of the plane Έ(ω) with triangles of alternating parity. The fundamental domain
Έλω) Z(ω)

Bn is bounded by solid lines, the congruence ring by dotted lines and by
dashed lines n Z ^ n(l-ω)Έ(ω)

the positivity conditions have to be imposed on the matrix det w1(z)w2(z/)M2Z,
with w^z) and w2(z') e Bn. The problem with our parametrization is that, in general,
the parities of these Weyl transformations are not easily determined.

Let us define the parity, 0>(z\ of an element z in the ring — as the
n(l —ω)ιL(ω)

parity of the Weyl transformation which maps z into Bn:

^(z) = detw(z) with w(z)eBn. (4.2)

As will be shown in Sect. 5, we do not really need to know the parity of each

index z: symmetries of the ring — and of Bn, together with a necessary

n{\ —ω)ΊL\ω)
change of parity in a sequence of multiples of z, which we will prove shortly, turn
out to be sufficient to implement all positivity constraints.

In Fig. 1 we display the three sets Bn, rvr/ , and — r̂ r—— with the parity of
nZ(ω) n(l—ω)Z(ω)

the various regions indicated. This illustrates the following properties of ^(z):

^(w(z)) = (detw)^(z), (4.3)

0>(Cz) = &{- ωz) = 2?{z), (4.4)

^(-z)=-^(z). (4.5)

The change of parity in a sequence of multiples mentioned earlier is made
precise with the following:

ΊLiω)
Lemma. Let n > 3 be a prime integer. Then for every z in — ^rwt/ x such that

n(\—ω)ΊL(ω)
Tr(z3(l +2ω))=t=0 (modn), except for one of the eighteen numbers z = ±ωk(l —ω)

-j

+ ln(k, 1 = 0, 1, 2), at least one of the multiples 2z, 3z,... z, also taken
modn(l — ω), has a parity opposite to that of z.

We note first that the condition Tr(z3(l + 2ω)) φ 0 (mod n) simply ensures that z
does not label a null character so that parity is well defined [see Eq. (2.25)].
Furthermore, it follows from Eqs. (2.28) and (2.29) that the parity of z does not
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0

Z(ω)
Fig. 2. The congruence ring

nΈ(ω)

depend on its residue mod(l — ω). This is illustrated in Fig. 1. The lemma must

thus be proved for z's belonging to _}. .. As representatives of this congruence
ΠΔL(ω)

ring we take the n2 numbers y=α — bω with a, b = 0, 1... (n — 1). From
Tr(y3(l + 2ω)) Φ 0 (mod n) follows that neither α, nor b, nor a + b vanish modulo n
and it is clear from Fig. 1 that y is even f o r l ^ α + b ^ n — 1 and odd for n + 1 ̂  a + b
^ 2n — 1. Using Eq. (4.5) we are thus left with the proof of the lemma for / s with

From Fig. 2 it is obvious that when y lies in the shaded region, y is even but 2y is
odd which proves the lemma for these cases.

The regions II and III in Fig. 2 are related to the region I by the
automorphisms, Eq. (2.22), which, modulo n, reduce to even Weyl transformations
and thus preserve parity.

Hence it remains to prove the lemma for algebraic integers lying in region I,

namely for y = a — bω with l^a,b,a + b^ . We will show that there exists at
4 2

least one v between 2 and such that (yd) + (vb) > n (where the bar indicates the

congruence class modulo n chosen between 1 and n — 1). The proof differs slightly
in the cases n = 1 (mod 3) and n = 2 (mod 3). We give the details of the proof for n
= 1 (mod 3) indicating along the way the modifications needed in the other case.

Let us write a = 3σi-\-τl9b = 3σ2 + τ2 with τ l 5 τ 2 = 0,1 or 2. Since n = 1 (mod 6),

the condition a + b^ implies σ1 + σ2^ for τ1 = 0 and σ1+σ2S r for
2 6 6

τ1 ΦO. When τ t and τ 2 are not both equal to 1, one then easily checks that Jya)

+ (vb) > n for either v = or v = . The same type of argument holds in the

case n = 2 (mod 3) but with v = or ———. We are thus left with a = 3σ1 + 1 and
2n — 8

b = 3<j2 + 1. We remark that σγ and σ2 cannot both be larger than since this

ΛΛ . . 4n-16 . J . . . t t Λ \5 .
would imply σx + σ 2 > — — — m contradiction with the hypothesis σi + σ2

S - We have thus two possibilities to consider:
In — 8

1. either σ ̂  or σ2 is larger than and, since the problem is symmetric in σ t and
i i * i 2 n ~ 8

σ2, we will take σi >
15 2w — 8

2. both σx and σ2 are smaller than or equal to .
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In Case 1, —ττ~ <0Ί ύ r implying 0 ^ σ 2 < . Considering the multiple
B-4 1 5

 Λ. , 6

L . 3 0

v = one immediately obtains

n - 4 n + 1
4σ x<4—^-,^(vα) = n +

Λ + 6 Γ - τ τ n—4 «—4
<(v6)= -4σ2g — ,

7—ζ 7-ττ ~ H — 4 , , . ^ w — 4 A

hence(vα)-f(vb) = n + 2 — 4(σ 1H-σ 2)^n + 2 - - 4
3 3

4(σ 1 Hσ 2 )^n + 2 4
3 3 6

In case 2, we are going to show that the only value of σί and σ2 for which the
4

parities of y9 2y9 3y... — — y are the same is σί=σ2 = 0, namely y — 1 — ω.

Take first v = — — . Then (vα) = — - — h 5σl9 and (vδ) = — — h 5σ2 since, e.g.,
n + 5 πΛ-'S 2n-8
- y - + 5 σ! ^ -j~ + -γ~ = w - 1

Hence (vα) + (vb) = 2 ——t-5(σί + σ2) which is smaller than or equal to n — 1
3 n—13

(i.e., vy has the same parity as y) only if σί + σ2S .

If we next take v = , we find that y9 y and y have the same parity

1 r ^ n 1 9 τ . . . _ , Λ n + 5 n + 8
only if σx + σ 2 ^ . Iterating the process, it is found that y9 y9 y9...,

y have the same parity if σι + σ2^ -^γz TT-. Since v is bounded by
3 ( 3 r 1 )

y have the same parity if σι + σ2^ ^γzTT
3 3(3r— 1)

4 4

, the greatest value that r can take is r m a x = , for which one obtains the
62

bound

The proof of the lemma is thus complete for n = 1 (mod 3). When n = 2 (mod 3) and
τ 1 = τ 2 = l there is no need to distinguish the cases 1 and 2: the recurrence

- . Λ , , , t tt + 4 n + 7 n—1 ,
argument used in 2 shows that the numbers y, —— y, —^— y... — — y have the
same parity iff σx 4- σ2 ^ 0. 3 •* 2

We will see in the next section how this lemma in fact allows us to impose all
positivity constraints.

5. Modular Invariant Partition Functions

Besides the positivity and integrality requirements whose precise content was
given at the beginning of Sect. 4, the physical constraints on the commutant matrix
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Mz z. require that the entry M\ _ ωΛ _ ω be equal to +1 [remembering that z = 1 — ω
corresponds to the identity representation of Sl/(3)].

First of all we now solve the positivity and integrality constraints.
From the general form oϊMzz>, Eq. (3.40), it is clear that these constraints have

to be imposed independently on Mxx> and M^x/, Eq. (3.39). For defϊniteness, let us
consider Mx x, (i.e., the "trialities" are t = t'= ±1).

We begin with the C+ sector. In this case the coefficient cπ does not appear in

any matrix element Mxx,. When q is odd, using Eqs. (3.22) and (3.30), half the non-

zero entries of the — — columns indexed by x! = v'u2q (i.e., ϊ = q) for v' = 1 to
simply read

i(c 2 l -c ί . 2 i )5 V f V ί i = l , . . . , ^ . (5.1)

The index x' = v'u2q corresponds to z' = Vu2q(l —ω)±n which is even in the sense of
Sect. 4 [Eq. (4.2)]. Following the discussion of that section, the matrix element
M\^ must be positive (respectively negative) for line indices x — v'u2i related to a
z-label which is even (respectively odd). The Lemma of Sect. 4 now guarantees that

this parity will change at least once when v' varies from 1 to . It follows that the
entries in Eq. (5.1) must vanish, i.e.:

c2i = cq-2i9 f = l , . . . , ^ - . (5.2)

On the other hand, M(

q^ = c0 must be a positive integer. Indeed, u2q = ω or ω2 [see
Eq. (2.10)] and the "triality" of zf does not affect its parity, hence ^(z') = ̂ (ωz')
= ^(ω2z') = ̂ (v'(l-ω))= +1 for all v'. Thus

c o e Z + . (5.3)

We next focus our attention on the lines x = vu2 (ί=l):

i ( % - i , - C r 2 ( f + i ) ) ί / ^ Γ = 2 , . . . , ^ , (5.4)

i(c ,_3-c 1 )^ , v , (5.5)

Ucq-i-c3)δv,iV, (5.6)

= i(C2(i' + l)-Cβ-2(Γ-l))^v'fv> ί' = 2,...,—γ-

= ~2\Cq - 2(ϊ + ί)~ C2{V ~ l))°v', v J W 7)

where Eq. (5.2) has been used in the last line. From charge conjugation symmetry,
Eq. (4.4), we have ^(vu2i\ί-ω)) = ̂ >{vu2{q~i'\\-ω)) implying that M\y and

j * ! _ Γ must be simultaneously positive or negative. Hence, Eqs. (5.4)-(5.7) lead to

fe = 2

Cq-3 = Cί 9

Cq-l=C3>



320 Ph. Ruelle, E. Thiran, and J. Weyers

which, together with Eq. (5.2), finally give

C l = C 2 = . . . = C ί _ 1 = c . (5.8)

The remaining non-zero entries in the C + sector are

,-̂ Wv. (5-9)

.-_,= £$,, (5.10)
2

and positivity requires

co-^eZ+; ^eZ+. (5.11)

When q is even, one repeats essentially the same steps starting from Eqs. (3.26)
and (3.33). Since each v-block of M ( + ) is now (q — l)x(q — 1), the resulting
constraints are slightly weaker, yielding

C l = C 3 = ••• = C q - l 9

coeZ+,

The Cϋ e n sector leads to the additional constraint c1 = c as can be seen from the
line x = vρu2 (J = l):

Remembering that ρ = wρ and using Eqs. (4.3) and (4.5), x' = v'ρu2i' and
x" = v'ρu2(i+q/2) are of opposite parity and the result thus follows.

When n = 1 (3), the coefficient cπ appears in the null sector Co. In that case, the
linear relation among the matrices MwW, Eq. (3.38), and the constraints from the
C± sectors, Eq. (5.8), allow us to write

Looking at the first line (x = πu, x' = πur) gives

Z ^ r q = cπ+
C- (5.13)

but, from Eqs. (4.3)-(4.5), M^^ and M{^r+q have to be of opposite sign, hence

c.= - ^ (5 1 4 )
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The results obtained so far leave us with the matrices

M' >-[c° 2j 6 \2j 6 ' ( 5 1 5 )

c c
where e0, - and CO—-EZ+. With Eqs. (4.4) and (4.5), Muo = Mu Muq = M_ω one
has

= δx,,x, (5.16)

δ/>-χ j * % (5.17)
°x,x m C .

Mutatis mutandis the same form is obtained for the matrix M with coefficients
c'o and c'. With these explicit forms for M and M', it is straightforward to check that
M2 z,, Eq. (3.40), indeed satisfies all positivity and integrality constraints.

The last condition to be imposed is the correct normalization of MZtZ.: the
coefficient of the characters of the singlet representation must be one. This gives at
once

Since c0 and c'oeZ+, there are but two solutions to this equation. Equation

(5.11) then restricts - to be 0 or 1.

The final result of this lengthy discussion is thus that there are four physically
acceptable solutions to all constraints. They are

or MZtZ.= I 0 M 0 I , (5.18)

\ θ 0 Λί/

with

MJCfX/ = -^(M1)JCfX/ or — ^(M_ω) x x,. (5.19)

These four solutions are pairwise related by the charge conjugation symmetry of

the (specialized) Kac-Moody characters, Eq. (2.21), which is equivalent to

Using this symmetry we reach, at last, the end of the proof that for all prime
heights n of affine Sl/(3), there exist two and only two modular partition functions,
namely

Z(τ)=Σχ x > ί(τ)χ x > ί(τ), (5.20)
x,t

or

x,t

where the summation is over all x and t such that the corresponding z = x(l — ω)
+ tn cover once a domain isomorphic to Bn (e.g., ί = 0, ± l ; x e C + , C _ and Co).
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As concluding remarks, we would like to point out that the arithmetic
approach developed in this paper is immediately applicable to G2. Moreover, the
rings Έ(i) of Gaussian integers and Z((p), p prime, of cyclotomic integers play an
analogous role for β2

 a i K * SC/(p)as Έ{ω) for SΐΓ(3) or ό2-

Acknowledgements. We would like to thank D. Verstegen for communicating the results of his
systematic search for low-level modular invariants.
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