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Abstract. The advection-diffusion of a passive scalar by incompressible velocity
fields which admit a statistical description and involve a continuous range of
excited spatial and/or temporal scales is very important in applications
ranging from fully developed turbulence to the diffusion of tracers in
heterogeneous porous media. A variety of renormalization theories which
typically utilize partial resummation of divergent perturbation series accord-
ing to various recipes have been applied to this problem in various contexts. In
this paper, a simple model problem for the advection-diffusion of a passive
scalar is introduced and the complete renormalization theory is developed with
full mathematical rigor. Explicit formulas for the anomalous time scaling in
various regimes as well as the Green's function for the large-scale, long-time,
ensemble average are developed here. Formulas for the renormalized higher
order statistics are also developed. The simple form of the model problem is
deceptive; the renormalization theory for this problem exhibits a remarkable
range of different renormalization phenomena as parameters in the velocity
statistics are varied. These phenomena include the existence of several distinct
anomalous scaling regimes as the spectral parameter ε is varied as well as
explicit regimes in ε where the effective equation for the ensemble average is not
a simple diffusion equation but instead involves an explicit random nonlocal
eddy diffusivity. We use Fourier analysis and the Feynman-Kac formula as
main tools in the explicit exact renormalization theory developed here.
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1. Introduction

The advection-diffusion of a passive scalar by an incompressible velocity field is
given by the equation

(1.1)

where the incompressible velocity field, v(x,t) satisfies divι; = 0 and v0>0 is the
diffusion coefficient. The problem in (1.1) is especially important and difficult when
the velocity, v, involves a continuous range of excited space and/or time scales and
admits a statistical description. Practical applications where these are the
circumstances include predicting temperature profiles in high Reynolds number
turbulence ([4]), the tracking of pollutants in the atmosphere ([7]), and the
diffusion of tracers in heterogeneous porous media ([13]). The problem in (1.1)
with velocity fields having a continuous range of excited scales has been attacked
through a wide variety of physical space and/or Fourier space renormalization
theories ([15, 25, 8, 24, 14, 27]) which typically utilize partial summation of
divergent perturbation series according to various recipes.

An extremely important practical problem where such renormalization
theories have been applied involves the computation of turbulent diffusivities, i.e.
"eddy- viscosities," in fully developed turbulence ([25, 16]). With L0, the integral
length scale and E7, the typical velocity of the energy containing but non-universal
fluid motions, the Reynolds number is given by Re = ΰL0/v with v, the kinematic
viscosity; the universal inertial range scales for the velocity statistics occur on
length scales smaller than L0. The objective of theories of "eddy-viscosity"
modelling in the context of (1.1) is to determine an effective equation of motion for
T(x, t) varying only on length scales larger than L0 for times at least comparable to
the large scale by turnover time, Γ=L0/L7. Assuming Kolmogoroff statistics for a
steady velocity field vδ(x), the problem in (1.1) becomes

dTδ 1_+,,.FΓ.= 5V,r ,
(1.2)

where vδ(x) is an incompressible velocity field with energy spectrum

O

with d = 3 the space dimension. Here <5 = (Re)~3/4 and since we are interested in
fully developed turbulence, Re /Όo or equivalently δ JO. [The reformulation in (1.3)
is discussed completely in Sect. 2 of this paper.] If t' = ρ2(δ)t is a suitable scaling of
time, T(x', t') is defined by
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where <•> denotes the ensemble average over velocity statistics. The goal of "eddy
diffusivity" theories for (1.2) is to predict the appropriate scaling function of time,
ρ2(<5), and a simplified dynamic equation for T(x', £') which remains uniformly valid
as Re /* oo, i.e. δ^O. The subtle difficulty with the problem in (1.2), (1.3) is that there
is an infrared (low wave number) divergence of the energy spectrum in (1.3) as £ JO
and there is no separation of scales between the low wave numbers, |fc| ̂  δ, and the
regimes with significant amplitude in the velocity spectrum (see Sect. 2 for further
discussion).

The main objective of this paper is to study a model problem which is an
extremely special case of (1.1) and is strongly motivated by the problem of
determining "eddy diffusivities" with infrared divergence which we describe in the
preceding paragraph. The simple form of the model problem is deceptive; this
problem exhibits a remarkable range of different renormalization phenomena for
the scaling laws, the effective equations, and higher moments as parameters in the
velocity statistics are varied. Furthermore, we solve this problem with complete
mathematical rigor and find explicit formulas for both the time scaling function
ρ(<5) and the Green's function for the large scale long-time ensemble average, <T>.
We also determine the statistics of higher moments with complete rigor. Thus, this
simple model problem provides a nontrivial but unambiguous test problem for
renormalization theories of eddy diffusivity. Elsewhere, the authors (see [2]) use
the exact results presented here to study the variety of approximate renormaliza-
tion theories listed earlier.

The model problem which we study here is the special case of (1.1) given by

dTδ

 ( fiTδ 1 .
-aΓ+^-a-r**1*-

(1.4)
δy).

The incompressible velocity field in (1.4) is a simple shearing motion along the
y-axis. Motivation for the velocity statistics which we assume for the model
problem is provided, for example, by the problem of computing scalings and
equations for eddy diffusivity for the problem described in (1.2) and (1.3) above. In
the case of steady velocity fields vδ(x), we assume that vδ(x) is a stationary Gaussian
field with energy spectrum

=(2π)1/2|/c|1 - Vo (y) Vβ(|Λ|) - d 5)

Here ε with — oo<ε<ooisa parameter characterizing the velocity spectrum and is

familiar from renormalization theory ([17, 8, 27]). The functions v?o(~r
\δ

Ψ*>(\k\) are infrared and ultraviolet cut-offs respectively and correspond to the
restrictions, δ < \k\ < 1, in (1.3). For the time dependent case in (1.4), we assume that
vδ(x, t) has stationary Gaussian statistics with energy-power spectrum given by

, ω)|2> = |ίf(fc)|2(α I k\)~'φ -- (1.6)
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with φ(s) = π~l(l + S2)"1. Here z is a parameter satisfying 0<*z< oo. The precise
assumptions on the velocity statistics in (1.5) and (1.6) are given in Sect. 2 after the
motivation of a general discussion of the problem of developing theories for eddy
viscosity for incompressible velocity fields with a continuous range of excited space
and time scales - the brief discussion in (1.2) and (1.3) is a special case.

In the model problem from (1.4), we seek unique space-time rescalings

xf = δx9 y' = δy, t' = ρ2(δ)t (1.7)

with ρ(<5)J,0 as δ[0 so that the ensemble average over velocity statistics in the
rescaled variables satisfies an appropriate eddy equation, i.e. after dropping the
primes in (1.7), the quantity defined by

-
δ ρz

(1.8)

satisfies an appropriate "homogenized" effective equation. The model problem in
(1.4) with the stationary Gaussian statistics in (1.5) and (1.6) has a special structure
which enables us to develop exact representation formulas for the solution Tδ of
(1.4) through Fourier analysis and the Feynman-Kac formula. In Sect. 3, we
develop general representation and renormalization formulas which enable us to
compute rigorous formulas for both the scaling function ρ(δ) in (1.7) and <Ta> as
the parameters ε and z in (1.5) and (1.6) vary. In Sect. 4, we develop the
renormalization theory for the steady case with Gaussian velocity statistics and
power spectrum from (1 .5). The unsteady case with Gaussian velocity statistics and
spectrum from (1.6) is discussed in Sect. 5. The limits of higher order statistics are
developed in Sect. 6. Several facts regarding the mean field regime are presented in
the appendix; in particular, our results on the time-dependent case are not
available elsewhere in the literature. Next we summarize the remarkable
phenomena that occur in the renormalization theory for (1.4) including explicit
random nonlocal eddy diffusivity equations for <T^) in some regimes of ε for
appropriate values of z, as well as several distinct anomalous scaling regimes as ε is
varied for fixed z.

In developing the rigorous renormalization theory for the steady case in (1.4),
(1.5), we find three distinct scaling regimes for the model problem. The first regime
is defined by the parameter range, ε<0. This regime is a region of mean field
theory. In the region ε<0, the energy containing length scales associated with the
velocity spectrum in (1.5) are sufficiently separated from the large scales defined by
δ so that the classical formulas of homogenization theory apply (see [20, 23, 3]); the
time scaling law is the expected diffusive scaling, ρ(δ) = δ; the coefficients for the
effective diffusion equation are determined by standard formulas and depend on
the bare viscosity v0 as well as the ultraviolet cut-off ip^d/cl).

The second regime of parameters is determined by ε > 2 and corresponds to an
anomalous scaling regime dominated by inviscid dynamics. The time scaling
function is given by 1 BM

ρ(δ) = δί-l/4, 2<ε<4 (1.9) A)

and the effective equation for (P5) is a simple diffusion equation



Exact Renormalization for Turbulent Transport 385

where D(ε) depends on the ultraviolet cut off φ0(|k|) but is independent of the bare
diffusivity. We remark that the scaling ρ(δ) = δ1/2 corresponds to the expected
convective scaling for the "inviscid" problem in (1.4) with v0 = 0 and the time scales
in (1.9) A) are "hyperconvective," i.e. faster than the convective scale. In Sect. 4 we
show that the renormalization theory for (1.4) for ε > 2 in the steady case coincides
with the renormalization theory for the "inviscid" problem.

The third regime of renormalization for the steady case is defined by the
inequality, 0<ε<2. In Sect. 4, we derive the renormalized scaling law

0<ε<2. (1.10)

The function ρ(δ) in (1.10) agrees with the diffusive scaling at ε = 0 but is an
anomalous scaling intermediate between the diffusive scaling and the purely
convective scaling, (51/2, which occurs at ε = 2. Thus, from (1.9) A) and (1.10), we
observe that there are two distinct anomalous scaling regimes for the model
problem with steady velocity fields. With the effective equation in (1.9) B) for ε > 2
and the scaling law in (1.10), naively one might guess that the effective equation
for <Ta> is a simple local diffusion equation with the form,

where Si = (v0)
2/2 1(4π) * and α has some prescribed value, say α(ε), depending on

ε; the equation in (1.11) has the same form as the equation in (1.9) B) for ε = 2 and
also has the correct scaling with t at ε = 0. This naive guess is wrong!! Let K(y, ί, α)
denote the explicit Green's function for (1.11) for a fixed value of α. Then, for each
value of ε with 0 < ε < 2, there is a distribution function of random diffusivities, vg(α),
so that the Green's function for the effective equation is given by

K\y,t)= f X(3/,ί,α)dvg(α) (1.12)A)
o +

with

and T0(x, y\ the (rescaled) initial data. In particular, since dvg(α) is not a point mass,
the Green's function for (1.12) does not have a spatial Gaussian profile for 0 < ε < 2
and the effective equation for the eddy viscosity theory is not a simple local
diffusion equation. The formulas for the distribution function vg(α) for random
diffusivity exhibit remarkable changes in complexity as the parameter ε is varied
with 0 < ε < 2 and the interested reader should consult Sect. 4 for the details. Some
approximate renormalization theories for eddy diffusivity anticipate non-local
effective equations ([14,16]) but our work on the model problem in Sect. 4 appears
to be the first time that explicit formulas for the Green's function have been found
without any approximation.

In Sect. 5, we discuss rigorous renormalization for the model problem in (1.4)
for time dependent velocity fields with statistics described in (1.6). Figure 1 and
Table 1 highlight the remarkable range of different phenomena in renormalization
that occur as the spectral parameters ε and z vary. To gain some intuition into
these phenomena, we see from (1.6) (see Sect. 5) that a\k\z measures the correlation
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Fig. 1. The five regions in the (£, z) upper half plane with different behavior for the renormalization
theory

time of the velocity statistics at wave number k while only wave numbers with
\k\ <ζ 1 are the significant range for computing effective equations for <Γδ>. Thus,
the parameter z has the following significance: when z is small there is rapid
decorrelation in time at the reelvant wave numbers while stronger correlations in
time develop at a fixed low wave number as z increases. This intuition summarizes
the trends depicted in Fig. 1 and Table 1. There is an abrupt transition in behavior
at z = 2 in the hyperscaling regimes where δ/ρ(δ)lO. For z<2, there is sufficiently
rapid decorrelation in time at low wave numbers so that the renormalization
theory for (1.4) coincides in hyperscaling regimes exactly with the renormalization
theory for the "inviscid" problem,

dTδ

(1.13)



Table 1. Summary of the exact renormalization theory for the five regions

Region I II III IV

4-ε-z z / 1 \

Eulerian Qι(δ) = δ ρ2(δ) = δ 2 ρ3(δ) = δl~ε'4' ρ4.(δ) = δ2\(z~v+s/2)
scaling law (Meanfield (Anomalous) (Anomalous) (Anomalous)

theory)

2 1 ε-2

Lagrangian X2~T χ2~τ*-~*~* X2~Ti-v* X2~τ' *
scaling law

Is effective Yes Yes Yes Yes
equation
local
diffusion
equation?

Is effective No No No No
equation
nonlocal
with
random
diffusivity?

Is effective Yes No No No
equation
dependent
on v0?

Is effective Yes No No No
diffusion
dependent
on ultraviolet
cut-off?

Is effective No Yes Yes No
diffusion
dependent
on infrared
cut-off?

v $
1 0

ρs(δ) = <51+«/2 M

(Anomalous) §
o

1
0^

No ĉ
ίr

1
H

Yes §

1

Yes

No

No

oo
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and the bare diffusivity v0, is completely irrelevant. Nevertheless, as indicated in
Fig. 1 and Table 1, the exact renormalization for (1.4) with z<2 has very rich
behavior with three distinct anomalous scaling regimes for z with 1 < z < 2 as ε
varies and an abrupt transition to two anomalous scaling regimes for z with
0<z^l. For z>2, there is strong enough temporal correlation at low wave
numbers so that in hyperscaling regimes the renormalization theory coincides
exactly with renormalization theory for the steady case discussed completely in
Sect. 4. For the transition value, z = 2, the scaling functions for the renormalization
theory coincide at the same value of ε with those for steady velocity fields from
Sect. 4 but the formulas for the random diffusivity for 0<e<2 are different and
reflect the temporal statistics. The Eulerian scaling functions δ h-> ρ(δ), which gives
rise to the non-trivial limiting equation for <T*> can be directly related to the
scaling law for the mean-square displacement of a particle undergoing the motion

x(t) = J / v ί ) , y(t) = vδ(x(t)) +

where B^t), i = 1.2 are independent Brownian motions. In fact, for particle
displacements on the order of the ratio between the integral length scale and the
dissipation length scale, the corresponding Lagrangian scaling law is,

Accordingly, for time-independent statistics, in the regime of mean-field theory,
ε<0, we have ρ(δ) = δ and the mean-square particle displacements satisfy the
scaling law

X2~T,

while for ε> 2, the anomalous Eulerian scaling function ρ(δ) = δί~~ε/4 corresponds to

In the intermediate region 0<ε<2, where ρ(<5) = <51/(1+2/2), we have the scaling

x2

The same type of results are valid in the time-dependent situation.
We conclude the introduction with several comments. The model problem in

(1.4) with simple shearing has been used in mean field regimes quite often (see
[26, 28]) to illustrate the additional diffusivity in turbulent flows. In the case of
steady velocities for (1.4), Matheron and de Marsily ([18]) have already observed
anomalous scaling in their calculations of mean-square particle displacement but
they did not attempt to derive effective equations for the first moment, T. The
examples with hyperscaling and renormalization from this paper provide
examples for homogenization theory ([5]) with arbitrarily many length scales and
without separation of scales. Of course, the model problem in (1.4) is the simplest
special case of (1.1); nevertheless, the renormalization theory for this model is quite
complex and provides some very interesting test problems for eddy viscosity
theories for turbulence based on renormalization ideas. This aspect of the model
problem is developed in another paper of the authors ([2]).
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2. Velocity Statistics for the Model and Infrared Divergence
for Turbulent Transport

We begin this section by describing the problem of computing effective large scale
transport equations for advection-diffusion by velocity fields with Kolmogoroff
statistics in the inertial range. We show that this problem can be rescaled naturally
to involve infrared divergence of the energy spectrum because there is no
separation of scales and a continuous range of significantly excited modes between
the largest scale motions and the smallest scale motions. We include this brief
discussion because this reformulation with infrared divergence may not be known
to the reader, although such divergence are implicit in some of the recent work on
renormalization methods in turbulence ([8,17,27]). This discussion also motivates
the statistical structure for the velocity fields which we study in the model problem.

Kolmogoroff Statistics and Infrared Divergence. With L0, the integral length scale
and £7, the typical velocity of the energy containing but non-universal fluid

motions, we introduce the Reynolds number, Re = -, with v the kinematic
v

viscosity of the fluid. Our interest focuses on turbulent flows with Re/Όo. The
Kolmogorov hypothesis in d-space dimensions asserts (see [4]) that there is a
dissipation length scale, Ld, so that as Re-»oo the velocity energy spectrum has a
universal form for wave numbers, /c, in the range LQ 1 <\k\ <L~d

 l given by

<|<WI2> = C0ε-2'W-<|-5'3. (2.1)

Here Λ denotes Fourier transform, ε is the mean-dissipation rate, and C0 is a
universal constant. The energy spectrum is assumed to vanish for \k\>L^1 or
decay very rapidly while the velocity is not universal for variations on length scales
larger than L0. For simplicity in exposition, we have assumed that the velocity field
in (2.1) is time-independent besides being incompressible. We consider the problem
of advection diffusion of a quantity, T, by an incompressible steady velocity field
with the Kolmogoroff velocity statistics from (2.1) and divι> = 0, i.e.

Λ rτι

~+v VT=κΔT, 7V0=Γ0(x). (2.2)

Here K is the molecular diffusion coefficient. We assume that initially at time ί = 0,
T0(x) varies substantially only on length scales larger than L0; the objective of
theories of "eddy-viscosity" modelling in this context is to determine an effective
equation of motion involving variations of Γ(x, ί) on length scales larger than L0

and for times at least comparable to the large scale eddy turnover time, T=L0/U.
We non-dimensionalize the equation in (2.2) by utilizing the dissipation length
scale Ld = (v3/έ)1/4 and dissipation time scale ίd = (v/έ)1/2; first, using the relation

fJ3

ε^ —, one finds that

Ld = (Re)-3/4L0, ^(ReΓ^F. (2.3) A)

With this non-dimensionalization and the identification

(5 = (ReΓ3/4, (2.3) B)
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the equation in (2.2) assumes the form

. (2.4)

Here ̂ v0 = v/κ is the Prandtl number; for most fluids v0 is quantity comparable to
unity. The rescaled velocity field vδ(x) has the energy spectrum

With the formulation in (2.4) and (2.5), the goal for "eddy viscosity" theories for
high Reynolds number flows is to "homogenize" the problem in (2.4) and replace
the dynamics in (2.4), (2.5) by an effective equation involving only the large scale
motions in a fashion which is uniform as Re-»oo or equivalently, as <5->0.
Furthermore for such an approximation to be useful, it must remain uniformly
valid for time scales comparable to the eddy turnover time, Γ; from (2.3) A) we see
that the time for validity of these equations should be a long time at least
comparable to <5~2/3 as (5-»0.

To continue the discussion and to point out some subtle aspects of this
problem, we generalize the model problem in (2.4) and (2.5) by considering the
parametrized family of incompressible velocity fields with energy spectrum given

'""'
where ε, — oo<ε<ooisa parameter. The rescaled Kolmogoroff spectrum is given
by ε = 8/3. The reader can regard ε as the relevant expansion parameter in the
ε-expansion of renormalization group theory ([17, 8, 27]).

Basic work of Papanicoulaou, Varadhan and co-workers ([23, 20]) establishes
that the standard formulas of homogenization theory yield an effective diffusivity
for (2.4) provided that there is sufficient separation of scales between the velocity
statistics and T0(δx). This work has been generalized under minimal hypotheses
recently by the authors ([3]). Provided that the velocity spectrum satisfies

o \k\2

then the classical effective diffusion equation from homogenization theory remains
valid with the expected long time diffusive scaling, δ2t. For the incompressible
velocity field with spectrum given in (2.6) the condition in (2.7) is satisfied if and
only if ε<0. The examples in this paper show that when the condition in (2.7) is
violated, new effective equations with different anomalous shorter time scalings
δ2θt, 0 < 1 arise; in some regimes these effective diffusion equations are non-local in
space-time. For incompressible velocity fields with the Kolmogoroff spectrum in
(2.5), we have ε = 8/3, so there is infrared divergence as δ\,Q and the integral in (2.7)
diverges. In fact,

f (\vδ(k)\2>dk-+ao as <5->0 for ε>2
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so there is even an infrared divergence of energy for ε > 2. We remark that this fact
is not inconsistent with the standard derivation of the Kolmogoroff spectrum
which imposes finite energy at the outset. The choice of dissipation space and time
scales from (2.3) A) and the fact that we require (2.4) to remain uniformly valid in
the limit as Re /" oo results in the infrared divergence of the spectrum after Ms
resettling.

For a time dependent random incompressible velocity field, v(x,t), the
Kolmogoroff hypothesis yields the rescaled energy spectrum, ([4]),

with Λ the space-time Fourier transform. Here φ^O is some structure function
satisfying Jφ(s)ds = ί . The combination ω/|fe|2/3 arises as the only combination of
time and space frequencies independent of Re, consistent with the scaling in
(2.3) A), and also with the energy spectrum, E(k) = J \ϋδ(k,ω)\2dω, given in (2.5) by
the Kolmogoroff law although other space-time velocity statistics are possible.
With this discussion, a natural generalization of the transport diffusion problem in
(2.4), (2.5) to the time dependent case involves incompressible velocity fields vδ(x, t)
with

( f ,n \

<5<|/c|<l

otherwise

where ε and z with 0<z< oo are parameters. From the preceding discussion, the
Kolmogoroff spectrum corresponds to the values £=8/3 and z = 2/3 for d = 3.

Velocity Statistics for the Model Problem. With the above discussion as motivation,
we consider advection-diffusion for the model equation,

ΛT dT 1
~" δy). (2.10)

First, we discuss the time-independent case. With (2.6) for d = 1 as motivation, we
assume that the steady velocity field vs

δ(x) has stationary Gaussian statistics with
the spectral representation

—2 2 2 (2.11)

where W(dk) is Gaussian white noise satisfying

}y = S(k + kf)dk .

The function φJo/2(fc) is the ultraviolet cut-off and is a rapdily decreasing function
with

;> 0 , v>«/2 continuous at zero, and ip^fi) = 1 , (2.12) A)

^C., α>0. (2.12) B)



392 M. Avellaneda and A. J. Majda

The function ψo/2(\k\/δ) is the infrared cut-off and satisfies ιpj/2(fc)^0 and also, for
some constants kl9k0 with k1 >fc0?

Ψo(\k\) = ί for \k\>kl9 ψ0(\k\) = 0 for |/c|</c0. (2.13)

The velocity field vs

δ(x) in (2.11) has the energy spectrum

<j^(fc))2>=(2π)~1/2)/c)1~Vo( iΨ (\k\) (2.14)\δj

with the same general form as that in (2.6) with d = 1. In (2.6) ψ0 ί — 1 and ψm(\k\)
correspond to the characteristic functions of \k\ > δ and \k\ < 1. ^ '

For the time dependent velocity fields, vδ(x, t\ in (2.10) we assume stationary
Gaussian statistics with our motivation from (2.9) with d = l. We assume that
vδ(x, t) has Gaussian statistics with the spectral <5 representation

^/2(|fe|)|fe| 2

π-^a^k^ίω + e^K^-^dk^dω) (2.15)

with W(dk) and W(dω) independent Gaussian white noise measures. Note that
they satisfy

(W(dk)W(dω)W(dk')W(dω')y = (W(dk)W(dV)y (W(dω)W(dωf)y

The energy-power spectrum of the unsteady velocity field in (2.15) is given by

g(π-1α|mω2 + α2|/c|2^^ (2.16)

With the energy spectrum for the steady case from (2.14), we see that the energy-
power spectrum for ύδ(k, ω) has the form

c, ω)|2> = \<m\m-'Φ - j r , (2.17)
\α|κ| /

where φ(s) is the time frequency structure function,

0(s) = π-1(l+s2)-1. (2.18)

We make the same assumptions on tp0 and ψ^ as we used earlier in the steady case
and impose the restriction, 0 < z < oo on the fixed parameter z. Looking back at the
formulae in (2.8) and (2.9), we observe that the velocity spectrum for the model
problem as given in (2.16), (2.17) has the same form as the general time-dependent
case described earlier; the parameter values ε = 8/3 and z = 2/3 in the model
problem correspond to the Kolmogoroff spectrum. Of course, turbulent velocity
fields obey only approximate Gaussian statistics and this is one simplification for
the model problem which we use throughout this paper.
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3. Representation Formulas and Identities
for Renormalization for the Model Problem

Here we develop representation formulas for the solution of the model advection-
diffusion equation

Λ rri Λ rj~t Λ

— +vάx,t)— = -v0AT, T\t=0 = T0(δx,δy), (3.1)

where the velocity vδ(x, f) has the stationary Gaussian statistics described in (2.1 1)
for the steady case and in (2.15) for the general dependent case.

First, we use Fourier analysis and the Feynman-Kac formula to develop a
representation for the solution of (3.1) for each fixed realization of the velocity field,
vδ(x, f). The initial function T0(δx, δy) is given by the Fourier integral

T0(δx, δy) = (2πΓ * f f e^+^t0(η9 ξ)dξdη , (3.2)

thus, we only need to find a representation for the problem in (3.1) with initial data
ei(δxη+δyξ) with ηf = δη^ ξ> = δ£ we seek the soιutjon of (3.1) with this initial data in

the form,

where p satisfies the equation

^ + ivδ(x, t)ξ'p = -V-j- ξ'2P 4- V-^PXX , p\t=0 = e*x . (3.3)

We represent the solution of (3.3) for each fixed realization of the velocity, vδ(x, t) by
the Feynman-Kac formula ([19]),

Here and in the remainder of this paper JE[ ] denotes the integral over Weiner
measure in the space of continuous functions. With the identification, ξ' = δξ,
η' = δη, and (3.2)-(3.4), we have the solution of (3.1) for each fixed realization of vδ

as the function space integral,

(3.5)

The Representation Formula. Formula (3.5) gives the solution of the initial-value
problem for every realization of the random velocity field vδ; i.e. (3.5) is not yet
averaged over the velocity statistics given by the models (2.11) and (2.15) in the
steady and time-dependent cases, respectively. Our objective here is to find an
effective equation describing the large scale long-time dynamics of (3.1); thus, we
seek suitable space-time rescalings

x' = δx, y' = δy, t' = ρ2(δ)t (3.6)
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with ρ2(<5)->0 as δ-»0. The scaling function ρ2(δ) will be determined for fixed values
of ε and z by the nature of the statistics in (2.11) and (2.15). (Classical diffusive
scaling occurs when ρ(δ) = δ.) With this suitable choice of scaling functions, our
next goal is to compute an effective representation for

(3.7)

The equation satisfied by T(x', y', ί') is the effective "turbulent viscosity" equation.
Here and below, <•> denotes ensemble average over velocity statistics. With
(3.5)-(3.7) we have

X y ~ ~ ~— (1π}~1 f Ca-(*'ι+y'Qί,~~2~eΐξ2t ' f ί f «ϊ

?-)* }]dξdη. (3.8)

To simplify the expression in (3.8) further, we use the well-known fact that
Brownian motion rescales ([19]) so that

β(t'/Q2}^-β(t') in law (3.9)
Q

for any positive number ρ. We also make crucial use of the assumption of Gaussian
statistics given in (2.11) and (2.15). We recall the following general fact ([9]):

If u(x, t) is a mean-zero stationary Gaussian process, and β(s) is a
fixed continuous function, then

/ -iξf u(x + β(s),s)ds \ -4-f J (u(β(s)-β(s'),s-s'),u(0,0)) dsds'
\e ° l = e 2 ° * x ' (3.10)

With the stationary Gaussian statistics from (2.11) and (2.15) and (3.10), we obtain
for fixed β that

j>2?2 t'/g2 t'/e2

--f- ί ί (vδ(vy2(β(s)-β(s')),s-s')vδ(0,0)ydsds'

In the last identity from (3.1 1), we applied the fact in (3.9) after changing variables.
The double integral appearing in the last exponent in (3.11) can be written
explicitly in terms of the velocity statistics; from (2.11) and (2.15) we have the
identity,

)> ̂  Rtf, ί) = (2πΓ 1 ί ̂ e- W"^ Vo (y) Vood*!) 1*1 ' ~*dk (3.12)

(the formula for the steady case is (3.12) with α = 0 as the reader can easily verify).
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With the formulas in (3.8)-(3.12), we obtain the Representation Formula,

For the remainder of this paper including Sects. 4 and 5, for notational
convenience, we will drop the ' as superscripts in most identities referring to the
formula in (3.13).

Identities for Renormalization. As we have mentioned earlier, whenever ρ = δ we
have standard diffusive scaling and mean field theory occurs. On the other hand, in
Sects. 4 and 5 we show that when renormalization occurs, there is a scaling law ρ(δ)
satisfying δ/ρ(δ)\,Q as <)-»0. In this regime we have

ί|jvί"Λ<>-0.

-*z* (3 '4)

e 2 ρ2 -»1 provided δ/ρ-+Q.

Thus, with Yδ(β, t) given by

S2t2 i 1 // tγ/2 t \

W, 0= 2^ί ί Rd(^-(β(s)-β(sf)l-^ (s-s')) dsds' , (3.15)

our strategy in Sects. 4 and 5 below will always involve finding functions of β,
Y(β,t), Ϋ(β,t), and a suitable scaling law with δ/ρ-^0 so that

A) \Yjβ,ty£Ϋ(β,t),

B) E[y(β,fβ«x>,

C) lim Yδ(β, t)-f Y(β, ί) φ 0, pointwise in β . (3.16)
<5-»0

With (3.14)-(3.16), it follows from applying the dominated convergence theorem
to (3.13) that with a suitable choice of the scaling function ρ(δ) with <5/ρ(<5)J,0, the
solution for the effective equation is given by

T(x,j;,ίM2πΓMί^+^ (3.17)

An appropriate way to guess the scaling function ρ(δ) is to require E(Yδ(β,t))
^C0<oo as <5J,0. To achieve the behavior in (3.16), (3.17) in the hyperscaling
regime where δ/ρ(δ)\,Q, it will be useful to substitute the identity in (3.12) into the
definition for Yδ(β,i) in (3.15) and then to rescale the frequency variable by the
scaling function, k' — k/g(δ). The result is the identity

Q 2 o ό "

* Ψo (πΓ Ifcl) Vjg(<5)fc) l^l1 ~8|fcΓ -'dkdsdέ. (3.18)
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We will make a variety of choices of ρ(δ) and g(δ) in the renormalization
calculations in Sects. 4 and 5 and the following comments provide useful
guidelines:

A) If g(δ)lQ as <5|0, as a consequence of (2.12) B), ψao(g(δ)k)-+l
and the ultraviolet cut-off is negligible in the limit.

B) If g(δ)/δ /ΌO as c^O, the infrared cut-off is negligible because

(3.19)

C) If g(δ)/ρ(δ)lO as δ JO, the effects of Brownian motion are
negligible in the limit for Yδ(β, t).

Of course all of the comments in (3.19) are true only under the tacit assumption
that the integrand in (3.18) is uniformly integrable as <5J,0 so that the dominated
convergence theorem applies.

4. Renormalization with Steady Velocity Fields

Here we study renormalization for the model problem,

— +vδ(x)— = -v0AT, T\t=0 = T0(δx,δy), (4.1)

where vδ(x) has the stationary Gaussian statistics in (2.11). For the problem in (4.1),
the representation formula in (3.13) for the averaged solution becomes

/ / \ \ VQ <52

(τ(---—]] -(2πΓίMei(xη+yξ)e~Ύeτξ2tf(£ MΪ
\ U^'βW/"

x E \ e 2 e~ξ2Yό(β'ί}Jdξdη (4.2)

with

L f f Q—(β(s)~β(sΊ)k

o o

x Vo I ~τ I ^oo(lfcl) \k\ εdkds'ds (4.3) A)
\s/

and

ι ••* ί\k\\ Λ .
Λ^jί) = (2π)~1 fe ι x k\p0 V Voo(l*l) lkl dfc (4 3)B)

\ ^ /

As mentioned in the introduction, here we prove that there are three different
scaling regimes with completely different behavior for this problem as ε varies: the
regime with ε<0 where mean-field theory applies; the anomalous scaling regime
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with 2<ε<4, where the bare viscosity v0 is irrelevant and in viscid dynamics
dominates; the anomalous scaling regime 0<ε<2, where the effective diffusion
equation is non-local with a random diffusivity given by a rich variety of explicit
formulas which depend on the bare diffusivity, v0. We systematically apply the
representation formula in (4.2) and all of the systematic ideas for renormalization
described in (3.12)-(3.19). After a brief discussion of the other regimes in ε, we
mostly emphasize the rather subtle behavior that occurs for 0<ε<2.

A) The Regime ε<0 - Mean Field Theory. The regime with ε<0 is precisely the
region where the limit as <!) JO of the integral in (2.7) is finite for the steady velocity
statistics from (2.1 1) that we assume in this section. Thus, from the general theory
of homogenization described briefly above (2.7) (see [23, 20, 3]), it follows that the
conventional diffusive scaling, ρ(δ) = <5, is appropriate and the effective averaged
equation valid at large scales and long times for (4.1) for ε<0 is given by

) , (4.4) A)

where

D(ε) = (π)- 1 J |/c|- 1 -*Ψao(\k\)dk . (4.4) B)

We observe that the integral in (4.5) converges for small wave numbers only when ε
satisfies ε < 0. A simple self-contained proof of the mean field theory results in (4.4),
(4.5) which utilizes the explicit representation in (4.2) is presented in the appendix
to this paper.

B) The Regime 2^ε<4 - the Inviscίd Hyper scaling Region. The integral

(4.5)

is convergent for ε>2. This fact suggests the frequency scaling factor g(δ) = δ in
(3.18). With this choice,

o o

~ldkds'ds. (4.6)

The facts in (4.5) and (4.6) suggest the scaling function ρ(δ) so that <54~2 = ρ4, i.e.

2<ε<4. (4.7)

We require that ε satisfies ε<4 so that ρ(<5)-»0 as <5J,0. Since δ/ρ(δ)lϋ, the
contribution from the Brownian motion is negligible in the limit as δfi and

Km YM,t)= ξ-(2π)~1 Jφ0(|/c|)|/cr^/c. (4.8)
<5~*0

Thus, from (3.14)-(3.20), the dominated convergence theorem, and (4.8), we
conclude that the effective averaged diffusion equation at the large spatial scales
with the long-time scale defined by ρ(δ) = δί~l/4 is given by

ΛΛT=T

— =tD(ε)Tyy, TUo = T0(x,3θ (4.9)
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with the effective diffusion coefficient given by

2d/c, (4.10)

for ε > 2. Suppose now that ε = 2. Then the integral in (4.6) diverges logarithmically
as <5->0. We see from (4.6) with ε = 2 that the correct choice of scaling function ρ(<5)
must be such that

δ2 1 / 1\1/4

log- = l, or ρ(<5)=log- δ^2 . (4.10')

With this choice of scaling function we have, again from (4.6),

Thus, the effective equation for T when ε = 2 is

We remark that the scaling function ρ(δ) satisfies ρ(δ) = δ1/2 up to logarithmic
factors at ε = 2. This value corresponds to the natural convective scaling,

~9 ζ - 1 associated with (4.1) with v0 = 0. For ε > 2, the scale ρ(δ) = δ1~~ε/4 defines
d o oj

a shorter time scale than the natural in viscid time scale - a regime of hyperscaling
dominated by inviscid transport. To emphasize this point, we briefly consider the
problem of determining the large spatial scale and long-time averaged equation for
the inviscid problem

^+^M^=0, T\t^ = T0(δx,δy) (4.11)

with the same velocity statistics from (2.11) as we used in discussing (4.1). The
representation formula from (4.2) applies to the rescaled solution by setting v0 = 0
with Rδ given in (4.3) A). For the finite energy regime, ε<2, with

it follows from (3.13) that the appropriate time scaling for (4.11) is given by the
standard convective scale

for ε<2

with corresponding averaged equation for the inviscid problem given by

D0(ε)=(2π)-1 f Ifcr

On the other hand, for ε^2, the regime with infinite kinetic energy, hyperscaling
occurs for the problem in (4.11) with the same scaling law and effective equation
from (4.7), (4.9), and (4.10) as occurs in the renormalization of (4.1) for ε^2. This
justifies our terminology for calling the regime with ε^2, the region of
hyperscaling for (4.1) dominated by renormalization for the inviscid problem.
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C) The Regime 0 < ε < 2 - The Region with Random Nonlocal Diffusivity. As in the
case just described, we seek a frequency scaling factor k' = g(δ)k which renormalizes
YJβ, t) defined in (4.3). The simple choices g(δ) = 1 and g(<5) = δ both fail for 0 < ε < 2
because both

\\kΓ*ιpQ(k)dk and ί\k\-*-*Ψa)(k)dk

are divergent integrals. Instead for fixed ί, we make the intermediate choice, g(<5)
= ρ(δ) (v0ί)~1/2 and anticipate that ρ(δ) is a hyperdiffusive scaling so that δ/ρ(δ)->0;
with this choice of g(δ) in (3.18), the path integral Yδ(β, t) from (4.3) A) has the form,

We pick the time rescaling ρ(δ) so that δ2 = ρ2+g and anticipate that the integral on
the right-hand side of (4.12) has a finite limit as <5J,0. Thus, the scaling law is given

by _^_
ρ(<$) = <$ι+*/2 for θ<ε<2. (4.13)

We remark that ρ(δ) = δ at ε = 0 while ρ(δ) = δ1}2 at ε = 2 so the scalings in the
regime 0 < ε < 2 are diffusive/convective and intermediate between purely diffusive
scaling and inviscid convective scaling.

We concentrate on investigating the limiting behavior for the integral in
parentheses on the right-hand side of (4.12). We define

'*, (4.14) A)
\u /

and remark that as <5|0,

Def
(4.14) B)

pointwise. The continuous map from the unit square to the real line given by
(s,s')ι-> β(s')—β(s) pushes forward Lebesgue measure on the square to a finite
Borel measure, μβ, on the real line via the formula

J g(x)dμβ = J } g(β(s) - β(s'))ds'ds (4.15)
Def o 0

for every continuous function g(x) which vanishes at infinity. The function fl(k)
belongs to Z/nL00 for fixed δ and therefore has an inverse Fourier transform F|(x)
= (2π)~1/2 $eίx'kFl(k)dk which is a continuous function vanishing at infinity. By
PlancherePs theorem with (4.14) and (4.15) the integral on the right-hand side of
(4.12) is given by

W»¥l(k)dk = $Fl(x)dμβ. (4.16)

Below, we will show that as (5|0, the expression in (4.16) has a finite explicit limit for
β a.e. with respect to Weiner measure.
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First, from (4.14)B), we note that as (5->0, in the sense of tempered
distributions,

( ί\ "Λ \

2 )Γ(2~^ and c(1)=(2π)"1/2 In (4 17) we

utilize the fact that the inverse Fourier transform of |fc|1 ~* is C(έ) |x|8 ~ 2 ([10]). From
(4.17) we see that for every φeC$(Rl)

lim$Fl(x)φ(x)dx=(Fε,φ) (4.18)
<5-^0

with (F2, φ) given by

l<ε<2 v * ;

In order to treat the limit in (4.16) we need to enlarge the limiting formula in (4.18)
to a broader class of test functions, φ. To do this, we recall that the Sobolev space
H\R1} consists of functions φ so that |φ|(l + |/c|2)5/2eL2(£1) while Fe'^L00) denotes
the space of functions φ so that φ is continuous and φ e L°°. We have the following

Lemma 4.1. Assume that the function φ belongs to H3/2~vnFβ~1(L00) for allγ>0,
then

lim$φFl(x)dx = (F~ε,φ) for 0<ε<2. (4.20) A)
—

Furthermore, there exists y(s) >0 so that for (5^0,

KFiφ^CdlφllH^-v+llφlL^,^)) (4.20)5)

with C independent of δ.

The proof of Lemma 4.1 is easy. First, (4.18) and the estimate in (4.20) B)
combined with a standard approximation argument implies (4.20) A). Thus it is
sufficient to establish (4.20) B) for φeCJ^jR1). By PlancheΓs theorem, for (5^0,

ί IfcΓ1-2"-'^172.

liu /

By setting y = ε/2 and using the fact that ε satisfies 0<ε<2, we see that both
integrals on the right-hand side of the above estimate are finite and the estimate in
(4.20) B) is established. We remark that every function φ which belongs to H3f2~y

for all y>0 also belongs to the Holder space C^R1) for any α<l. This fact is
proved in Lemma 4.2 at the end of this section. In particular, if φ e H312 " y for all y,
as expected from Lemma 4.1,

M2"2

is an absolutely convergent integral for 0<ε<l.
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In order to renormalize (4.12) with the scaling in (4.13), what remains is to
determine the limit from (4.16) given by

lim$Fl(x)dμβ as ό^O

with the measure μβ defined in (4.15). The following lemma combined with
Lemma 4.1 enables us to achieve this.

Lemma 4.2. For β a.e. with respect to Wiener measure, the Borel measure μβ defined
in (4.1 5) is abolutely continuous with respect to Lebesgue measure, i.e. dμβ = φβ(x)dx.
Furthermore, the function φβ(x) belongs to H3/2~ynFe~1(Lco) for anyγ>Qand we
have the estimates

A) \φ{kU(2πΓ112,

B) E[||φ,||i/2-,]£C7 for any 7>0.

In particular, for β a.e. with respect to Wiener measure, φβ belongs to C^R1) for any

The estimate in (4.21) A) is obvious from the definition of μβ in (4.1 5); the proof
of B) is more difficult and we postpone this until the end of this section.

Lemma 4.2 combined with Lemma 4.1 and the dominated convergence
theorem enables us to determine the limit of Ύδ(β, t). We summarize the result we
have proved in the following

i
Proposition 4.1. With the scaling, ρ(δ) = δ 1 +ε~/2 for 0 < ε < 2, the function Yδ(β, t) has
the following limit as (5->0, β a.e. with respect to Wiener measure:

A) For l<ε<2,

,1+2/2 1 1

-
δφo 2* o o

B) For 0<£<1,

lim
(l+ 8/2

M
9 — f w^v .2 I

C) Forε = l

d| o 2

vv/z^rβ ^^(x) is the ot-Holder continuous function for any α < 1 determined from the
definition

dx = } } g(β(s) - β(sf))dsdsf

for all continuous functions g.
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Explicit Averaged Equations for 0<ε<2 with Random Diffusivίty. By utilizing
Proposition 4.1 together with the general strategy sketched in (3.14)-(3.17), we
obtain the following limiting representation formula as <5jO for the ensemble

ι~
averaged, <T>, in (4.2) with the time scaling ρ(δ) = δ$ι+εl2:

=(2πΓ * ί ί eί(*"+)>ί)t0(ξ, η)E[_e~ξ2tl+εlMF'^dξdη . (4.22)

The function F8(/?) is the random variable given by

(F\φβ) (4.23)

with F2 the explicit distribution in (4.17) for 0<ε<2 and φβ the test function
depending on β defined in (4.15) and D) of Proposition 4.1. Here ^(v0) is the
coefficient

^(v0^ = (v0f
2-H8πΓ1/2. (4.24)

Our objective here is to interpret the solution formula in (4.22) as an effective
equation involving appropriate ensemble averages over a random viscosity. To
achieve this, we let vg(α), the random diffusivity, be the distribution function of the
random variable, F\β\ i.e.

(4.25)

At the end of this section after the proof of Lemma 4.2, we verify

Lemma 4.3.

Vg(α) vanishes for α^O.

With (4.25), the formula in (4.22) becomes

,ί,α)dvg(α) (4.26)
o +

with

T(x, Λ ί, α) = (2πΓ * ί f ̂ +^t0(ξ9 η)e-^ί+^2^dξdη . (4.27)

For fixed α>0, T(x,y, ί,α) satisfies the diffusion equation

, T|,=0 = r0(x, j) (4.28)

so that

T(x, y, t, α) = ί K(y - / , ί, ot)T0(x, /)d/ (4.29) A)

with kernel given by

f -Ivl2 1
K(y, t, α) = (4π)~ 1/2r 1/2-«'*(®α)- ̂  exp ι+e/2 - (4-29) B)
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With (4.26) and (4.29), the large-scale and long-time ensemble averaged solution is
given by

(4.30) A)

(4.30) B)

with the explicit Green's function,

K(y,ί)=?

The formulas in (4.26), (4.28), and (4.30) give the effective equation as an
ensemble average over solutions of the simple local diffusion equations in (4.28)
with a distribution of viscosities determined by the distribution function, vg(α).
Naively, one might have anticipated an effective local diffusion equation with the
form in (4.28) for the regime 0 < ε < 2 with a fixed value of α, say α(ε), determined by

i
ε. Both the scaling law, ρ(δ) = δi+2/2 and the local diffusion equation in (4.28) scale
appropriately in ε in the limiting regimes ε|0 and ε|2 to match the scaling behavior
and dependence on bare diffusivity, v0, in (4.4) and (4.9) for ε<0 and ε>2
respectively. This guess is completely wrong!! Instead, for a fixed value of ε, the
averaged solution involves an ensemble of such solutions with a random diffusivity
determined by the distribution function, vg(α), defined through (4.23) and (4.25).
The issue of whether the solution of the local diffusion in (4.28) with an appropriate
value α(έ) is a good approximation to the solution in (4.30) depends on the variance
of the distribution function, dvg(α). As ε /> 2, the formulas in A) of Proposition 4.1
yield the fact that dvg(α) /• <5VO, a local Dirac mass so for ε near 2 the appropriate
local diffusion equation in (4.28) with α = v0 yields a good approximation to the
ensemble averaged equation. However, for general ε with 0<ε<2, we conjecture
that dvg has a rather large variance, increasing as ε decreases to zero so the local
diffusion equation in (4.28) yields a poor approximation to the large-scale, long-
time dynamics. At least for l<ε<2, the distribution function in (4.25) can be
readily computed numerically through Chorin's algorithms for accurate evalu-
ation of Wiener integrals ([6,12]). The authors report on a detailed comparison of
such approximations in [2].

Proof of Lemma 4.2. Since dμβ is a probability measure, it follows that ||^||Loo ̂  1.
We note that

1

Thus,

1
dk,

and, taking the expectation value,

, 1
dk. (4.31)
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decays like k , for large k. To see this, we use Ito's

_ j = ik j ewωdβ(s) _ »
o 2

2_
= k2"

Using the inequality (a + b)4^8(a4+b4), this implies that

= 7,8

and thus

= fe8

4 C

k
^-4, fc>l,

where C is a numerical constant. This bound can be used to estimate the right-
hand side of (4.31). We have for all

and hence

II Hβ IIH3/2 - y < oo, β almost surely.

This implies that μβ has a density in Cα, for all α e (0,1), by virtue of the embedding
theorem ([!])

#3/2-y(R)GCα(R), 0<α<l-2y, 0<y<l/2.

Proo/ o/ Lemma 4.3. Since

(where the integral converges for almost all /?), Fε(β) is non-negative with
probability one and, for all α < 0, vg(α) = 0. We claim that vg(0) = 0 as well. In fact, if

i
Fε(jβ) = 0, then leΛ'p(a)ds = Q for almost all fceR and hence for all k. In particular

o

Therefore,

and the claim is proved.

0}^ sup |/?(s)| = θ =0,
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5. Renormalization with Time Dependent Velocity Fields

Here we study renormalization for the model problem,

^ +ι>Λx,f)^ = ^V0ZIΓ, T\t=0 = T0(δx,δy), (5.1)

where vδ(x,t) is the unsteady velocity field with stationary Gaussian statistics
described in (2.15). This problem exhibits a remarkable range of different
phenomena in renormalization when the positive parameter z is varied. From the
identity in (3.12), a\k\z, measures the correlation time of the velocity statistitics at
wave number fc. In computing averaged equations for the large scale and long-time
behavior of the solutions of (5.1), wave numbers with |/c|<^l are the significant
range of values. If z is a small positive number there is more rapid decorrelation in
time at low wave numbers while stronger correlations in time develop at a fixed
low wave number as z increases. This intuitive fact underlies the trends for the
results which we present in this section. There is an abrupt transition in the
behavior at z = 2 in the hyperscaling renormalized regimes where the time scaling
function ρ(δ) satisfies δ/ρ(δ)lO as δlO. For z<2, there is sufficiently rapid
decorrelation in time at low wave numbers so that the renormalization theory for (4.1)
coincides with the renormalization for the inviscid problem

^+1^,0^=0, T\t-o = Tάδx,δy) (5.2)

in hyperscaling regimes. Nevertheless, the exact renormalization of (5.1) for z<2
exhibits some very rich behavior with three distinct anomalous scaling regimes for
z with 1 < z < 2 and an abrupt transition to only two anomalous scaling regimes for
0<z^l. For z>2, in hyperscaling regimes there is strong enough temporal
correlation at low wave numbers so that the exact renormalization theory for (5.1)
coincides with the renormalization theory for steady velocity fields, vδ(x), which we
discussed completely in Sect. 4. For the transition value, z = 2, the scaling functions
for the renormalization theory coincide with those for steady velocity fields from
Sect. 4 but the formulas for the random diffusivity in the regime 0<ε<2 are
different and reflect the temporal statistics.

In the case of (5.1), the general representation fromula for the ensemble average
over velocity statistics is given by

(5.3)

with

(5.4)
•(?" 7

and

ί, ί)=(2π)-1 Je^e- W fiφo K] vUW) I*!1' ̂  (5-5)
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We remark that the representation formula for the inviscid case is obtained by
setting v0=0 in (5.3), (5.4), and (5.5).

The Regime of Mean Field Theory. Mean field behavior occurs when the standard
long-time diffusive scaling ρ(<5) = <5 and a local diffusion equation describe the
large-scale and long-time behavior of the ensemble average. For the model
problem in (5.1) the region of mean field theory is described by the two sets of
inequalities, ε<0 for z^2 and ε<2 —z for 0<z<2. To motivate the formulas in
this regime, we recall that the particle displacement along the y-axis of a Brownian
particle initially located at the origin with the velocity vδ(x, t) from (5.1) is given in
the rescaled space and time by

Z(β, ω, ί) = δv^β (4r) + δ *'] vδ(β(s\ s)ds. (5.6)
\β / o

We set ρ = δ for standard diffusive scaling and calculate the mean-square particle
displacement,

£[<Z208, ω, ί)>] = § t + E[Yδ(β, ί)] . (5.7)
2

With ρ = δ, we compute that

t /v, \-ι
-gd/c. (5.8)

The integral in (5.8) is finite for ε<0 with z^2 and for ε<2-z with z satisfying
0<z<2.

With the scaling for the particle displacement along the j-axis from (5.7) and
(5.8), we anticipate that the effective averaged equation in the mean-field regime is
given by

(5.9) A)

with

ldk. (5.9) B)

An elementary proof of this fact is presented in the appendix of this paper.

5 A) Regions with Renormalization where the Effects of Brownian Motion are
Negligible. There are three distinct regions of anomalous hyperscaling, regions II,
III, and IV depicted in Fig. 1, where Brownian motion is negligible. It is useful to
begin with some general remarks which indicate that all of the computations
presented here are based on systematic principles.

We recall that under the general frequency rescaling, k = k/g(δ\ Yδ(β, t) from
(5.4) is given by

Yδ(β,t)= g(^4 ̂
2 (2πΓ 1 ~ ί HJίk, β)ψ0 (f- \k\ Ψoo(gm \kΓ*dk (5.10)



Exact Renormalization for Turbulent Transport 407

with

l - - - (5.11)

Formally, in the regime where Brownian motion is negligible, the nonlinear scaling
functions g(δ\ ρ(δ) satisfy

JO as <HO. (5.12)

The function Hδ(k,β) from (5.11) satisfies the bound

o o

with G(s) = s~1 — s~2(l — e~s). The function G(s) has the elementary properties

A) G(s)->l as sjO,

B) \G(s)\£C(l + \s\rl, (5.14)

C) |G(s)-s-1|^C|sΓ2 for |s|^l.

We define Ύδ(t) as given by

Ϋδ(t) = (2πΓ1 y f [ ,(fc)tp0 I fel VαofeίW \k\l~*dk . (5.15)

The representation formula for the inviscid problem in (5.2) is given by

(5.16)

Summarizing (5.10)-(5.16), as well as (3.14)-(3.19), we see that Brownian motion is
negligible and the renormalization theory for (5.1) coincides with the renormaliza-
tion theory for the inviscid problem in (5.2) provided that

A) δ/ρ(δ)lO as (5 JO,

B) Ϋ,(ίHΓ(ί) as «HO, (5.17)

C) ΫJt)-Yj(β,t)->Q as <S|0 for fixed)?.

By Taylor's theorem applied to eίs, we see that

\Hδ(k,β)-Hs(k)\^—(v0tm max \β(s)Hs(k). (5.18)
Q 0<s<l

From (5.17) and (5.18), in any regime where g(δ)/ρ->0, we have

/σ(δ}\1/2

\HJik, fi-HM*]^) CβHδ(k) for m(ρ/g(δ))V2. (5.19)

Below we will always pick the nonlinear rescaling functions, g(δ), ρ(δ) so that Ύδ(t)
given in (5.15) satisfies the hypothesis of the dominated convergence theorem with
limit Ϋ(t) as g((5)/ρ|0; from (5.13), (5.18), and (5.19), we see that Y^, t) will always
satisfy the same hypotheses for the dominated convergence theorem and
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furthermore,

<5->0
(5.20)

The distinct anomalous scaling regions, II, III, and IV depicted in Fig. 1 are
distinguished by the behavior of g(δ)z/ρ2. In particular,

A) g(δ)z/ρ2 S °o as <5 JO in region II,

B) g(<5)2/ρ210 as <5|0 in region III,

Q g(δ)z/ρ2 = l in region IV.

(5.21)

Renormalization in Region II. Region II is defined by the inequalities,
2—z<ε<4—2z with z<2. In this region we set g(<5) = <5 in (5.15), then

zί ί 1-g-z 1-
1 -

dk.

(5.22)

The formula in (5.22) suggests the scaling function,

ρ(δ) = δ~^. (5.23)

We compute that

<5z/ρ2/Όo as <J|0 if and only if ε<4-2z (5.24) A)

while

$Ψo(\k\)\k\1-*-zdk<oo if and only if ε>2-z. (5.24)B)

With (5.22)-(5.24), the general principle presented above (5.20), and the dominated
4-g-z

convergence theorem, in region II with the anomalous scaling ρ(δ) = δ 2 , the
ensemble averaged effective diffusion equation for (5.1) is given by

— = D(ε,z)Tyy, T|t=0 = '

with

for 2—z<ε<4—2z and z<2.

(5.25) A)

(5.25) B)

Renormalization in Region HI. Region III is defined by the inequalities,
4 — 2z < ε < 4 for z < 2 and 2 < ε < 4 for z ̂  2. In this region the scaling function for
time and the effective diffusion equation are given by (4.7) and (4.9) from the steady
case already discussed in Sect. 4. With g(<5) = <5 in (5.15), we have

-T VoilfcDVooiWW 1 ' 1*- (5-26)
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With the scaling ρ = δ1 ~2/4,

δz/ρ2-+Q if and only if ε>4-2z, (5.27) A)

so that

δz\
|fe|2^-->l as 5JO

while

$ιp0(k)\k\1-*dk<ao for έ>2. (5.27) B)

With (5.22)-(5.24), the general principle presented above (5.20), and the dominated
convergence theorem, in region III the effective diffusion equation is given by

dT

dt
— =tD(s)Tyy, T|ί=0 = T0(x,>;) (5.28) A)

with

D(ε)=(2πΓl f Ψo(\k\) \k\^dk. (5.28) B)

Remark. An interesting facet of the renormalization theory for regions II and III is
the fact that the scaling functions in (5.23) and (4.7) for regions II and III both agree
at the common boundary ε = 4 — 2z for z < 1 with ρ(δ) = δz/2 but the coefficients for
effective diffusivity are discontinuous across this boundary. To display the source
of this discontinuity, we give the large-scale, long-time averaged diffusion equation
at these boundary values. With time scaling function, ρ(<5) = <5z/2 we have the
effective diffusion equation

^=D(t,z)Tyy (5.29)

for e = 4—2z and z<l with
(l-e-*'W)

. (5.30)

We see that D(ί,z) satisfies D(£,z) = ί£(έ) + 0(£2) with D(ε) given in (5.28) for small

renormalized times while D(ί,z) = D(ε,z) + 0(-) as f / * o o with D(ε,z) given in

(5.25); thus at this critical value with ε = 4 —2z, solutions of the effective equation
behave like those in Region III at short renormalized times and like those in
Region II at large renormalized times with the time rescaling ρ = <5Z/2.

Renormalization in Region IV. Region IV is defined by the inequalities 4 —2z
<ε<2 for 1 <z<2. In this region, we utilize the scaling function g(δ) with g(<5)
= ρ2lz(at) ~1/z so that at(g(δ))zρ(δ) ~ί = 1. Since g(δ)/ρ(δ) = ρ2/z ~ \at) ~1/2, we see that
g(δ)/ρ(δ)[Q as δ[0 provided that z<2 so that the effects of Brownian motion are
negligible for z<2. We use this choice for g(<5) in (5.15) and obtain

= Q * ~V(4πΓ*a \2 +'z* JG(\k\*) Ψ o (*j±\k\) Ψ o o (g(δ)k)\k\
\ δ / (5.31)
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We choose ρ(δ) so that the first term on the right-hand side of (5.31) has value one,
i.e.

We compute that

/oo as <5JO if and only if ε>4-2z (5.33)
o

so that the infrared cut-off is negligible provided that ε > 4 — 2z. From (5.22)-(5.24),
the general principle presented above (5.20) and the dominated convergence
theorem, the averaged diffusion equation with the hyperscaling in (5.32) is given by

fjT 1+ —
— =t D(ε,z)Tyy (5.34)

with

" ' > ' ' . (5.35)

Of course, this derivation relies on the fact that the integral on the right-hand side
of (5.35) is finite. The required integral converges provided that

ε<2 for the local singularity near zero

and

ε>2 — z for the behavior as |fc|-»oo . (5.36)

The requirements in (5.33) and (5.36) lead to the restrictions 4— 2z<ε<2 used in
defining region IV besides z < 2.

5 B) The Regime 0 < ε < 2 and z ̂  2 - The Region with Random Nonlocal Diffusivity.
In this regime, we have similar behavior as we described in Sect. 4C) for steady
velocity fields. In fact, where the effects of Brownian motion are not negligible for
z>2 and 0<ε<2, the scaling law and ensemble averaged Green's function
coincide exactly with those for the steady case in (4.13) and (4.30) respectively. For
z = 2, the same scaling law from (4.13) applies in the renormalization but the
formulas for the random diffusivity are different. We will be terse in our discussion
since most of the arguments parallel those in Sect. 4C).

The Case with z = 2 and 0<ε<2. With the same time scaling law from (4.13),
i

= (5ι+ε/25 we calculate as in (4.12) that Yδ(β,t) from (5.4) is given by,

fl+l/2 _
/2"1- (5.37)

with Fl(k) already defined in (4.14) and

(L(k, ί) = (2π)-1/2 } f e^-^e'^^dsds' . (5.38)
o o
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Let φβ(x, t) be the function with Fourier transform given by ψβ(k, t). The function
φβ(k, t) is obviously continuous in k. We claim that for fixed t, φβ(x, t) belongs to

R) for any y>0. We have the estimate,

v/ - v v / <539>

with G(s), the explicit function in (5.14). The estimates in (5.39) guarantee that
φ^k.ήεFe'^L^nH312'^); Lemma4.1 and Plancherel's theorem guarantee
that

Urn J φβ(k)Fε

δ(k)dk = (F\ φβ) (5.40)

with F2 the distribution already defined in (4.17), (4.19). From (5.37) and (5.40), we
obtain that

,1+8/2

Urn Yδ(β9t) = (v0f
2-1—^-(2πΓ1/2(F\φβ). (5.41)

It should be clear to the reader that we can repeat a similar discussion as given
earlier in (4.23)-(4.30) to obtain a rigorous formula for the Green's function for the
effective equation as an average of Green's functions for the simple diffusion
problem in (4.28) with respect to the distribution function of the random variable,
(Fg, φβ). We omit the details. However, we do mention here that there is a simple
explicit formula for φβ with Fourier transform from (5.38). In fact

V l / 2 l 1

0 0

\

X exp ί - ̂  \s-s'| |x + (β(s)- β(s')\2 dsds'. (5.42)
\ 40 /

We record the formula in (5.42) because it is potentially useful for the numerical
evaluation of the distribution function for (F~ε,φ^ (see [6,12]). We discuss the
analogue of Lemma 4.3 for this problem at the end of this section.

The Case with z>2 and 0<ε<2. Once again with the scaling law from (4.13), ρ(δ)
i

= <5ι+έ/2? we calculate that Yδ(β,t) from (5.4) is given by

(5.43)

with F%k) from (4.14) and

φ, 9(k) = (2πΓ112 βww-« '»*e-*'-2W'l - Ίdsίis' (5.44)
o o

with A = at(v0t)~ί/2. Since z satisfies z>2, we have

e-^'-'WI'-'Ul as δ[0 (5.45)

and therefore,

(5.46)
o o
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pointwise in k. Thus, we anticipate from (5.46) that

, (F\φβ). (5.47)
04,0

If (5.47) is valid, then it follows by taking the limit as <5|0 in (5.43) that
Proposition 4.1 is also valid for z>2. Thus, for z>2 and ε with 0<ε<2, the
discussion in (4.23)-(4.30) remains valid and the large-scale, long-time ensemble
averaged solution coincides with that derived for the steady case in Sect. 4.

It remains to prove the identity in (5.47). The following lemma contains the
technical ingredients needed to justify the formula in (5.47). The idea of the proof is
similar to the one used in Lemma 4.3. However, the proof is more technical due to
the need to obtain estimates uniform in <5 on the H3/2 ~ v norm of φβ> δ(x, t) defined in
(5.44). This is needed in order to pass to the limit as δ^O for each path β( ) on a set
of full Weiner measure.

Lemma 5.1. For each z^2, consider the family of auxiliary functions φβ^(x,t),
defined through their Fourier transform in x, by

φβ δ(k,t) =
/2π δ o

where

and

Then
(i) For each ye(0,£l, there exists a constant C(γ) such that

sup

In particular, for almost all /?,

sup ||<pM( , f ) l l f f 3 / 2 - v < o o .

where φβ is the density of the measure dμβ of Sect. 4. Moreover

(in) For z = 2,
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Proof, (i) Clearly, |φM(fc, ί)| ̂  -j= for all k. For \k\ ̂  1, set
2π

413

so that

11

Φjs δ(k> 0 = (2π) ί ί ̂
o o

We introduce an auxiliary Brownian motion /?*(s), O^s^ 1, independent o:
and write

By Jensen's inequality,

r"'"
,ik~β(s)V

β(s) —
wiicic μ\δi — . — , wiiiuii 15 ayi+D2

Lemma 4.2 imply for any Brownian

i f „ ,
je ™ ί+D'ds

4 £
^ i

^αiii α Jjiuwiiiαii iiiuuuii. me αi

motion ĵ (s) the estimate

ι Cz 1 ^ . ,

0
(5.50)

where Ct and C2 are numerical constants and D = D(fc, ,̂ ί) is given explicitly. Thus,
we have

:g £" {sup J (1 + fc2)3/2 - η ̂ Λ, ί,
i

+ fc2)3/2 -y /sup |̂ (/c, ί, <

1*1
\3/2-y

dk

dk

4~1

\dk,
J
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where (5.48) was used and C3 and C4 are numerical constants. We focus on the
expectation value

~Γ 1

E = Eβ\ sup eWMvϊ+^dβWl4

and argue that it is bounded by a constant depending on y but not δ or k. The
estimate (5.48) and its consequence (5.49) follow immediately from this fact. To
bound E, we make a new change of variables:

E = E\ sup

-£bsup

k2(ί+D2)

ί *
\k\]/l+D2 o

ί

where T(δ) = k2(l +D2) and σ(s) = eiβ(s\ For simplicity, we assume in the following
argument that σ(s) denotes either the real or the imaginary part of eίβ(s\ Consider
the natural time-scale

= ]σ2(s)ds

of the martingale $σ(s)dβ(s). It is well-known ([19]) that there exists a Wiener
o

process W( -) such that

\σ(s)dβ(s)=W[M(t)~\, t>0.

Hence,

where

T(δ) 1/2 WίM((T(δ))-]

= E< sup
M(T(δ))\2 (W(M(T(δ)))\

T(δ) )

si < sup

sup
U^Γo

M(Γ(c5))1/2

W(t)

Γ0=sup T(δ) = k2 + 2av0

 2t 2\k\z,

and where we used that M(ί)^t, since \\σ\\L«, ̂  1. But, by the scaling property of
Brownian motion,

w(ty
E< sup ,1/2 = E< sup

ί<l



Exact Renormalization for Turbulent Transport 415

a constant independent of k or δ. This concludes the proof of item (i).

/ t y-f
(ii) For z > 2, A(z9 fc, ί) = av0

 z/2 1 — — 1 \k\z converges to zero as (5->0. Thus,

δ i o

the Fourier transform of φβ, defined in Sect. 4 with the convergence uniform on
any interval, \k\^R with R>0. From (i), we know that on a set of full Wiener
measure, the family {φβίδ(x,t)}δ^1 is bounded in H3/2~yr^Fe~1(Lco) for all y>0.
Therefore, φβfδ converges to φβ in H3 / 2~y / for yr>γ and any y>0, i.e.
\\Ψβtd~(Pβ\\H^2-y'^^ Thus, applying the estimate in (4.20) from Lemma 4.1, we
conclude that

Finally, the proof of (iii) is done using the argument from Lemma (4.3).

6. Renormalization for Higher-Order Moments

sections, we focused on

as δ ->0 and specifically on the crossovers in the scaling laws and

In the previous sections, we focused on the asymptotic behavior of

δ'δ'Q2(δ)s

effective equations obtained by varying the spectral parameters ε and z. While the
first moment of Tδ is a natural quantity describing macroscopic properties of
Eq. (1.1), it is also important to investigate the limits of higher order moments of
solutions,

// / - V D t \\n\

n = 2,3,4, (6.1)

in cases of infrared-divergent velocity fields. In this section we compute explicitly
the limits (6.1) for model problem (4.1) using function space integrals and scaling
arguments involving the exact form of the energy spectrum. Similar formulas are
true in the case of time-dependent velocity fields but for simplicity in exposition, we
do not describe those results here. We find a sharp contrast at the level of
convergence of moments, between the mean field regimes and the anomalous
regimes in which long range convective effects are dominant. In fact, in the latter
cases we have

x y t
while, in the mean field regime the functions T — ,-, 2 - converge uniformly in

\δ δ Q (δ)J
(x, y, t) to T(x, y, t\ for almost all realizations (see the appendix) so that there is an
identity in (6.2).

For simplicity we restrict the calculations to the time independent case,
focusing on the anomalous regimes 0<ε< 2 and 2^e<4. Recall that the scaling
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function ρ satisfies

M. Avellaneda and A. J. Majda

ρ(δ) =

for 0<ε<2
/ 1\l/4

<51/2 log- , for g=2
V oj

(6.3)

1'*'4, for 2<έ<4,

and, in particular <5/ρ(<5) <^1, so that the solution of (4.1) satisfies, as (5|0,

where Γ ί/ρ2 /x \ ~Π
ι{<J J t>Λτ+jί(s) <fo >.

L o \d / JJ

(6.4)

(6.5)

Let n be a positive integer, n ̂  2. In order to compute the nth order moment of T,
we introduce n independent Brownian motions βj(t), 1 ̂ j^n. Using (6.4), we can
write

where ξ=(ξls..., 4), η=(>/1>. ..,»?„), β=(jS!,. ..,)?„),

and

= Π

(6.6)

(6.7)

(6.8)

Taking ensemble average over the Gaussian velocity statistics (2.11) and using
(3.10), we obtain an asymptotic formula for the averaged n'h moment as δ-*Q:

(6.9)

It is therefore necessary to evaluate the limit

= limJE<exp

ί J J?

- Σ
t2 ! ! Γv1/2ί1/2 Ί ~Π

τί JR, -̂  - (ft<s)-&(s')) Uafa' [
<L 00 \_ Q J JJ

(6.10)
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To proceed with this evaluation, we consider separately the regimes 2^ε<4 and
0<ε<2.

A) The Hyper scaling Regime 2^ε<4. From the results in Sect. 4B), we chose the
scaling function as

lV / 4

logi) if β = 2

-» if 2<ε<4.

With such a choice, it is easily seen that, for all β,

l/21 1 Γ(v

ί ί Rs\ ^-
oo L

lim<5V4ί ί Rs\ ^—(Pj(s)-Pk(s')) \dsds' = D(ε), ί £j, fcgn, (6.12)

where

J_

2^: (6.13)
2<ε<4.

Applying this result to (6.10), we conclude that

lim<45">[x,ξ,vδ,β,φ = e~τllv\^vj , (6.14)

and hence that

i j e-τ* \r>)- π [̂ f̂ x .̂)]̂ , (6.15)

where

(6.16)

is the Fourier transform of the initial data T0 in the variable y. It is not hard to
derive an evolution equation for

from the integral equation (6.15). In fact, since

, j .Π e^t<?\X, ξj) (6.1 8)
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it follows that for n = 1,2, ..., Tn satisfies the same diffusion equation

with initial conditions Tn(t = Q) = (T0(x,y))n. We remark that this fact immediately
implies a stronger result, namely that, for all Φ e C0(R), and all TQ(x, y) e C^(R),
setting

(6.20)
«nυ \ \σ o (J-\υ)/ι

we have

0-.
'dy2= tD(ε)-Φ(T) , Φ(T)|t= o = Φ(T0(x, y)) . (6.21)

Remark. This result can be readily reinterpreted in the language of weak
convergence involving Young measures ([29, 30]). We develop this remark in detail
elsewhere but mention here that the density of the Young measure at value λ is
given by

-T0(x, j;)),

where δ( ) is the Dirac delta function. In particular, since the Young measure is not
a Dirac mass, genuine weak convergence occurs and there is no equality in (6.2) in
general. The fact that the limits of all moments Tfa.y.t] and the functions

TI T? TJ ~Ύ } } satisfy the same effective equation as δ -»0 is intuitively obvious if
\δ δ ρ2JJ

one draws the parallel with inviscid dynamics (cf. Sect. 4) replacing the diffusion
equation by

We obtain, multiplying both sides of the equation by Tn l,

dτn

so that the limit functions Ύn should satisfy, heuristically, the same limiting
equation. Thus, (6.21) is a manifestation of the analogy of the model problem with
the corresponding "inviscid" problem with v0 = 0 in the regime 2^ε<4 as we
developed in Sect. 4.

B) The Hyper scaling Regime, 0 < ε < 2. The calculation of Tj(x, y, t) for 0 < ε < 2 is
more subtle due to the nontrivial role played by the Brownian motions
^1,^2? '->$n in (6.10). For n^2, it is convenient to define the random measures

μij{dx) = mes {(s, s') 6 [0,1]2: x ̂  fas) - /?/s') ̂  x + dx} (6.22)
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for 1 — ij ^ n. In particular, the measures μ^dx) l^ί^n coincide with the measure
μβ(dx) defined in Sect. 4 to study the limit as <5-»0 of the rescaled first moment of T.

Returning to Eq. (6.10), we observe that for each j, /, 1 ̂ /, /^n, we have

1 1 Γ 1/2*1/2 Ί +00 Γ v l/2 f l/2 Π

ί IR*\ - - (&<s)-to \dsd!f= J Rδ\ -2 - x \μj(dx), (6.23)
o o |_ £ J -oo L £ J

so that the Wiener integral on the right-hand side of (6.10) can be rewritten as

C Γ n t2 + 00 Γ v l/2 t l/2 Π ~Π

E exp Σ fτWV 4

T ί *J- - x MΛc) ,I LM = I z -oo |_ ρ j j j
(6.24)

with the scaling function ρ = ρ(δ) given by

i
ρ(δ) = <51+g/2 , 0<ε<2. (6.25)

We wish to take the limit as δ-*Q of the multiple Wiener integral (6.24). The terms

[v l / 2 f l / 2 "I
— x Iμj^dx) are functionals of the paths jff/s), jS^s), 1 ̂ y, l = n, and the

Q J
strategy outlined in Sect. 4, Lemmas (4.1) and (4.2) applies provided that the
conditions

J^eH^^nFέΓ^L00), y>0, l^j, l = n, (6.26)

on the densities of the off-diagonal measures μjl9j Φ / hold. We have already proved
that (6.26) is valid for j = ί, for a measure involving a single path. To check
condition (6.26) for jφί it suffices to take7 = 1,1 = 2 and to consider the identity:

Λ - \ Λ ~ \
μ12(fc) = (2π)~1/2 j\έkβ^ds f eίkβ2(s)ds ). (6.27)

\o / \ o /

In particular, ||μι2|lL«>(^) = l Using the inequality |αί?|g^(|α|2 + |fe|2), we have

1/2 i^""'
2(fc). (6.28)

We conclude that, for fixed fi^^,

3/2-¥22(fc)l2^, (6.29)
so that, by Lemma (4.2),

as desired.

1(Lx), pa.e., (6.30)
Def aX
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Using the arguments of Lemma (4.1), we obtain

l/2 f l/2

^

j

dx

where

(6.31)

(6.32)

with

(6-33)

and with C(έ) as in (4.17). Thus, Eq. (6.10) becomes,

Γ n .1+2/2 η )

p Σ t&-~-W -1(2π)~1/24(β) V. (6.
U,fc = ι z JJ

(6.34)

Substitution of this formula in (6.9) and passage to the limit yields the final
expression

(6-35)

As in the case of the first moment, for the regime 0 < ε < 2, the equation satisfied by
Tn is not local, due to the randomness of the "diffusivities" σj*(β), 1 ̂ 7, k^n. We
note finally that the expression (6.35) can be recast as a multiple convolution
integral

where

with σ2=(σ?ι([) and

, (6.36)

(6.37)

(6.38)
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The measure y(dσ) is the appropriate generalization of the distribution function
involving random diffusivities as described in Sect. 4.

Appendix: The Mean-Field Theory

For velocity statistics of type I, i.e. ε<max{0, 2 — z}, the behavior is diffusive. The
corresponding averaging theorems for the partial differential equations satisfied

f x t \by the scalar Tδ (—, -r~ } in the long-time/large-scale limit, can be derived using
\δ δ J

a method for homogenizing equations with random coefficients developed by
Papanicolaou and Varadhan ([14, 26, 27]). For completeness' sake we include the
proofs of these results for our model problem. To the authors' knowledge, our
results on the time-dependent case are new. The above-mentioned references
should be consulted for further details on homogenization.
a) Time-independent velocity statistics with ε<0.

From (3.5) the computation of the effective Green's function reduces to finding
the value of

<5|0

where

7(t\ — nvll2R(t\ P ϊ n (v^l2 R(c\\/1<: (Δ. 9Ϊ£f\i) — v^o Pw — £ J "δ\yQ p^jjws. \£\.Δ)
0

The strategy for computing this limit is to decompose δZ ί -^ 1 as

where Iδ( ) is a suitable stochastic integral and Rδ(t) is a remainder that converges
to zero in probability as <5-»0. The evaluation of these limits in (A.2) will follow
from an application of the ergodic theorem.

Step 1. We construct an auxiliary function, or corrector, Xδ(x) defined by

eikx—

where

v l / 2

dμ,(/c) =

This function has the following properties:
(i)

<x»=rίjί^M1-8'
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so Xδ(x) is a well-defined Gaussian process, with the estimate

(A.3)
7ΓV0

(ii) The derivative

' = - - l

is a stationary Gaussian process with variance

/fr\
(A.4)

VQ K πv;

and

(iii)

) . (A.5)
vo

Applying Itffs formula [19] to Xδ(v#2(β(s))l we obtain

0

and hence, from (A. 5),

/ t \ ^ ( t \
δZ -2 = vV2δ J [_η - ξX'δ(vy2β(s))-]dβ(s) + iUO = δ/ -̂  + Rδ(t) , (A.6)

\d / o \d /

where

and

Γ / t \Ί
-δXδ(0). (A.7)

Equation (A.6) is the desired decomposition of the exponent δZ[ -^ ). We now
estimate the remainder Rδ(t).

Step 2. We claim that

in probability. To see this, note that

o^2 A*

4δ2 2δ
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where

dmδ(k)= ± \kΓ1 ~

Hence,

and, since \k\ 1'

lim sup ( δ 2 X j ( ^\^ ^ ~~2 lim J ~" ^'^ \k\~(ί ~^\p^(k}dk = 0. (A.8)

Next we show that the decay of δ2Xj \ β ( -ry 1 1 can be established, using the
\ \° JJ

estimate in (A.8) and the fact that Brownian motion has exponentially small tails.
In fact,

"((^('(p....
1 +0° / / Y N

H*a*2m)«2πί -

|λ|^J

where (A.3) was used. Hence, for all M

We conclude from this that for M sufficiently large,

r /
l im£</<5 2 J*

v \

where C^ is a numerical constant. Letting M tend to zero,

- j ϊ ) ) =0 in probability.

Step 3. We have shown that δZ(t/δ2) and δlδ(t/δ2) have the same limiting
distributions. This common limiting distribution can be evaluated using the fact
that [Iδ( /δ2)} for δ^ 1 is a family of continuous-time martingales with quadratic
variations:

1 s/<52

δ2 o < 5 ° ' — — '
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which satisfy

1 t/δ2

=^ ί v0<[^

πvg

By a standard martingale theory argument [11] δlδi -^ 1 converges weakly to a
martingale with quadratic variation ^ '

ίk\
To compute this limit, we first remove the infrared cutoff ψ0 - by defining

\<V

X0(x) =

and
_ s/δ2

2 o ° ° °

It can easily be checked that

> = 0,

so the infrared cutoff ψQ { - I is negligible in this regime. To compute lim Qδ(t\ we
\θj δ[Q

note that the real-valued process J\Γ(ί) = JΓ0(vo/2/?(ί)) has an invariant probability
measure ρ(dx) = Pr {X'0 e dx} and is ergodic relative to time translations. This last
fact follows from the fact that β(t) visits all points and that X'o(x) is ergodic under
spatial translations. From the ergodic theorem, we conclude that

lim&(s)
<5|0

= v0s|V-

Thus, δlδ(-/δ2) converges weakly to a continuous-time martingale with quadratic
variation Q(s), i.e. a Wiener process. In particular, δlδ(t/δ2) converges in
distribution to a normal random variable with variance

πvj

Equivalently, the enhanced effective diffusivity in the y direction is given by

v o"
πvn
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b) Time-dependent statistics with 0<z^2 and ε<max(0,2 — z).
In the time-dependent case, diffusive behavior can be shown using a similar

technique. We outline the main parts of the corresponding three-step argument,
focussing on the treatment of the singularity of the spectrum in the infrared (|fe| <^ 1)
region. The basic result is that the solution of the initial- value problem

dTδ

 Λ .
ί>0'

converges in probability as c5->0 to the solution of the (deterministic) equation

δ Γ _ l d2T 1 ^d2T -
dt~2V°dx2+2V 3y2'

with

2 w'-
0 j

From the arguments of Sect. 3, involving the Feynman-Kac formula, this result
reduces to the calculation of

where

Zδ(t) = vX2ηβ(t) - ξ J vδ(vV2 β(s\ t - s)ds . (A.9)
o

Following the procedure of the previous section, we set

1/2

dW(k,ω)9

and

with Φ(5) = π~1(l +S2)"1; we define the corrector^ by

/ i k x -Hωί _ \

It can be readily checked that X£x, t) is well-defined. Moreover,
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is a stationary process, with variance

2 -
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J4ω^

(αlfcI
2 + v§fc2 4 ω

πv
(Al l)
^ ' '

Note that this integral converges independently of whether the infrared cutoff
ίk\

w0 { - is present or not since the strength of the singularity is |fe| 1 * min<2' z) and we

\ '
are in the regime ε<max(2,2— z). This corrector satisfies the equation

Applying Jίό's formula to Xδ(v^2β(t\t — s\ we obtain

ί

J vs
0

and thus, from the definition of Za(ί), in (A.9),

where

The second step of the proof consists in showing that Rd(t) converges to zero in

probability. To determine the behavior of δXδ

preliminary estimate

s n

- , 0 I, we make the
/



Exact Renormalization for Turbulent Transport 427

Since Ife^
theorem,

lim sup (δ2XJ ,0 )£ — limf
πv0 a j o

1 is integrable, by the dominated convergence

M2

This fact implies that

timδX,K'2j8Uj ,0 =0

in probability, by an argument similar to the one used in the time-independent
case, see (A.6). The second summand in (A. 14) satisfies

4

2 i 1ΛM2 + fc'

where CΊ is a suitable numerical constant. We now check that the density of the
measure

is dominated by an integrable function, thus guaranteeing the convergence of

to zero. In fact, the above-mentioned density is dominated by

1 M
i-.

and we have

.«w
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Setting

we note that f(t) e L2(R). By PlancherePs theorem the integral in (A.I 6) is estimated
as follows:

-ί Ifc l 1 -
71

-f|fc| 1~
7Γ

since the singularity strength is \k\ ~l "z/2 and ε < max {0, 2 — z}. Having established
that δZδ(t/δ2) and the stochastic integral

have the same limiting distribution as <5-»0, the final step consists in computing
this distribution. As in the time-independent case, this can be done using a
martingale-theory argument and the ergodic theorem. Note that (A. 17) is the value
at s = t of the martingale

which has quadratic variation

o [_ dx \ ' δ2 J\

As in the previous section, by the ergodic theorem

n rtwtΊ
(A.18)

in probability. Thus the stochastic integral (A. 18) converges in distribution to a
normal random variable with variance

2

°

This proves our claim; the enhanced diffusivity in the y-direction being
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