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Abstract. We describe phenomena occurring just before a saddle-node
bifurcation for one-parameter families of interval maps. In particular, as a
parameter approaches the bifurcation value, attracting periodic orbits of
periodsk,k+1,k+2,k+3, ... can appear. We make a detailed study of a family
of “cusp-shaped” maps, where this phenomenon occurs in a pure form.

1. Introduction

For a one parameter family f, of maps of an interval into itself, a saddle-node
bifurcation occurs when the graph of f, (or f') touches the diagonal and then
crossesit. A fixed point and immediately after it — a pair of fixed points (respectively
a periodic point of period n and then a pair of them) appears; one of these points is
attracting and the other one repelling. However, here we will not be interested in
these fixed (periodic) points. Instead, we shall look what happens at the other side
of the saddle-node bifurcation, i.e. for these parameters for which a fixed point is
not created yet.

This situation has been considered by Newhouse, Palis, and Takens in [NPT].
However, their aim was different than ours and hence [NPT] does not contain
explicit statements of the results interesting to us. We shall restate (and reprove)
these results in the form showing clearly what is going on.

The main phenomenon that may be observed in some families, is period
adding. As the parameter approaches the bifurcation value, attracting periodic
orbits of period k, k+1, k+2, k+3,... (or k, k+n, k+2n, k+3n,... if the
bifurcation occurs for f;) appear. However, in many cases there are many other
periods of attracting periodic orbits which appear in the considered interval of
parameters. This has to happen for instance if the maps f, are smooth and
unimodal (see [MSS, CE]). This is why we turned to the investigation of unimodal
maps which are smooth except at the critical point, where the derivative is
discontinuous (and bounded away from zero).

Such “cusp-shaped” maps appear in many experimental or model systems, e.g.
the Lorenz model [L], models of flip-flop process in visual perception [AB] or a
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bromate-chlorite-iodide oscillator [MAE]. We have also obtained this type of a
map in a model of coupled enzymatic reactions with inhibition by an excess of
substrates and products [KML]. The properties of such maps are much less
investigated than the properties of smooth unimodal maps.

The main purpose of this paper is to present an example of a one-parameter
family of such maps, in which the period adding phenomenon appears in a pure
form. That is, every periodic attracting orbit is of the type predicted by the
Newhouse-Palis-Takens theory. We prove this rigorously for parameter values
close to the bifurcation value. However, the computer experiments suggest that
this is so for all parameter values.

2. Local Theory

Let J be a closed interval, c e int(J), «>0. Let f:[0, «] x J—»R be a map of class C*
(k= 3) such that if we denote f,= f(u,x) then

Jole)=c, 21

fux)>x foreach (u,x)#(0,c), 2.2)
fux)>0 foreach pu,x, (2.3)
f/(x)=0 foreach pu,x, (2.4)
fux)>f(x) foreach x and pu>v. (2.5)

We shall use the following theorem on embedding of our family of maps into a
family of flows. It has been proved by Yoccoz [Y]; another proof has been given
independently by Skrzypczak [S]. It is more convenient to use this theorem than
the weaker result of Newhouse, Palis, and Takens [NPT], which gives only an
approximate embedding.

Theorem 2.1 ([Y, S]). If f satisfies (2.1)—(2.5) then there exists a map X :[0,a]
x J=R of class C! which is of class C*~ ! except at the point (0, c), such that if we
denote X (x)=X(u, x) and (¢},);r is the flow of the vectorfield X, then ¢, = f, for
all u. Moreover, the vectorfield X, is uniquely determined by f,,.

From this theorem we can derive the main technical tool for further proofs.

Theorem 2.2. Assume that f of class C* satisfies (2.1)~(2.5). Let a,beJ, a<c<b.
Then

(a) For any sufficiently large n there exists a unique p, such that f, (a)=b.

(b) For every de(a,c) there exists | =0 such that for n sufficiently large, the iterates
S~ are defined on [a,d] and f."([a,d])CJ. Then the sequence (f;.") is uniformly
convergent with k—1 derivatives on the interval [a,d]. The number | can be chosen
arbitrarily large.

(c) If aand d are fixed and b is sufficiently close to c then the integer | above can be
chosen equal to 0.

Proof. The existence of p, follows from (2.1), (2.2), (2.5) and continuity. The
uniqueness of u, follows from (2.5). This proves (a).
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Now we use Theorem 2.1. We have f, =g, , so fr '(x)=¢} {(x) for all [,x
such that £ ~!(x)is defined and belongs to J. For any x € [a c] there exists a unique
ta(x) such that x= @'2%(a). Then

fa7 100 = gl )= gl ).

By the Implicit Function Theorem, t,(x) depends on x in a C*~! way and the
functions t, converge to t,, defined by x=¢5*™(a), uniformly with k—1
derivatives on the interval [a, d]. There exists />0 such that ¢} ~!(b) exists and
belongs to intJ. Then for n sufficiently large, [ ~!(b) exists and belongs to J for
all xe[a,d]. Moreover, ¢ir")7!(b) converges unlformly with k—1 derivatives to
@i on [a,d]. It is clear that [ can be chosen arbitrarily large. This proves (b).

If a and d are fixed and b is sufficiently close to c then, since X o(c) =0, it follows
that ¢}>“(b) exists and belongs to intJ. This proves (c). []

Remark 2.3. Sometimes we shall use not only Theorem 2.2, but also the explicit
form of the limit of the sequence (£ ~%). This limit is equal to g; , ,(x)= @ ~(b),
where ¢{{(a)=x. Note that g, , , depends only on fy, I, a, and b. If f, is fixed then
we get in fact only one-parameter family of limit maps. This is due to the fact that if
for some s we have a; = ¢}(a) and b; =} ' *"(b), then g, , , =8/, .a,.5,-

3. Global Theory

In this section we assume that locally the situation is as in the previous section. We
shall investigate the global behaviour of the iterates of f,.

Let I be a closed interval, «>0and f:[0,a] x I—I a map of class C* (k = 3). We
denote as before, f,(x)= f(u,x). We assume that there exists an interval JCI and
ceintJ such that (2.1)—(2.5) are satisfied. Under these assumptions we have the
following theorem.

Theorem 3.1. Let a, b, and u, be as in Theorem 2.2. If for some x€l and m=0 we
have f3'(x)e(a,c) then the sequence (f,).-, converges uniformly with k—1
derivatives in some neighbourhood of x.

Proof. For some neighbourhood U of x, some d €(a, ¢) and all n sufficiently large
we have f;(U)C(a,d). Then for ye U we have

S =Far ™o L (o)
where [ > m is chosen as in Theorem 2.2 (b). Since f, and f, ™ converge uniformly
with k derivatives to f" and f¢™™ respectively as n—oo, and f;~' converges

uniformly on [a,d] with k—1 derivatives, the sequence (f,.) converges uniformly
on U with k—1 derivatives. [

Under the same assumptions we have also the following theorem.

Theorem 3.2. Let a, b, and u, be as in Theorem 2.2 and let X , be as in Theorem 2.1.
Assume that for some p>0 we have ff(b)=a and

Xob) |

GO *
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Then there exists a neighbourhood U of b such that if nis sufficiently large then there
is a unique x,e€ U with f?*"(x,)=x,. Moreover, as n—co then x,—b and
Xo(b)
Xola)

Before proving this theorem, we shall recall the following simple lemma (see e.g.
[SD).
Lemma 3.3. Under the assumptions of Theorem 2.1, if x, f;(x)€J, then

(1 09= 425,

a0 dt

Proof. By Theorem 2.1, we have s= | X0
x Ay

(S5 (xn) = (fE) (B)-

. Taking the derivative of both sides

of this equality, we obtain

N 1 1
0= 37 ~ X0
X,(f39)

X,

Hence, (f;) (x)= O

Proof of Theorem 3.2. By Theorem 3.1 applied to m=p+1 and x=>b we get that
the sequence (f; )., converges uniformly with k—1 derivatives in some
neighbourhood of b. Hence the same is true for the sequence (£, *?);- ;. The limit
function of this sequenceis h=f'"1og, , , o f&*! (see Remark 2.3 and the proof of
Theorem 3.1). We have f&*(b)= fo(a) and g, , ,(fo(@)=(foly) "' *(b), so h(b)=b.

Since g, ,  is the limit of the sequence ('), we get by Lemma 3.3 that g] , , is

.. X, ofr! s Xoo
the limit of the sequence (ﬁ—“"—> This limit is equal to =2~ 5% Hence, we
get X, Xo

Xo(fol) " b))

(fpT1y
T

H®)=(fo~1) (foly) ™" (b)) -
Again by Lemma 3.3, we have

-1

Xoo
-1y _ 0 (4]

and
(Y 1= @- (13 6= 35 (£ 0,
Therefore
o Xo)
)= 300 (5 .

Now the assertion of the theorem follows immediately. []
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Remark 3.4. If in Theorem 3.2 we have

X,o(b)
Xo(a)

(S8 (b)! <1

then for sufficiently large n the periodic orbit of the point x,, is attracting.
Theorem 3.2 together with Remark 3.4 give us a period-adding phenomenon,
described in the introduction.

4. Scaling
Another well-known thing is the scaling law. If the tangency of the graph of f, to
the diagonal is of k'™ order (k= 2) then we can write X ,(x)~ax* + Bu | we set here

0 .
¢=0 and assume that —f >O>. Let us make computations for X u(x)=x"+ u:

o
n=? dz =in7 dz__ _ 1w dt
aZtti el g st L
s

we have used the substitution ¢t =y, '/*z). Since a<0<b and p, 1*— 0 as k— o0,
Hn

. L. @ dt
the last integral tends to the finite limit | PIRT and therefore

nxconst-ul*-1,

In the general case the result will be the same, only the constant will perhaps
change. Hence, we get the following scaling law:

k

pp~const-n k1
In the generic case we have k=2 and then

u,~const-n"2,

5. An Example

We want to give an example where the described phenomena appear in a “pure”

form. Set
i) o
frro.8.4%)= 1 1
2| —— if x=8.
! <ﬁ—n x—n) =/
—m(1—
If0<p<1,n<B<oand y*< (ﬁ—in):(—ﬁ—n) then f, , ; , maps the interval [0,1]

onto itself.
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We fix ¢, B, and 5 and consider the one parameter family obtained in such a
way. There are many ways of doing this which suit our purposes. We choose one
particular family and investigate it closer. Namely, we set ¢ =0.27, =0.25,1=0
and denote f,=f, , 5, We obtain the following formulas.

0.0216

1.08— 0.27—x

if x<025,
fHx)= :
y? (4~;> if x>0.25,

0<y=]/1/3. We get the saddle-node bifurcation for y=0.5 at the point x=0.5. We
can use the previous results with u=0.5—y and replacing x by 0.5—x.

Fig. 1. The graph of f, for y=0.5

Fig. 2. The graph of f, for y=0.4

We need some more formulas. It is easy to compute that X o(x)= —2(x —3)%.
Denote f=f, s and choose a point be(0.25,0.5) such that f(b)e(0,0.25) and
a=f*b)e(0.5,1). We have p=2 and according to Theorem 3.2 and Remark 3.4 we
have to look at the value of the “limit derivative”

X o(b)

B=( )
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Xogg where d = f(b). Therefore B=f"(d)- izzd; and

as d we can take any point of (0, f;” *(0, 5)), where f; and f, denote the left and right

However, notice that f'(b)=

branches of f respectively (1e fix)=1.08— 00207216 f(x)= 1——1-> We have
R (o d—05 \?
B=1d) (fd)—-12 00216 0.135—-0.584) °
The inequality |B| <1, sufficient for applying Remark 3.4 (and Theorem 3.2) is
———0'1‘:’15__0055 84) . /00216.

Since d <0.5 and 0.584 <0.135, this is equivalent to

0.135-0.51/0.0216
0.58—1/0.0216

The above computations show that indeed we can apply for our family all
results of the previous sections. The following figures illustrate these applications.

~0.142.

Fig. 3. The dependence of successive iterations on y. 400 initial iterations were omitted and the
next 400 ones are shown. The parameter y varies from 0.5 (left) to 0.48 (right)

il

Fig. 4. The graph of the 16™ iterate of f, for y220.4917797. There is an attracting periodic orbit of
period 16. In notations of Theorem 3.2, p+n=16 and pu,~ 0.0082203. The situation described in
Remark 3.4 occurs
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The periodic attracting orbits predicted by Theorem 3.2 and Remark 3.4 pass
once through the left lap (the interval [0,0.25]) and the rest of times through the
right lap (the interval [0.25, 1]). We shall call them good periodic orbits. Figure 3
suggests that all attracting periodic orbits are good, in particular that the period
doubling phenomenon does not occur (what can be interpreted as one period
doubling bifurcation, is obviously due to extremely slow attraction for these values
of parameters). We are going to prove that indeed if y is sufficiently close to 0.5 (but
smaller than 0.5) then either there is no attracting periodic orbit or there is only one
and it is good.

Let us start with several simple observations.

(i) f, is piecewise linear fractional and hence all its iterates are piecewise linear
fractional.

(ii) f, has Schwarzian derivative zero and therefore every attracting periodic orbit
attracts either the critical point 0.25 or one of the endpoints of [0, 1] (see e.g. [P]).
However, f,(0.25)=0 and f,(0)=1, so £, has at most one attracting periodic orbit.

Lemma 5.1. Let I be a closed interval and g:I-R a linear fractional map with
g,8"<O0. Let z<x; z,xel and g(z)=z. Then (g% (x)>1 (respectively =1, <1) if
and only if |g'(z)]>1 (respectively =1, <1).

Proof. By alinear conjugacy we can reduce the problem to the case of the map g(z)
1
=7 +c and I to the left of 0 (so x<0). We have

, _—_1' -1 1
(gl) = yz (1 +C)2 = (1+cy)2 .

Since |g'| is increasing, |g'(—1)|=1 and g(—1)=—1+¢, we have |g'(z)|>1
(respectively =1, <1) if and only if ¢> 0 (respectively =0, <0). Therefore:

. 1 .
(a) If|g'(z)|>1 then ¢>0. Since x>z, then g(x) <x, so X +c<x. Since x <0, then

1+cx>x2>0, but cx<0, so 1>1+cx. Therefore |1+cx|<1 and (g2) (x)>1.
(b) If |g'(z)| =1 then ¢=0. Therefore (g2) (x)=1.
(c) If |g'(z)| <1 then ¢ <O0. Therefore 1+cx>1, so (g%) (x)<1. []

Now let uslook at the map F, induced by f, on [0, 0.25] (the first return map). It
has finitely many laps (i.e. maximal intervals on which it is continuous and
monotone). On all of them F, is decreasing and all of them, except perhaps the
leftmost one, are mapped by F, onto the whole [0, 0.25]. On all laps F, is concave;
this follows for each lap from the inductive use of the formula

(@op)'=(@" ) (W) +(¢ o) y"
when ¢", 9" <0, ¢'>0.
Assume thaty <0.5 but y is very close to 0.5. Then f|;o.»5, 1;is a time-one map of
X .5, which is very close to X,. If f(a)=b and a, f,(a), ..., f;/~ '(a)>0.25 then
Xo.5-5(b)

O™ X
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Fig. 5. The choice of 8,. Here p=0.5—¢, g=(f}l0.25,1) "' (0.5—¢), r=f(0.5+¢), and s=0.5+¢

If we fix some M >0 then there exist & 6, >0 such that if 0.5—3, <y<0.5 and
ae[0.5-¢, 0.5+¢&], be[0,0.25], f)(a)=b, then (f}) (a)>M. Now, there exists
6,>0 such that if 05-6,<y<05 then (fil.2s1) ' (0.5—-£)<0.5,
£,0.5+8)>0.5, f;(flo.25,19” ' (0.5—&)>1 and f;(f,(0.5+&))<1 (see Fig. 5).

Therefore if 6; =min(d,,d,) and 0.5— ;5 <y <0.5 then we can divide the set of
laps of F, into 3 sets:

1. Left Laps. They are those laps whose image under f, contains some point to the
right of 0.5 +£. Therefore f; at this image is smaller than 1. If there are points x <y
belonging to (distinct) left laps and such that F(x)= F (y) then | f)(x)| <|f,(y)| and
1) = f;} *¥(x) for some k> 0. Since all the points f,! *¥(x), i=0,1,...,k—1, are to
the right of the whole image (under f)) of the lap to which y belongs, we have
£,(f}*i(x))<1. Consequently, we get |F(x)| <|F}(y)l.

2. Central Laps. They are those laps whose image under f, is contained in the
interval [0.5—¢, 0.5+ &]. On such a lap we have

IFj)>M- inf |fi(y)|=M-|£;0).
ye[0,0.25]

3. Right Laps. They are those laps whose image under f, contains some point to
the left of 0.5 — . Therefore f, at this image is larger than 1. The derivatives on next
images of this lap (until we came back to [0, 0.25]) are also larger than 1. Therefore
on this lap |F}| Z|f,(y)l, where y is the left endpoint of this lap. If y is sufficiently
close to 0.5 (which we can assume) then f(y)<0.5. Therefore y>v, where
ve[0,0.25] is the point at which f,(v)=0.5 (since f,|;0,0.25; does not depend on y; v
and | f;(v)| also do not depend on y). Hence, |F'|=|f;(v)] on any right lap.
Now we specify the value of M as

Lf ')l
M= .
L/ (O)l
Notice that if y is sufficiently close to 0.5 then no right lap is a left lap. We take
0,>0 such that if 0.5—0,<7y<0.5 then this holds, the condition from the

discussion of the behaviour of right laps holds and J, < 6;. Let z, be the fixed point
of F, on the leftmost lap. Then we have the following result.
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Proposition 5.2. There exists 6 >0 such that if 0.5—9<7y<0.5 and |f,(z,)|>1 then
the map @, induced on [z,,0.25] is piecewise expanding.

Proof. We assume that 6 <d,. Notice that whether we think about @, as induced
by f, or by F,, we get the same map. We shall rather use F,.
Suppose that the following two conditions are satisfied.

|F;]>1 on all laps except perhaps the leftmost one, (5.1)

L@)I- [F0)>1. (5.2)

If x>z, belongs to the leftmost lap of F, then @,(x)=F2(x) and |®/(x)|>1 by

Lemma 5.1. Suppose now that x € [z,,0.25] does not belong to the leftmost lap. If

fx)=z, then by (5.1), | (x)|=|F, (x)|>1 Assume that F(x)<z, Then &.(x)
=F?(x) and we have several pos31b111t1es

If x belongs to a left lap then by the properties of the left laps we have |F)(x)|
>|F(y)l, where y is the point of the leftmost lap for which F,(y)=F,(x). Then
| (x)|>|F “(Vl, which, as we already know, is larger than 1.

If x belongs to a central lap then |F(x)|>M - | fy(O)l =|f;(®)|. If x belongs to a
right lap then also |F)(x)|>|f,(v)|. In both cases, since on the leftmost lap the
absolute value of the der1vat1ve of F, is smallest at 0, we get by (5.2), |®(x)| > 1.

Therefore it remains to prove (5. 1) and (5.2). As we have seen already, on the
central and right laps we have |F’|>|f;(v)|, so on these laps (5.1) holds if only

If,)I>1. (5.3)

By the properties of the left laps, the smallest value of |[F;| on them (except the
leftmost lap) is attained at the left endpoint of the second leftmost lap. We call this
endpoint ¢ and consider at it a one-sided derivative (from the right). Hence, in all
cases, (5.1) follows from (5.3) and the following inequality:

IF(c)|>1. (54)
Now it remains to prove (5.2)—(5.4). We have the following formula for F:
XO.S —y(Fy(t))
Xo.s- (/D)

Since we are interested only in y’s sufficiently close to 0.5, we can replace X, 5, by
X, in (5.5) and use it to get new versions of (5.2) and (5.4) (equivalent to them for y’s
sufficiently close to 0.5):

Fi(t)=f;)- (5.5

X o(F,(0)
|, -1£0) - X, f(O))>1 (5.2a)
X o(F,(c))
|fy)l- Xo(J (¢ ))>1 (5.4a)

Denote f(c)=b. Clearly, F ,(c)=0.25, and hence (after substituting the formula for
X,) (5.4a) is equivalent to

G O 5 > (540
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Clearly, £,(0)=1. Since X(t)=Xo(1—1), we have
1 j_b a1 dt
o Xolt) bXolt)
so if y is sufficiently close to 0.5 then F,(0) is as close to 1 —b as we want. Therefore,
instead of (5.2a), it is enough to prove (again we substitute the formula for X )
If@I-1f0)-2b—1)*>1. (5.2b)

Our assumptions are that [F, (zy)|>1 By Lemma 5.1, this is equivalent to
|F(c) - |[F(0)] >1, where this time the point c is considered as belonging to the
leftmost lap, so the derivative is taken from the left. By the same considerations as
before we get that this inequality implies

GO0 O T P > 1, 56)

where ¢ > 0is as small as we want, but 6 depends on . Since X o(1 —t) = X ((t), (5.6) is
equivalent to

If A O 10> 1—e. (5-62)

Now we are going to use the following form of the formula for f:

) B 1 3
filx)=4¢— e f)=1=7-, where ¢=027.

Substituting this formula, we see that (5.6a) is equivalent to b< (4 —|/1—¢). Fora
suitable &, (as small as we want) this takes the form

b<3p+e,. (5.7
We have v= f,"1(0.5), so
(4(1’ 2)2
4
Therefore (5.3) is equivalent to (4 — £)* > 4qo2 — ¢. After substituting the value of ¢

we get the inequality 0.3364 > 0.27 - 0.08, which is true. This proves (5.3). Therefore
it remains to prove (5.2b) and (5.4b), which are equivalent respectively to:

If @)=

4 1\ 4 2__
(452_2; : "’(pz ? . eb—1>1 5.8)

and
(49 —0b)? 1
dpT—g H2B—T7
From the definition of b we have 0.75 < b. Therefore to show (5.8) it is enough to

prove that (2-0.75—1) - (4¢ —0.5)> ¢. After substituting the value of ¢ we get the
inequality 0.5-0.58>0.27, which is true. This proves (5.8).

(5.9)
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It remains to prove (5.9). Set «=0.02=¢—0.25. We have 4p—b=1+4a—b
and 4(4¢*— @)=4a+16a2, so (5.9) is equivalent to P(b)>0, where

P(t)=(1—160—64a?)t*> +(—2 + 8+ 640)t + (1 +40r) .

Since 2=0.02, we have 1—16a—640¢*>>0 and P(1)= —4a<0. Therefore, if
P(3¢ +¢,)>0 then P attains its minimum to the right of 3¢ + &, and consequently
P(b)> 0 for all b satisfying (5.7). Hence, to complete the proof of (5.9), and thus the
whole proposition, it remains to show that P(3¢ +¢,)>0. However, since ¢, is
arbitrarily small, it is enough to show that P(3¢) > 0. This is equivalent to (5.9) with
b=3¢. However, we have

(4p—1)-4-(60—1)>=0.08-4-0.622=0.123008 < ¢,
0 (5.9) with b=3¢ holds and this completes the proof. []

Theorem 5.3. There exists § >0 such that if 0.5—<7y<0.5 then exactly one of the
following three possibilities occurs.

1. |Fi(z)|>1 and then the map @, induced on [z, 0.25] is piecewise expanding.
There exists an ergodic probabilistic f-invariant measure, absolutely continuous
with respect to the Lebesgue measure. There is no periodic attracting orbit.

2. |F(z,)|=1 and then F? on the leftmost lap is the identity (it is equal there to some
iterate of f,). There is no attracting periodic orbit.

3. |F(z,)| <1 and then f, has a unique attracting periodic orbit, namely the orbit of
z,. This orbit is good. It attracts almost all points of [0,1].

Proof. From Proposition 5.2, since @, has finitely many laps, it follows that @, has
an invariant probabilistic ergodic measure v, absolutely continuous with respect to
the Lebesgue measure (see [LY]). For each lap 4, ; of @, there is n(y, i) such that
@,= {79 on 4, ;. The well known formula (see e.g. [R])

n(y,i)—1
A=y
1

; ()« Ols,)
[where by g,(x) we mean the image of x under g: g, («)(4)=xr(g~ '(4))] defines a
finite ergodic f,-invariant measure on [0, 1], absolutely continuous with respect to
1

a3 ™ BY

k=

the Lebesgue measure. We can normalize it by taking u=
Proposition 5.2, there cannot be any periodic attracting orbits.

2. By Lemma 5.1, F? on the leftmost lap is the identity. The image under f, of the
critical point 0.25 is 0, which is in this case a periodic neutral point of f,. Therefore,
by the observation (ii) before Lemma 5.1, there are no periodic attracting orbits.

3. From the same observation (i) it follows that the attracting periodic orbit of z,
is the unique one. From the definition of a good orbit it follows that this orbit is
good. The fact that in such a case almost all points of [0, 1] are attracted by this
orbit is well known (see e.g. [M]; in the proof given there the behaviour of the map
close to the critical point is irrelevant). [
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Remark 5.4. From the description of Case 2 it follows that at the moment when
the periodic orbit becomes unstable, the whole interval of periodic neutral points
appear. This behaviour is specific for piecewise linear fractional maps.
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