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Abstract. We present and study Poincare-invariant generalizations of the
Galilei-invariant Toda systems. The classical nonperiodic systems are solved by
means of an explicit action-angle transformation.
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1. Introduction

In recent years it has been shown that the well-known Galilei-invariant
Calogero-Moser ΛΓ-particle systems admit Poincare-invariant generalizations.
These relativistic particle systems are not only completely integrable at the classical
level, but can also be quantized in such a fashion that integrability survives [1,2].
In this paper we show that relativistic integrable generalizations of the non-
relativistic Toda systems [3-5] exist, too. Moreover, we solve the nonperiodic
classical systems by constructing an explicit action-angle transformation.

* Work supported by the Netherlands Organisation for the Advancement of Research (NWO)
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In Sect. 2 we describe how the new Toda type systems naturally arise by taking
the relativistic Calogero-Moser systems as a paradigm. Just as for the latter
systems, integrability at the classical and quantum levels amounts to certain
functional equations for the "potential." The technical details are relegated to
Appendix A.

In the remainder of the paper we only study the nonperiodic classical systems.
In Sect. 3 we find the Lax matrix for these systems by exploiting the fact that
they may be viewed as a strong coupling limit of the (hyperbolic) relativistic
Calogero-Moser systems. The flow generated by the Hamiltonian that equals the
trace of the Lax matrix is then used to prove that the Lax matrix has positive
and simple spectrum. (An argument due to Moser plays a crucial role in this proof
[6,7,1].)

The latter flow is further studied in Sect. 4. It is shown that the position part
is given by the same formula as in the nonrelativistic case [8], by isolating a
general result that can be applied to both contexts.

Section 5 is concerned with the construction of action-angle transformations.
We handle both the relativistic and the nonrelativistic case in a similar fashion
and detail how the relativistic quantities reduce to their nonrelativistic counterparts
when the speed of light is taken to infinity. Certain matrices introduced and studied
in Appendix B turn out to be crucial in both contexts. Some analytic aspects of
the construction are dealt with in Appendix C.

The final Sect. 6 contains some further results. We discuss the scattering
occurring for a large class of Hamiltonians (i), study integrable systems living on
the action-angle phase space (ii), find Lax pair formulations for a class of
Hamiltonian flows (iii), and introduce integrable generalizations of the Toda
systems associated to the root systems Cz and BCt (iv).

This paper owes much to previous work on Toda type systems, especially by
Moser [6,7], Olshanetsky and Perelomov [8,4] and Kostant [9]. In particular,
the explicit formula (5.46) for the nonrelativistic case can be gleaned from Kostant's
monumental work [9] by specializing to the root system AN_U cf. also [7,10,11].
We nevertheless present complete proofs for the nonrelativistic case, too. This is
because our approach for obtaining an action-angle transformation in the
relativistic case also applies to the nonrelativistic case, where it is perhaps more
easily understood. Moreover, our arguments do not involve more than elementary
linear algebra and analysis (with the possible exception of Appendix C), in contrast
to the very extensive use of Lie algebra and Lie group theory in [9],

Most of the results reported here were already obtained in 1985 [12], but for
various reasons publication was delayed. Meanwhile, distribution of a copy of [12]
has given rise to a number of papers containing further information on the
relativistic Toda systems at issue here [13-19]. (We should add at this point that
in this paper we have nothing to say about relativistic Toda type field theories,
as introduced and studied in [20,21].)

2. Discovering the Systems

The relativistic generalizations of the classical Galilei-invariant Calogero-Moser
systems are characterized by the time and space translation generators
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H Ξ E ^ + S.!), P E E I ^ - S . ! ) , (2.1)

where

S±1= E ί t t % ί») (2-2)

and the boost generator

N

β=-Σ«« (2-3)
1 = 1

(Here, various parameters have been set equal to 1.) One obtains a representation
of the Lie algebra of the Poincare group if and only if V^q) satisfies the functional
equations

i i j j j i ' ' " J \ /

N

ΣStVf = Q (2.5)

as is readily verified.
The solution of these equations generalizing the Calogero-Moser systems reads

Viqu ...,qN)=U f(9t - *Λ f2^) = a + b&(4)> ( 2 6 )

where 0> is the Weierstrass function. The fact that (2.4) holds is immediate, whereas
(2.5) is not obvious, but true, when Vi is given by (2.6) [1].

The natural Ansatz for a relativistic generalization of the classical nonperiodic
and periodic Galilei-invariant Toda systems is to keep the above form of H, P
and B, and to require that V-x involve the exponential function and have a nearest
neighbor structure instead of the mean field structure (2.6). Specifically, one can take

Qi+i), i = 1,..., JV, (2.7)

where

/W = ( l + W 2 , ge* (2.8)

and where

jqN jqί (periodic case)
4 1 4 )> 4N+I ) , . , . v ( 2 9 )

— oo I oo (nonperiodic case)

As phase space we may and will choose

Ω = {(q,θ)eR2% ω = f dqt A dθ, (2.10)

in both ί
There is no difficulty in verifying that Vt as defined by (2.7) satisfies the functional

equations (2.4) and (2.5) when / is given by (2.8). Thus, the systems just defined
are indeed Poincare-invariant. It is also quite easy to see that the "obvious" guess



220 S. N. M. Ruijsenaars

for the integrals is correct: Setting

θj=Σθh /cz{l,...,ΛΓ} (2.11)
iel

the functions

S*Ξ Σ eθl Π filt-1-Id Π /te-« i + i)> *=1, . . . ,N. (2.12)
|/|=fc /e/ ί'e/

Poisson commute with S±v and hence are conserved under the H flow. (This fact
reduces in essence to the functional equation (2.5).) However, to prove that the Sk

are in involution involves more work. We shall prove the functional equations
that imply classical commutativity in Appendix A by taking Planck's constant
to 0 in the functional equations that express the commutativity of operators
obtained by quantizing the Sk. In the nonperiodic case we shall obtain two other
proofs of classical commutativity along the way in the next section. However,
in the classical periodic case the indirect proof in Appendix A is the only one we
have found for general N. (The first proof of complete integrability in the classical
periodic general N case was obtained by Bruschi and Ragnisco, by exploiting a
Lax pair formulation for the periodic S1 flow [14].)

A quantization of the relativistic Calogero-Moser systems preserving
integrability was first obtained in [2] by splitting the potential in a suitable way.
Similarly, an appropriate splitting works for the relativistic Toda systems.
Specifically, the operators

Π ftoi-i-qy*1 Π / t a - 9 i + iλ k=l,...,N (2.13)
|/|=/c

i

where, e.g.,

Σ
|/|=/c iel iel

i-lφl i+lφl

..., qN) EE φ(qi - # , . . . , qN) (2.14)

commute, as is proved in Appendix A. Here, β may be physically interpreted as
h/mc, where h denotes Planck's constant, m the particle mass and c the speed of
light [2].

From the arguments in Appendix A it is readily seen that the infinite relativistic
Toda lattice is also formally integrable, both at the classical and at the quantum
level. However, in the remainder of the main text we shall restrict ourselves to the
finite classical nonperiodic systems. (Cf. [16,19] and [14,15] for information on
the classical infinite and periodic cases, respectively.)

3. The Lax Matrix

The key to finding "the" Lax matrix for the (nonperiodic) relativistic Toda systems
is the fact that these systems may be obtained as limits of relativistic Calogero-
Moser systems. To prove this claim, we introduce

; = 1,...,N (3.1)
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and note that when (q, θ) varies over a compact K in the Toda phase space Ω ~ R2N,
then (qε, θ) varies over a compact Kε in the phase space [1, Eq. (1.8)], provided
εe(0, δ^K)). Let us now substitute

μ->l, α->#/2ε, qj-^q) (3.2)

in the functions given by [1, Eqs. (2.27), (2.29)] and denote the resulting functions
by Sk(q,θ). Then it is readily verified that the Sε

k and their (q, θ)-partials admit
analytic continuations to {|ε| < δ2{K)} that equal the Sk (2.12) and their partials
for ε = 0. Thus we obtain not only a proof of our claim, but also a second proof
of the involutivity of the Sk. (Indeed, the Sε

k Poisson commute, as proved in [1].)
Note that the above limit amounts to simultaneously taking the interparticle
distances and the coupling constant to oo.

If one makes the substitution (3.2) in the Lax matrix [1, Eq. (4.8)], then one
finds that the "Cauchy matrix" Cjk [l,Eq. (4.11)] has no finite limit. However, if
we first make the similarity transformation

U(q9 θ)jk EE exp (qε/2)L(q\ θ)jk exp ( - qε

k/2)

and then take ε to 0, we do get a finite limit. It reads

L° = DAD,

where

n a,
1 1

A =

1 aN_ί

1 1 /

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(We have taken β = 1 in [1, Eq. (4.8)].)
It is not hard to verify directly that L° as defined by (3.4)-(3.7) has symmetric

functions given by (2.12). Indeed, this readily follows by using

(\

det ...,*,) = (e
2,..

Π
J = l

(3.8)

Note also that when the point (q,θ) varies over R2N, the matrix D2A = DL°D~ί
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varies over the set

...,ft J V>0,έi1,...,fl J V-1e(0,l)}. (3.9)

We continue by proving that any matrix in S£ has positive and simple spectrum.
Presumably, this can be shown directly, but we have not found such a proof. Our
proof hinges on exploiting asymptotic properties of the flow generated by Sv

(Positivity of σ(L°) also follows from the fact that σ(Lε) is positive [1], but the
simplicity of σ(Π) (also proved in [1]) might a priori break down for ε-»0.)

Theorem 3.1. For any (<?,0)eR2N the matrix L° has positive and simple spectrum.

Proof. We use an argument due to Moser [6], as adapted to the relativistic context
in [1]. Specifically, we consider Hamilton's equations

4J = <?'VJ9 (3.10)

θj=~ΣeθkSjVk (3.11)
k

for the flow generated by Sv In the case at hand, [1, Eqs. (3.12)—(3.15)] still hold,
but here no restriction on the q j is needed in I.e. (3.15). From the arguments spelled
out below I.e. (3.15) one now infers the existence of qf, θ*eR such that

θϊ<...<θ+9 Θ Γ = ^ _ . + 1, (3.12)

lim 0.(ί) = 0± (3.13)
ί-±oo J J

lim (qj(t)-teθf) = qf. (3.14)

Thus one obtains

l i m L°(t)kl = i ° Λ + +

 k < l . (3.15)
± l p β ( 0 ± + 0 ± ) ] k^l

Since the symmetric functions Sk of L° commute with Su they are conserved under
the Sx flow. Hence, the spectrum of L°(t) is time-independent. Combining this with
(3.12) and (3.15) the assertion follows. •

In the above proof one only needs {SUH} = 0 (to prove that the Sx flow is
complete) and {SΊ,5fc} = 0 (to prove isospectrality of the family L°(ή). As already
pointed out in Sect. 2, it is quite easy to verify that these Poisson brackets vanish.
A third proof of the involutivity of the Sk now follows as a corollary: by Jacobi's
identity {S^S^ is a constant of the motion with limit 0 for ί->oo, and hence
vanishes identically.

Just as in [1], another conclusion that can be drawn from the above is that
the scattering transformation has a soliton structure, with two-particle phase shift
obtained by solving the reduced N = 2 Hamilton equations. As in [1], this last
conclusion involves some tacit assumptions that are hard to prove directly.
However, we shall rigorously reobtain the same conclusion in Sect. 5.
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4. An Explicit Description of a Special Flow

We continue by solving the Hamilton equations for 5X explicitly. Denote by Mj
the j xj matrix obtained from MeMN(C) by retaining only the last; rows and
columns and set

1\. (4.1)

Our claim is that the solution reads

qj(t) = qj + lnlmj(etL°)l (4.2)

Θj(t) = \n[qj(t)/Vj(q(t))l (4.3)

Thus the flow behaves just as in the nonrelativistic case, cf. e.g. [4]. (Note (4.3)
follows from (3.10).) We shall presently prove the claim just made by using a
Lax pair formulation of the Hamilton equations (3.10), (3.11). However, it is
illuminating to see how one can prove (4.2) for | ί | small by exploiting the explicit
solution to the case II S1 flow of [1], and we shall first detail this.

To this end we begin by recalling that Hamilton's equations for the latter flow
are solved by the logarithms of the (ordered) eigenvalues of the matrix

eQI2ίfLeQ/29 Q = di2Lg(ql9...9qN)9 (4.4)

cf. [1, Sect. 5, Appendix B]. Let us now fix (q,θ)eΩ and choose <5>0 such that
q\< '- <qδ

N and such that the matrix elements of Lε are bounded for εe[0,<5], cf.
the first two paragraphs of Sect. 3. Then the logarithms qft) of the eigenvalues of
the matrix

E = etue*\ Ge = diagfa«,...,<&) (4.5)

constitute the position part of the S\ flow with initial value (qε, θ\ provided εe(0, δ].
The crux is now that one can invoke [22, Theorem A2] (with an obvious change in
ordering) to handle the ε -> 0 asymptotics of the spectrum of E, for t varying over
a closed disc Dr with radius r around OeC.

Indeed, let us substitute

ί-*-21nε, D-diag( l , . . . ,N), M-+etLbeQ (4.6)

in [22, Eq. (A30)]. Now choose r > 0 such that the minors \Mj\ stay at a finite
distance from the origin when ε varies over [0, <5] and t over Dr. Then it follows
from I.e. Th. A2 that one can find δe(0,5] such that E has simple spectrum for
(ε, t)e(0, <5] x Dr Thus the eigenvalues of £ are analytic on Dr. But then the functions
qεβ) admit an analytic continuation to Dr. Moreover, invoking I.e. Th. A2 once
more, we infer

exp (φ) = m/e" eβ) exp ( - 2/Ίn ε)[l + p){t)\ (4.7)

where the error term pj. goes to 0 for ε -* 0, uniformly on Dr. If we now set

q^t) = φ) + 2jlae, (4.8)

then we may conclude that

qj(t) = lim φ = qj + In [m/e'L°)] (4.9)
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in the sense of uniform convergence of analytic functions on Dr. Thus we obtain
(4.2) for ίe [— r, r], and since we may interchange ί-derivatives with the ε -»0 limit,
qj(t) is indeed the position part of the Sx flow when \t\ ̂  r.

More generally, this argument applies to any Hamiltonian of the form
considered in [22, Theorem 2.7]. The fact that the representation of the position
part of these flows is not only locally, but also globally valid, is an obvious
consequence of the results obtained in Subsect. 5.3. However, we do not have
sufficient control over the ε-»0 limit to derive this from the results obtained in
[1,22]. In fact, from now on we shall have no occasion to view the Toda systems
as a limit of Calogero-Moser systems.

We now return to the Sx flow for which (4.2) can be proved for any ίeR by
verifying the assumptions of a general result, which will be obtained next. We first
introduce some notation. For MeMN{C) we denote by M+/M~ the matrices
obtained from M by putting all elements on the diagonal and below/above the
diagonal equal to 0. Hence, M+jM~ belong to the Lie algebra of the group N+/N~
of upper/lower triangular matrices with ones on the diagonal. Using from now
on the notation

J J ..,ΛT, (4.10)

the relation

NJAN^M, ^(NU9M,Nι)eN+ x MN(C) x ΛΓ (4.11)

is readily verified. This relation is crucial for the remainder of this paper.
In order to state the general result from which (4.2) follows by specializing to

the case at hand, we now assume that aniVxJV matrix-valued function X(q, θ)
and a Hamiltonian 3tf(q,θ) on a 2iV-dimensional phase space Ω are given and
that J f generates a complete flow (q(t\ θ(ή) on Ω. From now on we shall denote
evaluation of functions on Ω along the flow by using a subscript t.

Theorem 4.1. Suppose that

{qj9jr} = Xjj9 j = l , . . . , J V , (4.12)

{X,Jf} = lX9X
+l (4.13)

Then one has

mj(e'x)>0 (4.14)

and the flow satisfies

qj(t) = qj + ln[m}(e<xK (4.15)

for anyje{l,...,N}, ίeR and (q,θ)eΩ.

Proof. Fix (q, θ)eΩ and consider the ODE systems

ίN, (4.16)

; U (4-17)

where

X = e~QXeQ. (4.18)
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Evidently, the unique solutions to these systems satisfy

Zu{t)eN+, Z,(ί)eJV-, VίeR. (4.19)

Next, introduce

E{t) = ZJίt)e*ZAt).. (4.20)

From the first assumption (4.12) and from (4.16), (4.17) one then concludes

E(t) = Zu(t)Xte
QtZι(t). (4.21)

Using the second assumption (4.13) and (4.16) one now gets

(EiήEitΓ1)' = (Zu(t)XtZu(tΓ 7 = ZMXt + [X?, XJ)ZJttrx = 0. (4.22)

As a consequence we must have

E(t) = etCE(0), C = JS(O)£(O)"ι. (4.23)

Evaluating (4.20), (4.21) for t = 0, it follows that

E(t) = etXeQ. (4.24)

Finally, we use (4.20) and (4.11) to infer

mj{E(t)) = eqj{t) > 0, VίeR. (4.25)

In view of (4.24) this implies (4.14) and (4.15). •

This theorem is inspired by [4, Proposition 8.2]. However, the proof given in
[4] appears inconclusive to^us, inasmuch as it is a priori unclear that any geodesies
exist for which the matrix M(ί) in [4, Eq. (8.10)] is equal to M(q(t), /?(£)), with M(q, p)
a function on phase space and (q(t\ p(t)) a Hamiltonian flow. Our proof proceeds
the other way around, so that this problem does not arise.

We continue by noting that the assumptions (4.12), (4.13) are equivalent to

{qpje}=Xjj9 ;=1,...,ΛΓ, (4.26)

{X,jf} = lX-9X] (4.27)

(with X defined by (4.18)). Let us now set jf = Sv When X = L°, then (4.12) is
satisfied, but (4.13) is not. Similarly, (4.27) is false when X = L°. However, it turns
out to be possible to make a diagonal similarity transformation that turns L° into
a matrix L for which X = L satisfies (4.12), (4.13) (so that X = e~QLeQ satisfies
(4.26), (4.27)). We shall skip the tedious analysis via which this transformation can
be obtained in a systematic way [12]. The result reads

L = ΌxAΌr, (4.28)

where

- β 2 " ; - e w ( l + ^ V 1 - ί a ) 1 / 2 , e - β 3 " β w ( l + ^ V a ~ f 3 ) 1 / 2 , . . . , l ) , (4.29)

β l - + θ » , e

θ 2 ' + β "( l -f gfV ι" ί 2) 1 / 2,...,ββ w(l + g V I ί " ι " ί M ) 1 / 2 ) . (4.30)

Then one has

JO kΦj+l
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and it is straightforward to verify that DrDι = D2 and that

{qpS1}=LJj9 j=l , . . . ,JV,

as announced. Thus the following result is a corollary of Theorem 4.1.

Theorem 4.2. The flow generated by

(4.32)

(4.33)

(4.34)

_ n2Non the phase space Ω = R2N is given by (4.2), (4.3) with ntj defined by (4.1).

In the next section we shall also consider the nonrelativistic (nonperiodic) Toda
systems. As is well known [23,7], one can take

ί eql.; 0

* ; • • • • , .

\0

1 ί,

*N /

N-l

θf+ Σ
1

and, as before, Ω = R2N. Then it is easy to verify

{qj,H2}=Lnrjp j=l,...,N9

{Lnr,H2} = lLnr,L+l

so that the assumptions of Theorem 4.1 are satisfied. Hence:

Theorem 4.3. The H2 flow is given by

where ntj is defined by (4.1).

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

5. Action-Angle Transformations

5.1. Generalities. For certain systems of Calogero-Moser type action-angle
transformations can be constructed "kinematically." More precisely, a real-analytic
diffeomorphism Φ from the given phase space Ω onto another phase space Ω can
be defined without invoking any dynamics, cf. [22, Sect. 2], but a special dynamics
does enter in an essential way to prove that the Φ thus obtained is symplectic,
and hence may be regarded as an action-angle transformation, cf. [22, Appendix
C]. Both in the nonrelativistic and in the relativistic Toda case considered here
we have found no way to avoid extensive use of a special dynamics already at the
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level of defining the diffeomorphism; more specifically, we need the results of
Theorems 3.1 and 4.2 and their nonrelativistic counterparts.

In this subsection we sketch our construction in general terms. While we
proceed, we shall make certain assumptions that will be verified in the special
contexts of Subsects. 5.2 and 5.3. The reader might skip this subsection at first
reading and refer back to it when needed.

We start from functions X and Jf on Ω as considered in Theorem 4.1, and
will make free use of the matrices introduced in the proof of that theorem. The
following properties of X are assumed to hold true for any (<?, θ)eΩ: First, one has

σ(X) = {λl9...,λN}, λ1<-"<λN. (5.1)

Second, X* converges to 0 sufficiently fast so that

lim Zu(t) = Zu (5.2)
ί->oo

exists, and

lim * , = * « , = (5.3)

Third, Xt converges to 0 sufficiently fast so that

lim Zt(t) = Zt (5.4)
f-»αθ

exists, and

~ - (λl *)
lim * , = * „ = . . (5.5)

{ 0 λNj
Let us now calculate E(t)E(t)~ * and E(t)~ιE{t) by using (4.20), (4.21) and (4.24).

This yields
(5.6)

(5.7)

so taking ί -> oo we obtain

XZU = ZUXX, (5.8)

ZιX = XaoZι. (5.9)

Next, set

(5.10)

Using the assumptions (5.1), (5.3), (5.5) it is not hard to check that unique FteN~
and FueN+ exist such that

XxFh (5.11)

FjCa. (5.12)
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(These matrices can be determined explicitly in the concrete cases occurring below.)
Thus one has

^Z;ΐ. (5.13)

Therefore, introducing

GΞΪF^Z WZ^F;1 (5.14)

and invoking (4.11), it now follows that

etXeQ^Fte
dGFu. (5.15)

The crux of the above is the fact that G is diagonal. Indeed, using successively
(5.12), (5.9), (4.18), (5.8) and (5.11) one gets

GX = XG. (5.16)

Hence, the assertion follows from the nondegeneracy of σ(X).
In the applications below we can then use the numbers In Gn and λjJ=l,...9N,

to construct a map Φ from the given phase space Ω into a new phase space Ω.
The construction is such that a map S.Ω -+Ω obeying

φo* = idfr £oφ=idΩ (5.17)

naturally arises. Thus it follows that Φ is a bijection with inverse S. From the
construction of Φ and the fact that Φ is a canonical transformation (which is
proved in Appendix C by using scattering theory) it is then clear that Φ may be
viewed as an action-angle transformation. The fact that all this can be done hinges
on explicit information concerning F{ and Fu, and hence will not be explained here.

5.2. The Nonrelativistic Case. Just as in Theorem 4.3, we choose

X = Lnr, Jf = H2 (5.18)

cf. (4.35), (4.36). We begin by considering the assumptions made in Subsect. 5.1.
These can all be verified by adapting Moser's argument [6,7,1] to the case at
hand. Specifically, one obtains (using L = Lnr to ease the notation)

σ(L) = {θl9...,§„}, §t<...<θN, θj = θf, (5.19)

LO0 = ΛM (5.20)

Loo = Λn(θf (5.21)

cf. (B2). Moreover, the assumptions (5.2)—(5.5) easily follow from the fact that the
interparticle distances diverge linearly in t for |ί |->oo. Since all assumptions are
satisfied, we may now invoke (5.8) and (5.9) to conclude

LZU = ZUL^ (5.22)

Zl^LJZ,. (5.23)

At this point it should be emphasized that the key relations just obtained only
depend on L and not on the H2 flow employed to prove them. Indeed, this is
evident for (5.19)—(5.21); moreover, due to (5.20)/(5.21) and the nondegeneracy of
σ(L) a matrix Zu/Zt belonging to N+/N~ is uniquely determined by (5.22)/(5.23)
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(and hence by L), whenever it exists. All this will still hold true in the (more general)
relativistic case studied in Subsect. 5.3. One would expect that the spectral properties
of Land the existence of ZueN+ and ZxeN~ can be proved without invoking any
dynamics, but we have not found such a "kinematical" proof.

We proceed by noting that the matrix FxεN~ such that

FXL = La0Fh L = d i a g ( $ l 9 . . . , Θ N ) (5.24)

is given by

φ (5.25)

cf. (B6). Taking the transpose and using L^ = L^ (cf. (5.20), (5.21)) it follows that
the matrix FueN + satisfying

(5.26)

reads

Fa = Γφ)τ. (5.27)

As a consequence we have

L = ZuFιLFι-'Z;\ (5.28)

and we may conclude that the matrix G given by (5.14) is diagonal and fulfils

etLeQ~F/LGFu. (5.29)

Combining Theorem 4.3 and Lemmas B2, B3 with (5.25) and (5.27) we now infer

exp( Σ qJ(t)) = \{Fιe'LGFu)k\= £ f ^ " ' Π ^ ) Π ($-fy~2 (5 3O)

Multiplying this by exp(— tθ{N_k+i N]) and taking ί-*oo one gets (recall

N \ N

Σ it = Π GJJ ( 5 3 1 )
j=N-k+l / j=N-k+l

Hence G is positive and one has

qf=\nGjj9 j = l,...,ΛΓ. (5.32)

Similarly, multiplying (5.30) by exp(— tθ{ι k)) and taking t~-> — oo yields

Σ ^ Γ ) = Π G 7 7 Π Φt-θj)'2. (5.33)

Hence one obtains

qN-j+1 = q] + ̂ j(^) (5.34)

Here we have introduced

^•(0) = Σ δ(θj ~θk)~ Σ ^(Θ7 ~ θkl ( 5 3 5 )
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where

δ(θ) = ln(l/θ2). (5.36)

Next, we set

ξj-qf+lΔtf) (5.37)

and observe that the above arguments give rise to a map Φ from Ω ~ R 2 N into
the action-angle phase space

β = {(4,̂ 6R2N|̂ < < N̂}, ώ Ξ ^ ^ Λ i , (5.38)

We now introduce a map

S.Ω^Ω, (q,θ)^(q,θ) (5.39)

by setting

qj^MΣ^j+JΣ^j), (5.40)

ΘJ^ΣN-J+I/ΣK-J^-Σ^J/Σ^J. (5.41)

Here, Σk(q, θ) and Σk(q, θ) are defined by

Σk= £ έ*'Vl9 fc=l,...,ΛΓ, Σ0 = l (5.42)

± k = X Θ^Vj, /c=l,...,iV, I O E 0 , (5.43)

where

Vt= Π l ^ - θ y l " 1 . (5.44)

Theorem 5.1. J"/ι^ maps Φ^and i are real-analytic and symplectic diffeomorphisms
from Ω onto Ω and from Ω onto Ω, respectively, and one has & = Φ ~1.

Proof. Combining (5.30) with (5.32) and (5.37) one obtains

Σ qj(t)) = Σk(q + tθ,θ). (5.45)
/

This implies that the H2 flow reads

qj(ή = In [(ΣN_j+ JΣ^jXί + t§, θ)l (5.46)

θj(t) = qj(t). (5.47)

Evaluating this at ί = 0 yields (5.40), (5.41). Thus, £ satisfies (5.17), so that Φ is a
bijection with inverse £. Real-analyticity and canonicity of Φ and S follow from
the arguments in Appendix C. Π

We proceed by deriving a corollary. Let us set

R), (5.48)

(5.49)
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Here, h(L) is defined by the functional calculus, i.e.,

h(L) EE Zu¥x dίag {Hβά..., h(θN))F[ ιZ~ι (5.50)

(recall (5.28)). Thus one has

Hh(q,θ)= Σ W ). (5.51)

We denote by {q{t),θ(t)) the (a priori local) flow generated by Hh.

Corollary 5.2. The Hh flow is complete and its position part is given by

qj(t) = In L(ΣN_j+ JΣ^jXyitn ( 5 52)

where

) = §j, ; = l , . . . , i V . (5 .53)

Proof. Due to (5.51) the flow generated by Hh is given by (5.53) and is manifestly
complete. Since $ is a symplectic diffeomorphism, (5.49) implies

<?H*g = g e

t ή \ (5.54)

Hence etHh is complete, too. Moreover, (5.52) is an obvious consequence of (5.54)
and the definition (5.40) of the position part of S{q, θ). •

5.3. The Relativistic Case. To ease the notation we have thus far not made use
of the freedom to introduce scale parameters. As regards q we shall continue to
do so, but in this subsection we replace θ by βθ with /?e(0, oo). This will enable
us to clarify how various objects of interest are related to their nonrelativistic
counterparts in the nonrelativistic limit β -> 0. First of all, we shall from now on
work with the Lax matrix

ί
θ fc>;+l

βe^> k=j+\
/ j N P ^)

jS ̂ e x p β £ θt )(l -i- β2eqj-qj+1)1/2(l -h β2eqk~1-qk)112 k<j+\
This L is obtained from the previous L (4.28) by substituting θ~+βθ, taking the
coupling constant g equal to β, and making a β-dependent similarity transform-
ation. Clearly, L is holomorphic in |j8| <ε(K) when (q,θ) varies over a compact
KaΩ and one has

L = lN + βLnr + O(β2\ β^O. (5.56)
This implies in particular that the complete integrability of the nonrelativistic
Toda systems follows from the integrability of the relativistic ones (cf. [1,
Eqs. (4.17)-(4.20)] for the relevant argument).

Next, we note that the choice

X = L,Jί? = β-1S1(q,βθ) (5.57)

ensures that the assumptions of Theorem 4.1 are satisfied. Now we get from (the
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obvious generalization of) Theorem 3.1 and its proof

0i< <3» θj = θϊ, (5.58)

...JeβH (5.59)

Loΰ = βΛn(β-1eβ\...,β-1eβdητ, (5.60)

cf. (B3), (B2). Also, the matrix FteN~ such that

FιL = L00Fh L = dmg(eβ'\...,e^θη (5.61)

is given by

Ft = Γ{-β-^-'*,..., -β-^-'*") (5.62)

in view of (B6) and (B7). Finally, the matrix FueN+ such that (5.26) holds true
(with L.L^ as just specified, of course) is given by

Fu = Γ(β~ V*1,..., β~ V δ w ) τ (5.63)

in view of (B6). Note that Ft and Fu reduce to their nonrelativistic counterparts
(5.25), (5.27) for β->0, whereas L^ and Z^ satisfy analogs of (5.56).

Proceeding now as in the previous subsections, we infer that (5.29) holds true,
and using (the generalization of) Theorem 4.2 in combination with Lemmas B2
and B3 we obtain

exp( Σ φ)= Σ (eββlUGjj) Π (ββsAθ.-θ^. (5.64)
\j = N-k+l / |/| = k\ Jel /iel,jφl\ 2 /

j>i

Then (5.31) follows as before, so that G is positive and (5.32) holds true. Moreover,
(5.34H5.35) follow, with

c5(0) s In [ j?2/4 sh2 (βθ/2)l (5.65)

Introducing 4j by (5.37) we obtain again a map Φ from Ω into the action-angle
phase space (5.38). The generalization of S is now defined through

(5.66)

j j J j (5.67)

where

K, = [l +β2ΣN_J+ιΣN_j_1/Σ2

N_jy>2ίl +β2ΣN_J+2ΣN_./Σl,_j+ίyi2, (5.68)

Σk= Σ e4'^/. k=l,...,N, X - x = 0 , Σ 0 = l, ΣN+1 = 0, (5.69)
\l\ = k

Σk

+= Σ Σeβ'ΘJe4'Vi> k=ί,...,N,Σ;=0, (5.70)
\I\=kjel

Vj= Π β/2sh-(θi-θj) . (5.71)
ieljφl 2

Note that Σk and Σ* are analytic in |β\ < ε(K) when (#, θ) varies over a compact
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Kc^Ω. Also, Σk reduces to (5.42) for β = 0. In contrast, one has

ΐ k n r β-+0 (5.72)

which can be understood from the relation

β-ιίSi(qJΘ)-m= tθi + βH2(<l,θ) + O(β2l 0-0. (5.73)

As a consequence, $ is analytic in \β\ <ε(K)^ε(K) and reduces to (5.40), (5.41)
for β = 0.

Theorem 5.3. The assertion of Theorem 5.1 holds true.

Proof. As the generalizations of (5.46), (5.47) we obtain

q/t) = In ί(ΣN_J + 1/ΣN_j)(4i + te»\ . . . ,$„ + te***, £ )] , (5.74)

(5.75)

From this it follows that $ satisfies (5.17). Real-analyticity and canonicity are
proved in Lemmas Cl and C2, respectively. Π

To prove the generalization of Corollary 5.2 we set

Hh = Tr/ ι( f MnL), heC%(R), (5.76)

where h(β~1\nL) is defined via the right-hand side of (5.50). Hence, (5.51) remains
valid when Hh is defined by (5.49).

Corollary 5.4. The assertion of Corollary 5.2 holds true, with Σk defined by (5.69).

Proof This follows as before. •

We can use this corollary to obtain two further representations for the θ part
(5.67) of £{q, θ). (The last one will be used in the next section.) First, let us recall
that the Hamiltonian

Jf = β-1S_1(qJΘ) = β-1Σe-βθjVj(q) (5.77)
j

commutes with Jf (cf. Sect. 2) and hence is conserved under etJίr. Taking t->co
in <&°etjr we conclude

or equivalently

j ^ 1 , Λ M Ξ Ξ J S - V * . (5.79)

(This can also be verified directly, since (L~ι)^ can be calculated by using (3.8).)
Next, we note that

-e-βθΨj. (5.80)

Hence we have

θj(t)=-β-1ln[-qj(t)/Vj(q(t))l (5.81)



234 S. N. M. Ruijsenaars

where the ^-dependence refers to etM\ But we can read off the position part oί etje

from Corollary 5,4 Doing so, we obtain

θj = - β~ * ln([ - Σ~_}+ JΣN_j+ x + Σ'^/Σ^jyVj), (5.82)

where

Σ; = ~ Σ Σe~βij**'vi> Λ=1,. . . ,N, I o - = 0 . (5.83)
\I\=kjeI

This amounts to a second representation for θj.
We may argue in the same way for the Hamiltonian

H = %jf + &) = β~1 Σ c h ( ^ )K^). (5.84)
j

Then the analog of (5.81) reads

θj(t) = β~ 'arsh ίqj(t)/Vj(q(t))l (5.85)

Using the formula for q(ή that follows from Corollary 5.4 we now obtain the third
representation

θJ = β-Ursh(lΣ°N_j+ι/ΣN_j+1-Σ°N_j/ΣN_j]/Vj), (5.86)

where

Σl^ Σ ΣMβθ^V^ *=1,...,JV, Γg = 0. (5.87)
|/|=*ie/

6. Further Developments

(i) (lnvariance Principle). Combining the proof of Theorem 3.1 (and its
nonrelativistic counterpart) with (5.34)-(5.36) and (5.65) one obtains

q^j+ ί=qJ+Σ δ(θI ~ θk) - Σ WJ ~ * α (6-1)
k>j k<j

θt_j+ι = θ7, (6.2)

j (rel)

(nr) ( 6 3 )

Together with the bijectivity of Φ this amounts to an explicit description of
the scattering corresponding to the Hamiltonians β'1S1(q9βθ) and H2{q,θ\
respectively. Just as for the Calogero-Moser type systems studied in [22], this
scattering behavior is shared by a large class of independent Hamiltonians. The
precise statement of this invariance principle can be readily obtained from l.c.
pp. 145-146, and the proof is quite simple in the case at hand due to the explicit
formulas (5.66)—(5.71) and (5.40)~(5.44) for δ. More generally, it is equally easy to
prove "asymptotic constancy" of $ in the sense of [22, Theorem 5.1]. We leave
the details to the interested reader.

(ii) (Dual Systems). The functions Σk(q,θ) of Subsects. 5.2/5.3 may be viewed as
limits of the symmetric functions of the dual Lax matrix A of the ITJΠ^\ case of
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[22]. More precisely, as one takes ε-*0 with q, θ fixed (recall the beginning of
Sect. 3), one needs to multiply the latter functions by sk(N~k) to obtain the Σk. The
fact that the ε -» 0 limit amounts to taking interparticle distances to oo is reflected
in the formula

£ q\ (6.4)
j=N-k+l J

Indeed, as one takes ε->0 with q, θ fixed, one obtains (6.4) when one multiplies
Sk(eQiε)) by ε

k(2N~k + 1\ cf. (3.1). The different powers of ε in these two limits are
compatible when one has

qj(q(ε\ θ) + (N+l)\nε^ q+q, θ\ ε -> 0. (6.5)

(The functions q} at the left hand side are defined in [22].)
The long time behavior of the dual positions θj under the Σk flow amounts to

finding the spectral asymptotics of L(q, θk(t)\ where θk(t) can be read off from (6.4).
The results in [22, Appendix A] are not applicable to this problem, since the
nondegeneracy assumption I.e. (A3) is violated. However, for N = 2 one readily
sees that the Σx flow is not asymptotically free in the usual scattering theory sense.
Indeed, for t-* ± oo not only one of the θj diverges, but also qγ and q2 diverge,
in agreement with constancy of Σx and Σ2. Most likely, a similar behavior occurs
for N > 2.

On the other hand, the results of [22, Appendix A] can be used to find the
0-asymptotics of the point

(6.6)

where

θfiϊ^θj + tc^γ c.K'-Kc^ τeSN. (6.7)

Indeed, from [22, Theorem Al] one obtains

βτu>W-βjW->0, ί->αo (nr). (6.8)

In the relativistic case one infers from [22, Theorem A2] (using also (3.8)) that the
limit of the left-hand side of (6.8) for ί-> oo exists as well. However, now the limit
depends on τ, due to the nearest neighbor structure of Vj(q). For instance, when τ
is the identity permutation one obtains

^ β 2 ^ - i ' ^ / ( l + β 2 ^ ' ^ + ' ) l ί - o o ( r e l ) , ( 6 . 9 )

and when τ is the reversal permutation one gets

θN_j(t)-θj(t)->{2β)-1\nl(\ +β2eq'-qJ + ι)/(l + 0 V - 1 - * ) ] , ί-*oo(rel). (6.10)

The limits just discussed can be used to determine the $-asymptotics of the
flow generated by any Hamiltonian D on Ω satisfying

(Doφ)(q,θ)= Σ d(qj), deC£(R), d" > 0. (6.11)

(More precisely, the ̂ -asymptotics can be calculated when the conserved vector
q takes values in a wedge qτ-1(1) < ••• < qτ- 1(N), τeSN.) However, since the functions
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Σk(q(q, θ(t)\ θ(q, θ(t))) do not depend on ί, some of the quantities $/(<?, θ{ή) must
diverge. Therefore, such Hamiltonians do not give rise to a clearcut scattering
theory, just as the functions Σk.

(iii) (Lax Pairs). The relation

(6.12)

following from (5.14) may be viewed as an equality of matrix-valued functions on
Ω. Using this equality along the etHh flow (q{t\ θ(ή) (cf. Corollaries 5.2, 5.4) we now
have

( z ; ιe*z; ')• = {FfiFu)' = FfiFu = F^

= h\LJFfiFu = h\

= Z;1h'(L)e<>Z-1 (nr), (6.13)

where we used time-independence of Fx and FM, (5.24) and (5.22). Similarly, we obtain

( Z ; ιeQZ;ιY = Z ; ιh\β-x In L)eQZ;ι (rel). (6.14)

On the other hand we may introduce matrices Mδ = Mδ(q(t\ θ(t)), δ = + , —,
by setting

M+^Zu(Z-")\ M-^iZ 'YZ^ (6.15)

and then we get

( Z ; 1 e Q Z - 1 ) = Z u - 1 ( M + 4 - β - f ^ M - e - Q ) ^ Z - 1 . (6.16)

Comparing with (6.14) and (6.13) we infer

{ (6.17)
\h'(L) (nr)

(Equations (6.15) should not be confused with the ODE systems (4.16), (4.17); the
solutions to the latter are not functions on Ω evaluated along a flow.)

Next, we evaluate the equality L = ZJLJZ^ * (cf. (5.22)) along the flow and use
(6.15) to conclude

L = tL,M+l (6.18)

In view of (6.17) this can be rewritten

{L, Tr h(β~x In L)} = [L, h\β~ι In L) + ] (rel), (6.19)

{L,TrML)} = [L,ft'(LΠ (nr). (6.20)

From this it follows in particular that

fc+1

for any j,k = 1,2,....

^ T r L 4 [M(Ly] (rel), (6.21)
βk )

(nr) (6.22)
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(iv) {Generalized Toda Systems Associated with Ct and £CZ). In [22, Sect. 5B] we
have introduced generalized Calogero-Moser systems associated to the root
systems C{ and BCt via restriction of relativistic Calogero-Moser systems to
submanifolds of phase space characterized by a symmetry property. These
restrictions are such as to preserve complete integrability. An analogous result
holds true for the relativistic Toda case. This can be proved along the same lines
as in [22], so that we only detail the changes.

First of all, the spaces Ωn Ωr should be replaced by

|0i< <0,<O} (6.23)

and the Hamiltonians He

r, H°r by

He

r = Hι_1 + ch{βθι){\ + β2eqι^-qι)ll2(\ + jSV«01/2, (6.24)

H? = Hι_ί +ch(j80,)(l +β2έ*ι-i-qι)ιl2(l + β V ' ) 1 / 2 + | ( l + β2eqι\ (6.25)

where

Hι-i = Σ c h W ( l + j ϊ V ' - 1 - ^ ) 1 / 2 ( l + j8V'-«'+ 1)1 / 2, (6.26)
7 = 1

cf. [22, p. 151]. Just as in I.e., it is by no means clear from the construction of Φ
that one has Φ(Ωs)czΩs. However, this follows by using the Hamiltonian βH
(with H defined by (5.84)) in the same way as the Hamiltonian Po is used in the
proof of [22, Theorem 5.2]. Therefore, it remains to show $(Ωs) a Ωs.

In the present case this is not easily concluded from a consideration of the
dual systems, but now we have the explicit formulas (5.66)—(5.71) defining i
available. From these it is easy to see that q has the required symmetry property
if (q, θ) does. However, from the representation (5.67) it is very far from obvious
that θ has the required symmetry, too. But we may also invoke the representation
(5.86) of θ, and from the latter the symmetry property is readily verified. Thus one
obtains invariant submanifolds and corresponding integrable systems that amount
to a one-parameter generalization of the (nonperiodic) Toda systems associated
with Cx and BCι [4].

Appendix A. Commutativity and Functional Equations

In this appendix the commutativity assertions made in Sect. 2 are proved. In
Theorem Al we show that the functions Sk defined by (2.12) Poisson commute if
and only if the function f(q) satisfies certain functional equations. In Theorem A2
an analogous result is proved for the operators Sk defined by (2.13). Finally,
Theorem A3 shows that these quantum and classical functional equations are
satisfied when / is defined by (2.8).

It should be emphasized that we are handling the periodic and nonperiodic
cases simultaneously by using (2.9) and mod N addition in the former case.

Theorem Al. One has

{SJk,Sί}=0, V(fc,/)e{l,...,N}2, V N > 1 (Al)
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if and only

Σ
/c{l,...,JV)

\I\=k

if

di Π f2iai-
iel

i-lφl

i-qd Π /2(<Zi-4i
iel

i+lφl

S. N. M. Ruijsenaars

+ 1) = 0, V/CG{1,. . . ,N},VΛΓ>1.

(A2)

Proof. If one replaces (Al) in Appendix A of [1] by

(/J)= f[ /(ίί-fli+iλ U c { l , . . . , 4 ίnJ = 0 (A3)
ie/,t+leJ
ieJ,i+leI

then the relations and arguments embodied in I.e. (A1)-(A14) apply verbatim.
However, due to the nearest neighbor restriction an additional argument is needed
to prove that (A2) implies the functional equations equivalent to (Al), which read

X δc(CD)2=0, m = k-\A\ = l-\B\. (A4)
|C|=m

(For the notation used here and the asserted equivalence, see I.e.). Indeed, (A4)
amounts to (A2) when E = C u D is connected (in the obvious sense), but it is not
immediate that (A4) follows from (A2) when E has more than one component.

In order to reduce (A4) to (A2) in the latter case we use induction on the
number of components. Thus, assume (A4) holds when E has M ̂  1 components.
Denote one of the components by F and set G = E\F. Since F and G are not
coupled, we may now write

|C|=m n = 0 \ ScF,|S|=«
TcG,|T|=m-n

TczG,\

dc(CD)2= Σ Σ
:F,|S|

Σ (T,G\T)2Γ Σ ^(s,ΛS)2l
,|Γ|=m-π LscF,|S|=π J

+ Σ (S,ΛS)2Γ Σ dτ(T,G\T)2T). (A5)

Due to the induction assumption the sums in square brackets both vanish, so that
the proof is complete. •

Theorem A2. One hύs

[Sfc,SJ = 0, V(/c,/)G{l,...,iV}2, VJV>1, V)8GC (A6)

if and only if

Σ ( Π /ata-i-«,) Π /2te-«ί+1 + )̂
/c{l,...,N} \ iel iel

\I\=k i-lφl i+lφl

ie/ iel
i-lφl i+ίφl

- Π /2te-i-<?.- + Λ) Π / 2 ( ? - - ? i + )

(A7)
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Proof. If one replaces (Al) in Appendix A of [2] by

(IJ)= f] f(qi~qi + 1)J,J^{h...9N},InJ = 0, (A8)
iel

i+leJ

then I.e. (A2)-(A15) can be used. Again, the functional equations

Σ ΦQ 2 (C_D) 2 = Σ Φ-C)2(CD)2 (A9)
\C\=m \C\=m

that are equivalent to (A6) amount to (A7) when EΞΞCKJD has one component.
To handle the general case we use induction, as in the proof of Theorem Al.
Specifically, we now infer, using decoupling of components,

m Γ

Σ (DC)2(C_D)2= Σ Σ (F\S,S)2(S.
\C\=m n = 0 Ls<zF, |S |=n

•Γ Σ (G\T,T)2(T_,G\T)21. (A10)
L Tc=G,|Γ|=m-π J

Using the induction hypothesis one may now rewrite the sums in square brackets,
and then (A9) results. •

Theorem A3. The function

f2(q)=\+aecq, a.ceC (All)

satisfies the functional equations (A2) and (A7).

Proof. We need only prove the quantum functional equations (A7), since the
classical functional equations (A2) then follow when one divides (A7) by λ and
sends λ to 0. To this end we set

b = aec\ Wi = ec^-qi + i) (A12)

and rewrite (A7) as

Σ ΓΊ (l+awf) Π {l+bWi)±{a<r+b). (A13)
|ί|=fci+le/ iel

iφl i+lφl

After expanding the products and resumming, the left-hand side can be written

/ a u ii .

Here, Plm is a (possibly empty) sum of monomials in the wt of degree / + m. Thus
(A 13) is equivalent to

Plm = Pml, l<m. (A15)

In order to prove (A15) we pair off equal contributions wfl •• wil + m to Plm and
Pmh which arise by expanding products at the left-hand side of (A 13) corresponding
to different index sets, as will be detailed now. First, picture a given / as a chain
of sites 1,...,JV with colors ί or 0, depending on whether the site i belongs to /



240 S. N. M. Ruijsenaars

or not. (In the periodic case the chain should be vizualized as points on a
circle.) Thus, the chain has k ones and N/N — 1 pairs of adjacent sites in the
periodic/nonperiodic case. If the ith pair equals 01 or 10 we either connect it by a
line or not; drawing the line codes the choice of awt and bwh respectively, in the
expansion of the product at the left-hand side of (A 13), whereas unconnected pairs
code a factor 1 in the product. In this way a 1-1 correspondence between
two-colored graphs and terms in the sum is obtained.

Next, fix an index set / with |/ | = fc and consider a graph G arising from / that
contributes to Plm with / < m. Then G must have / lines connecting 01 pairs and
m lines connecting 10 pairs. Denote the components of G by C1,..., Cn{G). (Of course,
"component" refers here to the lines and not to the colors.) Since one has / φ m
by assumption, the set S of all components that contain an odd number of lines
is not empty. (Note that In connected lines yield a factor anbn.) Now any CteS
contains an even number of sites and hence an equal number of zeros and ones.
Therefore, replacing every 1/0 in all C^S by 0/1 leads to a graph that arises from
a different index set with cardinality k. Since the two-colored graph correspondence
just defined is involutive and since the contributions to Plm and Pml are manifestly
equal, (A 15) follows. •

Appendix B. Some Algebraic Lemmas

This appendix concerns certain N x N matrix-valued functions on C^. Specifically,
we introduce

= diag(λ1,...,λJV),

Λ =

\

1 λ2 0

o '•••! "••; Nj

O\

(Bl)

(B2)

(B3)

1 * * * N 2 ''' N ' * * N

l o \
(12) 1...

(12X13) (23).. •'•••••...

(12) (lΛί) (23) -(2ΛΓ) ••• (N-l,N)'"l

(B4)

where

Lemma Bl. For any λeCN with λt φ λj one has

(B5)

(B6)
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For any λeCN with λt φ 0 one has

Λr(λx,....,λNΓ' = -Λn(- l/λl9..., - l/λN). (B7)

Proof. Clearly, ΓΛ — AnΓ is strictly lower triangular, so that (B6) amounts to the
relation

Γkl = (lk)Γk_u k>L (B8)

This is indeed satisfied, since (B4) says

To verify (B7), note that

Γ H = Π CΛ fc^/ (B9)

Λrkl=f\λp k^l (BIO)

and that the matrix R at the right-hand side has elements

Hence one gets RΛr = 1N. •

In the main text we need to know the lower corner principal minors \(AXB)ι\y

I = 1,..., N, where A is defined in terms of Γ, B is defined in terms of Γτ, and X
is of the form

X = dmg(Xl,...9xN). (B12)

We shall first derive a general formula and then calculate the relevant minors of

Γ explicitly. For MeMN(C) we denote by M\ ll9'"'11 j the determinant of the

I x / matrix obtained from M by retaining only rows iu..., it and columns^,...,;'/.

Lemma B2. For any A,BeMN{C) and X given by (B12) one has

UXm- Σ A(N-UI—N)B{ Ί - ' 1 ' \Xiχ...Xu. (B13)

Proo/. Using obvious notation one has

(B14)

Since the elements of the / x / matrix at the right-hand side are linear in the xp

its determinant is a homogeneous polynomial P/(xi,...,x^) of degree /. Thus, a
monomial in Pt that is of degree greater than 1 in the Xj must contain fewer than
/ of the xj. Its coefficient is unchanged if we put the remaining Xj equal to 0. But
then the resulting / x / matrix has rank smaller than /, so that its determinant
vanishes. Hence, no such monomials occur. Similarly, the coefficient of the
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monomial x^-'-x^ with i1 < ••• <it can be obtained by putting the remaining Xj
equal to 0, so that (B13) follows. •

Lemma B3. Let

For any λeCN with λ( Φ λj one has

r ( " - ' +'••;••"). Π ft-y-

(B15)

(B.6)

Proof. Using (B9) we obtain

where

lhs =

N-l+1 N-l+1

Π '(hi)- Π '(hi)

Π '('iΛ - Π '(hi)

(B17)

Π '«;-
1 i = /c

k

Π α, i<fc

(B18)

Now the elements in the last row do not vanish, and if we pull them out of each
column we obtain

ihs= Π (hJ)- Π (ίiΛ (B19)

where

V(xu...,xι) =

Thus it remains to show

t - λN)

1

V(x)=

. (B20)

(B21)

To prove (B21) we need only reduce V(x) to a Vandermonde determinant. This
can be done as follows. First add λN times the /th row to the (/— l)th row. Then
add — λNλN_1 times the /th row plus (AN + A N _ X ) times the (/— l)th row to the
(/ - 2)th row, etc. •
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Appendix C. Real-Analyticity and Canonicity

In this appendix we complete the proofs of Theorems 5.1 and 5.3.

Lemma Cl. The bisections Φ and $ defined in Subsects. 5.2 and 5.3 are real-analytic
maps from Ω onto Ω and from Ω onto Ω, respectively.

Proof. We only consider the relativistic case, since the nonrelativistic case can be
handled in the same way. Real-analyticity of $ on Ω readily follows from the
explicit formulas (5.66)-(5.71). Next, consider Φ = δ~x. Since L(g, θ) is real-analytic
(r.a.) on Ω and has simple and positive eigenvalues eβθ\...,eβ§N on Ω by virtue
of Theorem 3.1, it follows that the θt are r.a. on Ω, too.

To prove that the qt are r.a. involves more work. We first note it suffices to
show G is r.a. (Indeed, sufficiencyJbllows by combining positivity of G on Ω, (5.32),
(5.37) and real-analyticity of A0) on Ω) To this end we recall that G is defined
by (5.14). Since Fu, e

Q and Ft are r.a. on Ω, we are reduced to proving that Zδ,
δ = u,l, are r.a. We shall show this for δ = u, the proof for δ = I being analogous.

Consider the relation (5.22) satisfied by Zu. This may be viewed as a linear
system Ax = b of N2 equations for the M = N(N — l)/2 nontrivial matrix elements
xι,...,xM of ZueN+. We know already that this system has a unique solution,
which is moreover non-zero (since L 1 2 / 0 = L o o l 2 for any (q,θ)eΩ). Thus there
exist M rows in A (possibly depending on (q9θ)eΩ) that yield a regular M x M
matrix. But the matrix elements of A and the components of b are all r.a. on Ω
(since L and L^ are), so by virtue of Cramer's rule this must be true for the matrix
elements of Zu, too. •

Lemma C2. The real-analytic diffeomorphisms Φ and $ of Lemma Cl are symplectic.

Proof. Again we only prove this for the relativistic case, the nonrelativistic case
being similar, but simpler. Setting

qϊ(q,θ) = 4j-±Δ$), (Cl)

θ;(q,θ)s§Jt (C2)

it suffices to show that the transformation (q, θ)->(q+,θ+) is canonical. (Indeed,
in view of (5.35) and the evenness of δ(θ) this entails canonicity of Φ, and hence
of S = Φ ~ \ too.) To this end we introduce

qj(t, q, θ) = qj(t) - 1 exp (βθj(ή), (C3)

θj(t,q,θ) = θj(t), (C4)

where the £-dependence refers to the Jf flow, cf. (5.57). Since this flow is
Hamiltonian and complete, we infer

{«,.&} = { 0 A =0, (C5)

{qjΛ} = δjk (C6)

for any ίεR. Recalling now (5.75) and (5.74), one readily verifies that pointwise on
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Ω one has

\imθ(t,q,θ) = θ+(q,θl (C7)
t-*oo

lim q(t,q,θ) = q+(q,θ). (C8)
ί-»QO

Therefore, it remains to prove that one may interchange the t -» oo limit and the
differentiations with respect to qi and Qt implied in (C5), (C6).

To justify this interchange we exploit the real-analyticity of (q,θ) on Ω proved
in Lemma Cl. It entails that one can find a closed polydisc P c C 2 N around a
given (q9θ)eΩ such that q,q+ and θ = θ+ extend to holomorphic functions on
P. Eventually shrinking F, we can ensure there exists ε > 0 such that

R e ^ - e ^ - 1 ) ^ y = 2 JV (C9)

on P (since θ^q.θ)< ••• <θN(q,θ)). Consequently, there exists ΓeR such that for
t ^ T: (i) the functions Σk and Σ£ evaluated in

y(t, q9 θ) EE (4, + te* Λ , . . . , qN + ί ^ , θ) (CIO)

extend holomorphically to P; (ii) the J£fc are non-zero on P (since the contribution
of / = {N — k+ 1,...,N} dominates the remaining ones). Moreover, eventually
increasing Γ, it now follows from (5.66) and (5.67) that q(t,q,θ) and θ(t,q,θ) have
holomorphic extensions to P for t ^ T, which converge uniformly on P to the
holomorphic functions q+(q, θ) and θ+(q, θ) for ί -> oo by virtue of straightforward
estimates. Therefore, the interchange is legitimate. •

Notes added in proof. 1. Further relevant references include [24], [25].
2. (Addendum to Section 5) In [12] we proved bijectivity of Φ without using the
formulas (5.41) and (5.67) (which we did not obtain in [12]). We no longer
understand why these explicit formulas would entail (5.17) (if we ever did). More
precisely, when $ is defined by (5.40), (5.41) and (5.66), (5.67) in the nonrelativistic
and relativistic cases, resp., then it does follow from the above proofs of Theorems
5.1 and 5.3 that $ satisfies ^ °Φ = idΩ, so that Φ is injective. However, as we see
it now, an additional argument is needed to prove that Φ maps onto Ω. (In fact,
(5.67) is not even well defined as it stands: it is not obvious that the argument of
the logarithm is positive on Ω)

To close the gap, we detail the construction in [12] of a map

S Ω^Ω, (4, £)»->(«, 0) (1)

that manifestly satisfies (5.17). Once this is done, we may deduce that Φ is a
bijection with inverse &, and then it follows that $ is actually given by (5.40), (5.41)
and (5.66), (5.67). (In particular, it follows that the argument of the logarithm in
(5.67) is positive on all of Ω)

Turning now to the details, we begin by defining functions Σj,A},q* and
matrices L^L^.L^.Fi.F^G on Ω via the explicit formulas in Sect. 5. Then we
define a vector qeWί" via (5.40) and (5.66), and matrices YueN+, YteN~ by requiring

YueN\ YteN- (2)
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Multiplying out, one readily verifies that such matrices exist, and are uniquely
determined and continuous on Ω (Indeed, since the numbers eqj are non-zero, the
Nth row and column of (2) determine the Nth row of Yt and the Nth column of
yu, resp.; then the (N — l)th row and column of (2) determine the (N — l)th row
of Yt and the (JV - l)th column of Yu, resp., etc. Recall also that (2) entails (5.40)
and (5.66), cf. (4.11).)

We proceed by setting

L E E Γ ; 1 ! ^ (3)

or, equivalently,

LstfiY^Y^e-e (4)

(To verify that the right hand sides of (3) and (4) are equal, solve (2) for eQ and
use the relations (5.26), (5.24) and (5.61).) To ease the notation, we set from now
on- β ΞΞ 1 in the relativistic case. Then it follows from (4) by using YtGN~ and (5.21),
(5.60) that in both cases

0, fc>;+l
( )

Next, we specialize to the nonrelativistic case. Then one has Fu = Fj (cf. (5.25),
(5.27)), so that (2) implies Yτ

u = Yt. Since also L^ = L^ (cf. (5.20), (5.21)), it follows
from (3) and (4) that Lτ = e~QLeQ. Due to (5) this entails

The upshot is, that when we define 0eR N by

ΘJ = LJJ, j=ί,...,N (7)

then the map (1) clearly satisfies (5.17). Consequently, the proof of Theorem 5.1
is now complete.

Turning to the relativistic case, we introduce vectors d,έ,d,eeΈLN by

The point of this is, that (3) then entails

Ljk = djek, k^j (9)

(To see this, note L^ = d®e-(d(g)e)+, cf. (5.59), (B3).)
We proceed by deriving information on d and e in several steps. First, using

YueN + , it follows from (8) that

dN=l9 ^ = / ' + -+& (10)

Second, we claim the remaining components of d and e are non-zero, too. To
prove this, we first deduce from (3) that
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(Recall (5.59) and (B7) to verify this.) Combining this with (5) and (9) yields

1 = Σ L j k L ; / = d j Σ k ; , ; , ,

N N (12)

1= Σ V L * = «* Σ V ^ - * * — * k = 2,...,N

From this one reads off du..., dN_ 1 ? e2,...,eNΦ0, as claimed.
Third, since dj and e,- are non-zero, we may set

aj = έ"-*>"/djeJ+l9 ; = 1 , . . . , Λ Γ - 1 (13)

Defining a matrix v4 by (3.6), it then follows from (5) and (9) that L can be written

L = diag(έf!,..., dN)Λ diagfo, ...9eN) (14)

Recalling (3) and (3.8), this equality entails

^ + - + ^ = d 1 . . .d N (l-f l 1 )-(l-«N-i)«i-^N (15)

Fourth, we observe that by virtue of (11) and (3) the cofactor C, of Ljtj+ι is
given by

Cj=^eiί + -+Θ\ ; = l , . . . , i V - l (16)

On the other hand, we can also use (14) and (3.8) to calculate C}. This yields

C i = - r f r . . d ; . . . d i V ( l - α 1 ) . .(l-α J .y ( l - α N _ 1 ) e 1 . .eJ.+ 1 ' . . . ^ (17)

where the primes signify factors that are to be omitted. Combining (15)—(17) with
(13), we deduce

d Λ + 1 = l + < * ' - * + 1 , j = l , . . . , N - l (18)

Fifth, due to (18) we may introduce pN,...,p2¥
:0 such that

These numbers are uniquely determined and continuous on Ω, since this holds
true for all quantities involved in their definition. Since they are non-zero on Ω
and Ω is connected, each of them is either positive or negative on Ω.

Sixth, we assert that P2, -,PN ( a n 4 ^ e n c e 4/ a n c * ej) a r e actually positive on
Ω. To prove this, we consider a point Po of the form Φ(qo,θo). Then it follows by
comparing the various matrices and vectors tfiat the vector q in (2) equals q0,
whereas p} equals eθθj. Thus, p} is positive in P o and hence on Ω.

We are now in the position to complete the definition of the map (1): We set

; = 2,...,N

p) l '

and then (5.17) manifestly holds true. Thus, Theorem 5.3 is now proved.
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