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Abstract. We consider the implementation of symmetry groups of automorph-
isms of an algebra of observables in a reducible representation whose
multipliers in general are non-commuting operators in the commutant of the
representation. The multipliers obey a non-abelian cocycle relation which
generalizes the 2-cohomology of the group. Examples are given from the theory
of spin algebras and continuous tensor products. For type / representations we
show that the multiplier can be chosen to lie in the centre, giving an
isomorphism with abelian theory.

1. Introduction

We start with Wigner's formulation of symmetry in quantum mechanics [1],
which was used with serene power for the Poincare group Pi,. [2]. The states {ψ} of
a system are taken to form the unit sphere J î in a project! ve Hubert space #f\ so if
Jf is a Hubert space and tpe Jf with ||φ|| = 1, then the state ψ is the unit ray
through ψ.

ψ = {λψ: μ| = 1, AeC} e^ . (1.1)

We furnish 3ffv with a transition probability:

^(tp,φ)H<ιp,φ>|2, vetp, 0εφ. (1.2)

A symmetry operation is an isometry U, that is, a bijection U : J*^ -» J^ preserving
9\

^(Uψ,Uγ) = ̂ (ιp,φ) for all ιp,φeJf?ί. (1.3)

The set of isometrics is a group, denoted
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If we have a group of symmetries, G, we obtain a projective representation of G,
i.e. a homomorphism U : G-> Aut Jfi. Each isometry U(g) can be implemented by a
unitary or anti-unitary operator Ug on Jtif [3], which is ambiguous up to a phase,
i.e. an element of 17(1). Let us take the unitary case. Then the map g-+Ug is a
multiplier representation:

UeUh = a*g9h)Ugh, g ,ΛeG, (1.4)

where ω(g,ft)e (7(1) is the multiplier. The associativity of l̂ , £/Λ, Uk leads to the
cocycle relation

ω(g, Λ)ω(gΛ, k) = ω(Λ, fc)ω(g, Λfc) , g, A, fc e G . (1 .5)

If 170 is replaced by

(1.6)

we do not change the projective isometry: Ug = Ug. The multiplier ω' for U' is
related to ω by

) (1.7)

and we say ω and ω' are equivalent if (1.6) holds for some map μ: G->ί7(l).
A cocycle of the form

l (1-8)

is called trivial, or a coboundary. Using point- wise multiplication in £7(1), the set of
cocycles form a group Z2 and the set of coboundaries form a subgroup B2.

The second cohomology group, H2(G, (7(1)), defined as the quotient Z2/B2,
describes the collection of possible inequivalent multipliers [4]. If G is locally
compact there do exist irreducible representations with each multiplier, since these
can be obtained from the true representations of an extension of G by 17(1).

If two representations of a group belong to inequivalent multipliers, then the
states of one representation space cannot be coherently mixed with the states of the
other - a superselection rule exists between the spaces. Examples are the
univalence superselection rule which prevents the mixing of states of integer and
non-integer spin, and Bargmann's superselection rule, which prevents the mixing of
states of different mass in a Galileo-invariant theory. Without Wigner's idea of
allowing multipliers, and superselection rules, we could not have particles of non-
integral spin, or the Heisenberg commutation relations between position and
momentum in a Galilean invariant theory [5].

Wightman's hypothesis [6], that the superselection operators commute among
themselves, leads to a slightly more general analysis. In Sect. 2 we consider a
further generalization, non-abelian superselection rules. We show that in the type /
case we can reduce the non-abelian cocycles to abelian cocycles with left-action.

Wigner's approach is not designed to cope with spontaneously broken
symmetry. In the BCS model [7] the Lagrangian (or Hamiltonian) is invariant
under a group G of transformations (the gauge group in this case), but the ground
state is not invariant under the action of G. This idea was used by Nambu and
Jona-Lasinio, and Goldstone [8] in theories of elementary particles, and is now
known as a spontaneously broken symmetry. This is not a very precise criterion,
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since it leaves open the question as to whether or not the broken symmetry is given
by a unitary (or anti-unitary) operator.

This question can be formulated more exactly in the C*-algebra approach to
quantum mechanics: a spontaneously broken symmetry is an automorphism of
the C*-algebra si of observables, commuting with the dynamics, but which is not a
spatial automorphism in the representation in question [9]. Apart from its more
precise formulation, avoiding Lagrangians, this allows us to consider representa-
tions without ground states.

Let (πj be a collection of inequivalent irreducible representations of the
algebra of observables, si, on Hubert spaces tfq\ the vectors of the 2tfq are possible
states of the system. We can form the direct sum π = @πq acting on tff = @3tfφ

q <ι
with superselection rules operating between various ^fq. As constructed, π is
multiplicitly free. This is mathematically equivalent to the fact that the commutant
τφ/y is abelian - Wightman's hypothesis. Thus, this hypothesis can be "justified"
by asserting that, to get all possible states in J f, we only need to include the vector
states of each &?q once each; there is no possible physical measurement that can
distinguish between repeated copies.

In spite of this devastating argument, non-abelian gauge theories remain
popular: these theories use repeated states (of different "colour") all having the
same physics. It is therefore worthwhile to rethink the Wigner analysis in
representations of si in which π(si)' is not abelian, and in which the multipliers
ω(g, h) [unitary elements in π(<β/)'] do not commute with the unitary operators
{Ug, geG} implementing the symmetries. This leads us to "non-abelian coho-
mology," outlined in Sect. 2. The main result is Theorem 1: ifπ(s/) is of type /, then
there exists a family of gauge group elements, {μ(g)}geG

Eπ(^)^ such that U'(g)
= μ(g)U(g) [cf. (1.6)] has multipliers ω'(g,h)=U'gU'hU'g^ lying in <T = φ/)"
nπ(j/)', the centre of π(Λ/)", on which G acts by left action; in short, ω' is an abelian
cocycle [4]. Moreover, equivalent non-abelian cocycles correspond to equivalent
abelian ones.

Our general analysis can give rise to a new mechanism for breaking a
symmetry, called "fact violation" in [10]. When a non-trivial multiplier occurs
between a 1-parameter symmetry group and the time-evolution group, then the
generator of the symmetry does not commute with the Hamiltonian H, and is thus
not a conserved quantity, even though Wίgner's isometric maps exist. This
phenomenon is usually called an anomaly. In [10], the unitary operators
representing space-translation do not commute. Indeed, R4 as a group has many
multipliers; these are not used in relativistic theory [2], since they cannot be
extended to multipliers of P!̂ . This argument has no force in a non-relativistic
model, or in a representation of a relativistic model in which the Lorentz group is
broken (such as the charged sectors of QED). In Sect. 3 we give an example of a
spin system in which the space-time automorphisms of si commute, but their
implementing unitaries do not - a classic case of anomaly.

In Sect. 4 we give a continuous version of this model; we find that the multiplier
is an operator on which the symmetry group acts non-trivially. That is, we get an
operator anomaly. We also show, by this example, that it is possible for a gauge
group, which by definition acts trivially on observables, to acquire an anomaly and
be non-trivially implemented!
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2. Non-Abelian Cocycles

Let £0 be a C*-algebra with unit, represented on the Hubert space 3? by a
representation π: j/-^]B(Jf) = C*-algebra of all bounded operators on J f. Let
M = π(tc/)', a possibly non-abelian W*-algebra. Let G be a group of automor-
phisms [τg : g e G} of e«/, each being spatial in π. That is, τg is implemented by

, thus:

* , g e G, Λ e ̂  . (2.1)

For any FeAut^f, denote the adjoint action of V on JB(3tf) by AdF:

MVB=VBV~1, BεTtyJtf).

Thus, (2.1) can be written

Ad Ugπ(A) = π(τgA) , g 6 G, 4 e Λ/ . (2.2)

The map g-+Ug need not be a group homomorphism, G->Aut 3? all we can say is
that

(2.3)

Indeed, for Aes/9

ω(g, h)π(A) - π(A)ω(g, ft) = (Adω(g, ft)π(,4) ~ ̂ ))ω(g, Λ)

= (Ad Ug oλdUho Ad Ugh - >π(A) - π(A))ω(g, h)

= (π(τg °
 τh ° τghΐA) ~ ̂ (^))ω(g, Λ)

=0,

showing that ω(g, ft) e M. Hence we get the non-abelian multiplier representation

UβUk = ω(g, h)Ugh9 ω e M, g, ft 6 G . (2.4)

Now we show that Ad Ug maps M to itself; indeed if B E M and A e «β/5

Ad ί/,£τφ4) - π(X) Ad ί/,5 = Ug{BUg

 lπ(A) Ug - Ug

 lπ(A) UgB} Ug

 l

B , π ( ι 4 ) ] = 0 for all

showing Ad UgB e M if B e M.
A similar argument shows that AdUg maps M' ' = π($0)" to itself; or,

Adl7ff|π(Λ/), being (ultra)strongly continuous, has a unique extension to the
closure, π(̂ )", and this extension must be Ad I7g|π(«a/)". It follows from these
results that Adl/& maps JΓ = MnM/ to itself.

Whereas the map g-> Ad l/^|M ' is a group homomorphism, G-> AutM', it is not
true in general that the map g->Adί/JM is a group homomorphism, G->AutM.

Indeed, if Be B )̂,

Ad U o Ad UB = UUhBU; 1 U 1
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SO

Ad Ug o Ad Uh = Adω(g, h) o Ad Ugk . (2.5)

It follows that g-»Adl7J,2? and g-»Adl/JM' are homomorphisms and, if
ωeMrιM' = &9 g-*Adl7JAf is as well; but in general, we have (2.5), with a
"multiplier" Adω.

The Cocycle Condition
The operators Ug are associative, and as usual this leads to a "cocycle" relation:

(UgUh)Uk = ω(g, h)UghUk = ω(g, /ι)ω(g/ι, k)Ughk ,

Ug(UhUk) = Ugω(h, k)Uhk = [Ad Ugω(h, fe)] UgUhk = [Ad Ugω(h, fc)]ω(g, fck)l7f tt .

It follows that, for all g, h, k e G,

ω(g, /Oω(gfc, fe) = [Ad Ugω(h, /c)]ω(g, /zfc) . (2.6)

This is similar to the abelian cocycle condition with left "action" Ad Ug, except
that the order is important, and Ad Ug is not an action of G on M but obeys (2.5).
We say that ω is an Ad U cocycle if (2.5), (2.6) hold, and ω is a map G x G-> M . ω
unitary.

It is not clear that, given ω obeying (2.6) with respect to some automorphisms
of M, "Ad 17," obeying (2.5), then there exists Uge AutJf obeying (2.3).

Equivalent Multipliers

If Ug and Vg implement the automorphism τ of j/ in π, then there exists μ(g) e M
such that Vg = μ(g)Ug. Conversely, if U and V are thus related, then Adί/|π(j/)
= AdF|π(j/) if either maps π(j/) to itself.

If so, and U has multiplier ω, then

= μ(g) (Ad L/9M/ι))ω(g, h)μ(gh) ^Vgh.

Hence Vg has multiplier

ω\g,h) = μ(g)(MUgμ(h))ω(g,h)μ(ghΓl . (2.7)

Obviously, μg is unitary.
The multiplier ω'(g, /ι) obeys the cocycle relation (2.6) with Ad Ug replaced by

Ad(μ(g)U0). We say ω' is equivalent to ω, ω' ~ω, via μ. This sets up an equivalence
relation: ω~ω via 1; if ω' ~ω via μ, then ω~ω' via μ"1; and if ω'~ω via μ, and
ω'' ~ ω' via μ7, then ω" ~ ω via μrμ. Also, ω = 1 is a multiplier and any ω ~ 1 via μ is
said to be trivial. Thus,

ω(g, h) = μ(g) (Ad Ugμ(h))μ(ghΓ ' (2.8)

is an Ad(μC7)-multiplier equivalent to 1 via μ. One easily shows that if (2.8) holds,
and ω' is equivalent to ω via μ', then ω' ~ 1 via μ'μ. Thus, the set of multipliers of the
form (2.8) for some μ are all equivalent to each other. Any equivalence class
contains an ω obeying ω(g, e) = ω(e, g) = 1 we assume this relation from now on.
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We can formulate these concepts without the assumed existence of Ug; we only
need an "action" γg9 obeying y^eAutM,

ygoyh = Mω(g,h)ygh, (2.5')

and a cocycle ω obeying

ω(g, h)ω(gk k) = lygω(h, fc)]ω(g, hk) . (2.6')

Then equivalent multipliers, and trivial multipliers can be defined, leading to
similar considerations.

If M = 2£ , there is a natural multiplication between multipliers belonging to the
same action y (which is then a homomorphism, G->AutM), namely, the pointwise
multiplication of ω as functions G x G-»M. In general we can compose two
projective representations as Uί®U2, leading to a form of product for cocycles.

Our cohomology is an example of [4, 1 1], as we show in Theorem 2. Indeed, it
is equivalent (Theorem 3). When M is of type /, a gauge transformation can be
used to reduce the multiplier to a central one, as we now show.

First, if π(jtf) is of type I with separable predual, then so is π( stf)' = M. Then M
is ^-algebraically isomorphic to a VF*-algebra M0 with abelian commutant which
is then its centre, <2Γ0 [13, Theorem 5.5.1 1]. By the central decomposition theorem
[13, Corollary 4.12.5], there exists a measure space (Z,μ) and a field of Hubert
spaces J^(z) such that M0 is spatially isomorphic to

acting on the direct integral

The isomorphism maps ̂ 0 onto the algebra 3£± of diagonal operators on 3f . An
automorphism y of M is transferred to an automorphism y1 of M1 leaving 3fί

globally invariant. By [12, p. 253, cor.], γl is a spatial automorphism.
It is known that dim^f(z) is a measurable function of z [12, p. 143,

Proposition l(i)]. Thus

En = {z E Z : dim^f(z) = n}

defines the diagonalized projection

where χn is the indicator function of En and l(z) is the identity operator on Jf (z).
The algebras PΠM1PΠ are homogeneous, n e (1, 2, ... 00} and are spatially isomor-
phic to JB(Jtf3®LXί(EH,μ) 9 here dimjfn = n and the term is missing if μ(En) = 0.

We now show that each PnM^Pn is mapped to itself by any automorphism yv of
M lβ It is enough to show that each Pn is invariant. Clearly, yι(Pn) is a projection in
&ι'> let ?!*(£/») be the corresponding measurable set in 3fl9 where y^ is the pull-
back of ^il^Ί to Z. By the uniqueness theorem [12, p. 222, Theorem 4], μ and

are equivalent, so μ(y^ #En) ΦO. Also if mφn,
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since if not, μ(y^1£mπE/l)Φθ too, and a non-trivial part of the direct integral of
dimension n is mapped spatially (as γ1 is spatial) onto a non- trivial part of
dimension m. As μ is countably additive, we thus get

i.e. up to sets of measure zero,

y^EngEn, n e {1,2,...}, showing y^PJ^P,.

Thus M! is the direct sum of homogeneous algebras invariant under γίt

Reversing the isomorphism we see that M is the direct sum of homogeneous
algebras each invariant under automorphisms, in particular, under {Ad Ug) g e G}.
It is therefore enough to consider M to be a homogeneous algebra of type /„,

Theorem 1. Suppose M is a homogeneous W*-algebra of type /, G a group and g^yg

a map G-> AutM. Let ω:Gx G-+M satisfy (2.5') and (2.6'). Then there exists a map
μ:G->M such that

α/(g, h) = μ~ \g»g(μ- \Hj)ω(g, h)μ(gh) (2.7)

lies in <2? = MnM', and obeys the cocycle relation

ω'(g, fcjω'fefc, fc) = (λgω'(h, /c))ω'(g, hk) , (2.6')

where g-+λg = yg\g> is a homomorphism, G->Aut^f. Moreover, if ω1 and ω2 are
equivalent, then the corresponding ω'lyω'2 are equivalent in the abelian cohomology

Proof. Like all automorphisms, yg maps 3£ to itself. Since M is homogeneous of
type /, there exists a *-algebraic isomorphism σ : M-+2£® $(3? ) [12, p. 251]. Then
σ ° 7g °

 σ~ * is an automorphism of 3£ ®&($f ) leaving the first factor invariant. Let
λg = (σoγgoσ-^(^l and put λg = σ~ioλgoσ. Then γgoλ~l = λg

loygeλutM,
and leaves 2£ elementwise invariant. So, by [12], p. 255, or [13, p. 346], yg°λ~l is
inner. So there exists μgeM (a gauge transformation) such that yg°λ~l

Then

= (λdμgλg

Ad( V*) (

since λgλh = λgh.
Therefore,

for some ω'(g,h)e3f. Then ω' obeys (2.7'). Since ω is an Adμ^o^ cocycle, the
general theory ensures that ω'(g, h) is a /l^-cocycle. Thus ω is equivalent, via μ to
ω' 6 Z2(G, JΓ, A). Now suppose α^ is equivalent to ω2 in the sense of non-abelian

, Λ) = μg(λgμh)ω'(g, h)μgh

l
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cohomology, so ω2 ~ ωx via μ. Let ω^ ~ ω\ via μl and ω'2 ~ ω2 via μ2, where ω\ and
α/2 e JΓ2(G, Jf , λ). Then ω^ωΊ via μ2μμ^ Hence the actions oϊ ω\ and ω'2 are
related by Ad(μ2μμι). But both have the same action, λ: so λ = Δd(μ2μμ1)°λ.
Hence

μ2μμ16jf.

Thus ω'2 and ω\ are equivalent via a central element, so

ω'2ω'f leB2(G,&,λ).

Remark. Theorem 1 shows that there is nothing new in non-abelian cohomology in
the type/ case. It enables us to set up cohomology groups consistently by
multiplying cocycle representatives in Z2(G, j2Γ, λ). This provides an isomorphism
between non-abelian cohomology with τg\3£ — λg given, and H2(G, 3?9 λ). This does
not mean that there is nothing new in the physics: it might not be possible to
squeeze a non-abelian gauge quantum field theory into a multiplicity-free
representation of the observables.

There is a connection between cocycles ω with ω-action γ and extensions of the
group G. Let * denote the unitaries in M.

Theorem 2. The multiplication law

(g,u)o(M=(gMv)ω(g,/t)) (2.9)

makes Gx% into a group E = Gκύtt. Then the sequence

l , (2.10)

where E/<%κG, is exact. Moreover, for any ω-representatίon g->Ug of G,

V(g,μ) = μUβ (2.11)

is a true representation of E. If ω' ~ω via μ, then the groups G xi ̂  and G xi % are
γ y'

isomorphic, where γ'g = Adμg°γg, and conversely. The isomorphism is

fe^Hfew/V1)-
Then the corresponding true representations of (2.11) are equal

Proof. Elementary.
The product law (2.9) is a generalization of the semi-direct product (when

ω = 1) and the central extension (when γ = Id, Jt — 2£\
We call (2.9) the canonical form of the extension E.

Theorem. Let (2.10) be an exact sequence of groups. Then there exists a pair (ω, 7),
where ω is a 2-cocycle: G x G->^ and y is an Adω-homomorphism γ: G
such that

with product in canonical form (2.9).
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Proof. Identify G with E/^ί and to each g e G choose egeφ~i(g). Since φ is a
homomorphism, egeh eφ~ l(gh\ so there exists ω(g, h) e ̂  such that egeh = ω(g, h)egh.
Let 7 = Ad£eAut^. Then since

Ad eg Ad eh = Ad ω(g, /i) ° Ad egh

we obtain (2.5'). Also, associativity in G, namely e(gh)k = eg(hk) gives the cocycle
relation (2.6').
Finally, any element of E has the unique expression e = ueg. The product law is

so the map

ueg^>(g,u)

is an isomorphism in canonical form.
We see that our freedom to choose various Ug to implement the symmetry is

just choosing a representative eg in the coset in E.

3. Energy-Momentum Anomaly

We now give an example, the spin chain in a magnetic field, in which the space and
time automorphisms commute and possess Wigner isometrics, but these isome-
trics do not commute. The anomalous commutator, which is of course a cocycle,
arises in a way that is typical of anomalies the world over.

Let si be the spin ^C*-algebra for the linear chain, i.e. si is the inductive limit
over finite subsets AQZ of the algebras [14],

-s/(4)=<g)M2(Λ, |Λ|<oo, (3.1)
jeΛ

where M2U) is a copy of M2 = B(C2). The group Z acts on si by translations:

where Aj is the copy of A in M20> Suppose the system lies in a magnetic field
M = (0,0,M), so that the Hamiltonian is H = M-S

# = MΣ(K3) (3.2)
jeZ

This formal infinite sum does not converge, but it defines a unique one-parameter
group of automorphisms of j/, namely, those that reduce to

τt(A) = Ad exp(/Mσ3ί/2μ (3.3)

on each M2u>. This action is periodic of period 4π/M, and commutes with space-
translation. So we would say that space-translation is a symmetry in the
algebraic formalism.

Each τt on M2 has two pure stationary states u= ί ) and d= I ). By taking

infinite tensor products of these stationary states we get many invariant states of τf

for the whole algebra si. Let us choose a state that represents a magnetic domain
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wall at j = OeZ: construct the state [14,15]:

Ω=(x)w, ® ®d:. (3.4)
7<0 j^O

Then the functional

defines by extension to the inductive limit a stationary state on si. In the cyclic
representation, say (J fω,πω,Ω), given by the GNS construction [13, p. 47] time-
evolution is given by a continuous one-parameter group of unitaries {U(i)}teΈL on
3?ω. The generator of U(t) is given by (3.2) in which σ? is replaced by its
representation in πω, and a "vacuum renormalization" is made so that H is
convergent on a dense set in J fω:

=τ Σ Φ-D+ Σ (*? + i) (3.5)2 \j<o j^o /

The state ω is not invariant under space-translations: the dual action T*(n) takes ω
to ωπ, where ωn is determined by

This might signal a spontaneous breakdown of translation invariance. However,
we now show that T(n) is spatial in πω, so that each T(n) is a symmetry in Wigner's
sense. Nevertheless, momentum is not conserved owing to an anomaly. Define V(ri)
onί2by

Λι-1

σHΩ, n>0,
j=o
-i

)σj
V=»

/O

where σ^^ Q

Thus, ΩΠ is the state with spin at fe up, fc < n, and spin at fe down, k g n. Define F(n)
on a general vector π(j/)Ω by

Then F(n) is unitary, obeys V(ri)V(ri) = V(n + nr), and implements T(n) in π

In spite of this (V(ή) does not commute with l/(ί); indeed, if n>0,

l/(ί)ΩΛ = l/(ί)πω Σ σl Ω = πω τt ® σ Ω

(as dictated by the GNS construction)

Λ.-I/ o
= π,Λ. _

^e
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Similarly, if n<0,

Π (>iMt^
V e i i -)_/. -iMt)-n(

-ίM< 0

= eίnMtΩn.

Hence Ωn is an eigenstate of H/M with eigenvalue n: H/M is the position operator
for the boundary of the domain (the boundary is only sharp for vectors of the form

M
Ωn). In our model, there is a density for the position operator, —-(σ3 — 1),

M
n<0 and—(σ3 + l) for π^O, in view of (3.5).

The commutation relation in Weyl form

U(t)V(n) = einMtV(n)U(t) (3.6)

follows immediately, at least on Span{ί2π: rceZ}. Then (3.6) must hold on all
vectors: π is irreducible, so the multiplier lies in (7(1) and is determined by
U(t)V(ri)U ~ l(t)U~ ^(n) on any non-zero vector. Equation (3.6) gives a multiplier for
the group Z x Z = Z x (7(1) [16]: time-evolution is periodic and so forms the group
17(1), dual to Z.

It is clear that momentum is not conserved in this model. How does this "fact
violation" come about? Firstly, the space-translates Ωn of the stationary state Ω are
different stationary states; secondly, H is not positive, but has "spectral symmetry."
The eigenvalue equation HΩ = 0 results from the "cancellation" of infinitely many
— M +M

with the balancing , provided we take the infinite limit in a balanced way.

This is violated on the states Ωn. This is exactly how the anomaly in the Virasoro
algebra is described [17, p. 290], and indeed the axial anomaly also arises because
the Dirac spectrum is shifted up and down by the axial gauge transformations,
giving a spectral flow. In our model, the translation operator provides the spec-
tral flow directly.

This model acts as a guide for the continuous version in Sect. 4.

4. Energy-Momentum Anomaly in the Continuum

We now give the continuous version of the model of Sect. 3. But it is not possible to
define a continuous tensor product of the space C2 carrying a spin \ representation
of 17(2) [18]. The problem lies in the failure of the positive-definiteness of the
continuous product

), φ(x)> = exp f dx log<φ(x), </>(*)> (4.1)

even though <, > is positive-definite. The solution to this problem is given in [19]:
at each point xeR, we choose an "infinitely divisible" cyclic representation
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($>X,ΩX), instead of the spin \ representation ^1/2. For SU(2), any infinitely
divisible representation is an exponential of a cyclic representation [20].

To set up the continuous analogue of the model of Sect. 3, let λ e C and

Exp Λw = i e / l w e Λ 2 e . . . e ExpC2, (4.2)
1/2!

where ExpC2 is the Fock space over C2. Similarly we define Exp/W. Then

Ω+ =exp(-|A|2/2)ExpAw

and

Ω_=exp(-μ|2/2)Exp/W

are unit vectors in ExpC2. Let U e 17(2) and define its second quantization

Expl7 = 10170(17 ® L7)e...eAut(ExpC2).

Let G denote the group of piecewise constant maps 17 :R-»(7(2), equal to the
identity outside a compact set, with pointwise multiplication. We will sometimes
write U = (x) U(x) for the map U:x\-> U(x).

X

Then we may define the continuous tensor product

jcelR

with cyclic vector

= Ω_, x>0. (4.4

Then (4.3) carries a representation of G by the pointwise left action

= <g)(Expl7(x) φ(x)) (4.5)

and by definition, Jjf is spanned by G acting on Ω.
The scalar product (4.1) is then positive-definite, thus

(® Ul (x)Ω, (g) U2(x)Ω\ = exp J dx log <Exp U^Ω^ Exp U2(x)Ωxy

= expμ|2Jdx«l71(jc)ωJC, I72(x)ωx>c2-l)? (4.6)

where ωx = M, x < 0, and ωx = d, x > 0. Let j/ be the W* -algebra generated by the
operators (x) U(x) e G on ffl . Certain automorphisms of stf are spatial. Naturally,

X

conjugation by elements of G, being inner, are spatial. More, let U1 = 0 U^x) be
JC

such that, outside a compact set K, 17 α leaves the states defined by w, d invariant, i.e.
U1 is a rotation about the third axis. Suppose 17 x is piecewise constant in K. Then
the automorphism

l(x) (4.7)
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is a spatial automorphism. Thus, let τ, be the automorphism of s/ due to a constant
magnetic field M in the third direction. On G, this reduces to (4.7) with

/eitM/2 Q \

Ul(x) = I -ίίM/2 J^X Then Ω defines a state on si invariant under τί?

which is therefore implemented, by V(i) say, given by

V(t) Λg) t/(x)Ω\ = (x) τ? (t/(x))flx, (4.8)

where τ^Adl/^x). Then F(ί1)F(ί2)=7(ί1 + ί2), and F(ί + 4π/M) = F(ί). The
group of space translations acting on G namely 7^(x)l/(x) = (g)l7(x — α) is also
spatial. I claim that Ta is implemented by W(a): x x

where Ωa has the wall of the magnetic domain at a instead of at 0:

ββ=(g)β+®(|)β_. (4.9)
— oo a

We must justify (4.9) by showing that it lies in 2tf. In the spin \ representation of

t/(2), the element σ1 = I 1 converts λu to λd and vice versa. It follows that

Expσ1 takes Expλu to Expλd in ExpC2, and vice versa. Therefore the element of
j*9 by (4.5)

takes (x) (Exp/lM)^ to (g) (Exp/ld)^ and vice versa. Thus
xe[a,b] xe[a,b]

Ωa = F0,aΩ, a>0,

= Fα>0β, a<0,

lies in <#?. It is then trivial to show that W(a) is unitary on 2tf , and W(a1)W(a2)

As in the discrete model, Sect. 3, space and time automorphisms commute:
τtTa = Taτt; but their implementing operators V(t\ W(a) do not commute. We can
now compute the multiplier of the representation of the group R2 given by U(a, t)
= W(a}V(f). We get

U(al9 t,}O(a2, t2)AΩ = W(a1)V(tί)W(a2)τt2AΩ

= W(aί)V(t,)(Ta2τt2A)Ω(a2)=W(al)(Ta2τt^^^

= W(al)(Ta2τtί+t2A)(τtί ® σ^β if α2>0.
\ xe[0,a2] )

( 0 eiMt\
Now, τf (g) σ^= (x) τ^σ^ and τ{ )σ 1={ _ίMί . This multiplies w by

xe[0,α] jce[0,α] \β ^ /

β~ίMί. In the interval [0,02] the second quantization of this is

eίMtN[0,a2] _
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where N[α,b] is the number operator in the interval [α,ί>]. Hence

Since

l/ίfl! + α2, ί ! + t2)AΩ = (Taι +a2τtl+t2A)Ω(a, + a2)

we see that the multiplier is

For α2 < 0 we get the same formula if we interpret JV[α, fe] = — JV[fe, α]. The action
of the group R2 on the cocycle is

Ad l/(α, ί)ω(αl5 tί9 α2, t2) = ω(aί + α, ί t; α2 + α, ί2) .

One verifies that, with this action, ω obeys the cocycle relation (2.6). In this case,
M = 3? is abelian, being the ΫF*-algebra generated by the number density, i.e. by
{expiΛΓ[α,&], α<freR}.

We have an operator anomaly, albeit an abelian one. Heuristically, this arises
as follows. The local currents, which generate G, are given by J(x)=^af(x)σίjaJ{x\
where af(x), i = 1, 2 create the two spin-state u, d in Fock space. The naive formula

oo

for the energy in a magnetic field in the third direction, M J J3(x)dx, diverges on
— oo

Ω; we must subtract half the number density, N(x)/2, x<0 and add N(x)/2, x > 0, to
remove the zero point energy. Then the "renormalized" Hamiltonian

2

annihilates ί2 and makes sense on the states of J^. But it fails to commute with
space-translation:

W(a)H - HW(a) = - J MN(x)dx = - MJV[0, Λ] ,
o

giving the anomaly, again caused by spectral flow.
By choosing a = ί, we obtain a projective unitary representation of R : f -» £/(£, t)

not reducible to a true representation.
We can turn this model round, and choose <2Γ as the algebra of observables, and

s/ as the non-abelian gauge group. The observables then are generated by the
number operator density, which is invariant under the "time-evolution" τf given by
the external constant gauge field in the third direction, which (being the identity
automorphism) commutes with space-translation. Let us look at this system in the
state ί2, which has a kink in its gauge potential at x = 0. We find that the trivial
action of the time evolution, τt on Jf, is non-trivially represented in the Hubert
space 3tf built on Ω, namely, it is given by V(f)\ A shocking violation of fact.
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