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Abstract. Near resonance energy, we study the asymptotic behavior of the
derivative of the scattering phase as the applied electric field tends to zero. We
obtain the leading asymptotics of the spectral function near a simple resonance,
and as an application we rigorously prove the Breit-Wigner formula which
relates the width of resonances to the time delay of particles in a homogeneous
electric field.

1. Introduction

Consider the Schrόdinger operator of a particle in a weak homogeneous electric
field

P(β) = P0(β) + V(x), P0(β) = -A + βxl9 (1.1)

where x = (x^x'JeR x R " " 1 and β > 0 is a small parameter proportional to the
field strength. The resonances of P(β) have been studied by several authors
([4,6,8,14,17]). In particular, in [14,18], upper bounds on the width of resonances
were given in the multidimensional case and in [6,19] the asymptotic behavior of
the width was analysed. On the other hand, time-delay in scattering theory for the
pair (Po( β\ P(β)) has been studied in [12,13]. Many papers of the physics literature
affirm an intrinsic relation between the width of resonance and the time-delay. If
V is a spherically symmetric potential, it was formally derived in [11] that in a
subspace of fixed angular momentum the time-delay near resonance energy is
approximately equal to the inverse of the width.

The main purpose of this paper is to rigorously prove this relation for
Schrodinger operators with Stark effect in the weak field limit. For the analogous
problem in the semiclassical limit we refer to [5,10].

* Supported by Alexander von Humboldt Stiftung
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Assume that V is a smooth potential satisfying

\dΛV{x)\^Caixίy
σi-'ιixfy-σ2'lΛ\ Vα = (α1,α/)GNxNπ"1 (1.2)

for some σuσ2 > 0 . We remark that our method for obtaining estimates on the
spectral function of P(β) does require some regularity of K, but the smoothness
assumption in (1.2) is far from necessary. In fact we need (1.2) just for |α| ^ Cn,
where C is a universal constant (see Sect. 3). To define resonances, we shall also
suppose that Vpossesses a holomorphic extension in the ̂ -variable into the region

{zeC;Rez< - R , | I m z | ^

for some R, δ > 0 and satisfies there

\V(xί9x
r)\£C(\Rexι\ + \x!\)-eo, for some εo>0. (1.3)

Assuming (1.2) with σx > £ , it was shown in [12,13] that taking the large-space
limit of the difference between the sojourn times for P0(β) and P(β) defines the
time-delay operator T(β) as a selfadjoint operator in L2(R"). In the spectral
representation for P0(β), T(β) is given by a family

T(λJ)=-iS(λJ)*^-S(λJ% ΛeR, (1.4)

of operators in L2 (R"" 1 ), where S(λ,β) is the scattering matrix for the pair
(P0(β),P(β)). If σ1>(n+ l)/2, σ2 > n - 1, then T(λ,β) is trace class, and we define

τ(λJ)=trT(λ,β). (1.5)

We remark that τ( ,β) is equal to the derivative of the scattering phase for (P0(β\
P(β)). Now let λ0 < 0 be an eigenvalue of P(0) with multiplicity m.

Assuming (1.2) and (1.3) one knows that there are exactly m resonances, counted
with their algebraic multiplicity, ofP(β) near Ao, whose widths are all exponentially
small as β 10 ([14,18]). We are concerned with the asymptotic behavior of τ(λ,β\
as β -• 0, for λ near the resonance energy. Our main result is

Theorem 1.1. Let (1.2), (1.3) be satisfied with σt > (n + l)/2, σ2 > n - 1. Let λ0 < 0
be a simple eigenvalue of P(0) and z(β) be the unique resonance of P(β) near λ0

satisfying z(β) = λ0 + O(β). Then for \λ — λo\ sufficiently small one has

a s m ( L 6 )

for every ε > 0.

Here S(β) denotes the distance between any fixed point x o eR", independent of
j8J,0, and the sea

; V(x) + βxt - λ0 < 0, x, < (λ0 + e)/β}

in the Agmon metric (V(x) + βxλ - λo)+dx2.
We define the scattering phase s(λ,β) for (P0(β\P(β)) by
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Then s'(λ, β) = τ(λ, β\ and from (1.6) one easily derives the asymptotics of increments
of s(λ, β) at the resonance energy λ = Re z(β).

Corollary 1.2. Under the assumptions of Theorem 1.1, let a(β) > 0 be a function of
β such that

as β 10, for some ε' > 0.

Define the increments of the scattering phase near λ0 by

A ± s(λ0, β)=± s(Re z(β) ± a(β), β) + s(Re z(β), β).

Then one has

UmΔ±s(λ0,β) = π. (18)

Remarks.
(a) Formula (1.6) shows that near a simple resonance, the trace of time-delay (or
equivalently, the derivative of the scattering phase) exhibits a Breit-Wigner
resonance form. We remark that following the physics literature the scattering
phase is usually defined through the relation detS(2, β) = exp(2is(λ,β)) (see [10]).
Compared to that convention, we obtain an additional factor of 2 in (1.6) and the
limit in (1.8) is π instead of π/2.

(b) There exists a variety of choices for the function a(β) satisfying (1.7). In fact,
assuming (1.2), eigenvalues of P(β) are absent ([2]). Thus lmz(β) ΦO. According
to the results on asymptotics of widths of resonances ([6,20]), one has Imz(/?)~
β~σCoe~2Siβ), for some σe!R,C 0 ^ 0 . Thus it suffices to take a(β) = O{β~σι + 2).
(c) The relation between time-delay and resonances was studied in [15] for
one-dimensional Stark-like Hamiltonians. Our results (1.6), (1.8) are very similar
to those in the semiclassical limit obtained in [5], although technical details are
rather different.

The proof of Theorem 1.1 is based on the formula

τ{λ,β)= - ^ j dXιV(x)^(x,x;λ,β)dx, (1.9)

where (de/dλ)( ,-;λ,β) is the spectral function of P(β). Equation (1.9) was proved in
[13] for β = 1. An examination of the dependence on β directly gives (1.9). In order
to obtain (1.6) through Eq. (1.9), we shall give leading asymptotics as β[0 for the
spectral function de/dλ for λ near the resonance energy, which is of interest in itself.
In the semiclassical limit, this problem was considered in [4].

The plan of this paper is as follows: In Sect. 2 we construct a representation
formula for the resolvent R(z,β) = (P(β) — z)'1 and establish the estimates on the
boundary values of the resolvent near resonance energy: for any s>j, one has

(l.io)
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for I λ — λ01 sufficiently small. In Sect. 3 we give the asymptotics of the spectral
function de/dλ, and in Sect. 4 we prove Theorem 1.1 and Corollary 1.2.

2. Resolvent Estimates near Resonance Energy

Let R(z,β) = (P(β) - z)~\ Imz Φ 0. It is proved in [20] that

-s\\^cβ-1 (2.1)

for s>^ and β>0 sufficiently small, locally uniformly in /leIR\σ(P(0)). Here
Dx = —idXι. When λoeσpp(P(0)), there exist resonances of P(β) near λo and one
cannot hope (2.1) to be true for A in a neighborhood of λ0. To estimate R(λ ± io,β)
in this case, we shall first construct a representation formula for R(λ ± io, β) by
Grushin's method ([7]), which allows to isolate the contribution of resonances.
To be precise, let us recall the definition of resonances in Stark effect by the method
of analytic distortion ([9,14,18]). For η > 0 sufficiently small, we take XoeC
such that χo(t) =lift<η/2 and χo(ή = Oiίt>η. For 0eR we set

φ{xl9θ) = eΘ^β^-^iβ)){Xi _ λo/β) + λo/βm

Then, for |0 | sufficiently small, U(θ) defined by

U(θ)f(x) = (dXίφ(xuθ))ll2f(φ(xuθ\x'\ /eL2(R"),

is unitary on L2(Rn). By assumption (1.3), P(β,θ) = U(θ)P(β)U(θ)~1 has a natural
holomorphic extension in θ into a small complex neighborhood of 0. The resonances
of P(β, θ) near λ0 are defined to be the eigenvalues of P(β, θ) with Im θ > 0 near
λ0. They are essentially independent of θ and of the choice of χ0 ([18]). If λ0 < 0
is an eigenvalue of P(0) with multiplicity m, then it is known ([14,18]) that there
exist exactly m resonances zx(/?),...,zm(/J) near λ0 satisfying

(2.2)

Here S(β) is the Agmon distance defined in Theorem 1.1 and the notation O( ) is
that of Helffer-Sjόstrand [7]. In our context it means that for any ε > 0 we can
choose the parameter η > 0 so small that

\O(e-2Siβ))\ ^ cεe~2S(β)+ε/β

9 for β > 0 sufficiently small. (2.3)

For earlier results on the stability of resonances, see [8] and the references cited
therein.

Henceforth θe(C with |0 | small and Im# > 0 is fixed. We also assume that the
resonances oϊP(β) near λ0 correspond to simple poles of the meromorphic extension
of the resolvent R(z,β). (In the multiple pole case, one would expect a more
complicated resonance form for the scattering phase than the Breit-Wigner form
[11]. In the semiclassical case, one knows that multiple poles really occur [16]).
Under the above assumptions, we can find m functions u} in L2(Rn) such that

(2.4)

For z near λ0 we consider the Grushin problem
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where 2 denotes the domain of P(β,θ) in L2(R"), and RQ (0):Cm->L2(Rn),
->(Cw are defined by

Ro(θ)c = Σ cjuj Vc = (cl9...,cJeC" (2.5)

and

^ o + ( ^ = «w,wf>,...,<w,W*» ViιeL2(R")X

where uf is the eigenfunction of P(β, θ)* such that

β,θ)*uf = zj(β)uf; (upuΐ) = δjk for ;,/c = l ,2 , . . . ,m.

W e define a p r o j e c t i o n 77 f rom L 2 ( R " ) o n t o t h e s p a c e g e n e r a t e d b y uί9...,um b y
Πu = Yj(u,uf}Uj and set

F(ftβ) = (l-JI)P(ftβ)(l-J7); Λ'(z;j8,β) = (P'(i8,β)-zΓ1(l -Π), Imz>0.

Then R'(z; ft 0) has a holomorphic extension in z into a small complex neighborhood
Ω of Λ,o. For z e β , ^ 0 ( z ) is invertible and one checks that

where £0(z, 0) = ̂ '(z; ft β), £ ^ (β) = Rj (0) and £0

+ " (z) = diag (z - z/jS)). According
to the general theory ([7], Appendix), one has

(P(β,θ)-zy1 = E0(z,θ)-E+(θ)EZ-(zΓiE;(θ\ for zeΩ\{zι(β)9...,zm{β)}.

We shall now establish a similar representation formula for (P(β)-z)~1.

Lemma 2.1. Let /96C°°(Rn,R) such that ρ(x) = Ofor \x\ g 1 and ρ(x) =lfor\x\^29

and set P(β) =-Δ + βx1-^- p(x/R) V{x\ R(z, β) = (P(β) -z)~K Then, choosing R>0
sufficiently large, we have

for any s>j, and

for r, rί9 r2 ^ 0, s + 2r > \ with rι+r2^ 1, uniformly in z e ί 2 \ R for some complex
neighborhood Ω of λ0. Here <DX > = (1 + D\)112 and <x x > = (1 + x?) 1 / 2 .

Proof. For R > 0 sufficiently large, P(0) has no spectrum in a neighborhood of Ω,
since P(0)>λo/2. Then it suffices to apply Theorem 2.1 and Corollary 2.6 in
[20]. #

Henceforth R>0 will always be fixed according to Lemma 2.1. We shall
consider the Grushin problem for P(β) — z,zeΩ,

Here χ€C°°(RXl) is chosen such that χ(x t) = 0 if xx < (Ao + fη)/β and χ(xx) = 1 if
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xί > (λ0 + 2η)/β. Take ^eC°°(]RXl) such that

lA(x1) = 0 if Xι<^c0-
η^jjβ and φ{xι)=\ if x^ίco+Λlβ,

where c 0 < 0 is chosen such that

^(supp (1 — χ), supp ψ) = S(β)/2 + O(η/β), β 10,

where dβ(-, •) denotes the distance in the Agmon metric (V(x) + βx1 - λo)+dx2, and
χ and ψ are considered as functions of x = (x^x').

For zeΩ+ = Ωn {Imz > 0} we define the approximate inverse

'χE0(z,θ)ψ + R(z,β)(l - φ) χE+(θ)

EQ(Θ)Ψ EQ~(Z)

A straightforward calculation gives

where Jf(z) = (*11 *12) (2.8)
\Λ2l Λ.22/

with

z,θ)ψ, W = (\-p)V,

K2l = K(θ)(χ2 - l)E0(z,θ)ψ + R+(θ)χR(z,β)(\ - φ),

K22 = RZφ)(χ2-l)E+(θ).

For s, reR, we introduce a class of weighted spaces by

/?*, >7eL2},

where <D> = (1 - A)112. Hsr is equipped with the natural norm || {D}\βx1 Yf\\Li.
The following result shows the smoothing effect of X{z).

Proposition 2.2. Let r ^ 0, s e R with s + 2r > \. Then for any N}tO, Jf(z) is a
bounded operator from Hsr x Cm to Hs+N-r+N x C m satisfying

uniformly in zeΩ+. More precisely one has in the appropriate spaces

X β[09 (2.9)

uniformly in zeΩ+, for some complex neighborhood Ω of λ0.

Proof The proof is similar to those given in [7] and [18], except that we have to
work in weighted Sobolev spaces to obtain the uniformity in z up to the real axis.
We shall only estimate K1X. First consider the case r = 0, N = 0.

For an estimate on [Dχ9χ]E0(z9θ)ψ we refer to [18]. Thus it remains to treat
WR(z,β)(l-φ). Letting
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we denote by PD(β) the Dirichlet realization ofP(β) in M. Shrinking Ω if necessary,
we can show by the method of [18], Sect. 4, that PD(β) has no spectrum in Ω for
β > 0 sufficiently small.

Letting χ1eCco with bounded derivatives and suppχx c: M, one easily derives,
using a priori energy estimates, that

|| W(PD(β) - z)-'Xl{\ - φ) ll^-.o^.o, = O(e-S^2\ (2.10)

for any 5 > 0, uniformly in zeΩ.
In fact, to obtain this estimate for s = 0 it suffices to note that the distance

between supp W and supp(l — φ) in the Agmon metric dβ is S(β)/2 + O(η/β) and
then to use the well known identity

Re J (\V(eφu)\2 + (V + βxι-z-\Vφ\2)e2φ\u\2)dx = Re f e2φ(PD(β)-z)wύdx

for u = (PD-z)~1Wg with geL2(Rn) and φ = (1 -ε)dβ(x0,•) with ε > 0. To prove
(2.10) in general, one then estimates

(l-Δ)NW(PD-zy1χ1(l-φ)(l-Δ)N

by successively commuting (1 - Δ)W and χx{\ — φ){l - A) with (PD - z)~ ί

9 using
(2.10) for s = 0 and the obvious bound

KDyoW(PD-zy1χι(Dyι\\SC, for ro + r 1 = 2.

Next we use the identity

for I m z > 0 to derive from Lemma 2.1 that

KD^K^D^-'W^^όie-W2), (2.11)

for s > | , uniformly in zeΩ+. This proves (2.9) for r = O,Λf = 0. To change the
weight in (2.11), we need the following estimate: For any φeCo{1R) and s > 0, one
has

||<jSx1>->(P(jS))<D>2 s | |^C, uniformly in β>0. (2.12)

As in [13] and [20], this can be proved by the method of commutators.
To prove (2.9) for X n in the general case, consider the operator

where r ̂  0, seR with s + 2r > \ and NeJti is arbitrary. Since <βx1 > is bounded

on supp W and supp χ', we have

< ^ i > " Ί I , (2.13)

where φ1eCo(1Rn) with ^ x = 1 on supp W and χ2 has a similar support property
as χ' and satisfies χ2 = 1 in a neighborhood of supp / . Since the second term in
(2.13) can be treated more easily, we shall only estimate the first. Clearly it suffices
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to prove

IKDyty^fe/W - W<i>>*</fri>"ΊI =0(e-s^2), jSJO, (2.14)

for any iVeN, /ceN, — k + 2r > -̂, uniformly in zeί2+. The case k, N = 0 follows
from (2.11) and (2.12). We shall prove (2.14) by induction on k and N. Note that

and ιK(l ~ Φ) = 0. It follows that

gC Σ KDyN-JφJR(z9m-ΦKD>k<βx1y
r\\9 (2.15)

where ^ is some smooth function with supp ψj c supp φx, 7 = 1,2. Similarly from
the equation

we obtain

Σ ^ ^ ^ , ) ^ - ' ^ ! ! , (2.16)
< f = l

where ^ in some smooth function with a similar support property as 1 — φ. Using
(2.15) and (2.16), it readily follows by induction that (2.14) is true for any iV,/ceIN.
This proves the estimate on Kxl. The other estimates in (2.9) can be proved in a
similar way, using exponential decay estimates for w, (see [18]) and a similar
estimate for uf. #

Proposition 2.3. Let &(z) be defined by (2.7) Then for any seR, r ̂  0 with 2r±s>\
one has

ll^ϋ-xc- fl—χc-) = OίiS"1), /HO, (2.17)

uniformly in zeΩ+.

Proof Again we only estimate the term R(z9β)(l —φ). The other terms can be
treated more easily. It suffices to show

Kβx^-'ζDyϊiizjKDy^βx^-'w^cβ-1 (2.18)

for 2r> \s\ +^, uniformly in ZGΩ\R. Let (peCg^R), φ = 1 in a neighborhood of
ί3nR. For zeΩ, we have
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uniformly in β. Letting \ < s' < 2r — \s\, we obtain from (2.12)

uniformly in zeΩ+. This proves (2.18). #

From Proposition 2.2 and 2.3 we see that for r ̂  0, s e R with 2r — \s\ > \, the
operator

is bounded and its norm is of order O(β~x) uniformly in zeΩ+. $(z) is a right
inverse for ^(z). Similarly we can construct a left-inverse for ^(z). This proves that
choosing βo>0 sufficiently small, ^(Z\ZGΩ+, is invertible for 0<β^βo and

Corollary 2.4. For r ̂  0, 2r — \s\ > j , o«^ Λα5

and for any r^.09s^09s-\-2r>j, one has

|| g(Z) - P(Z) \\^rχ<cm.Hs,-r χ O

uniformly in zeΩ+.

Corollary 2.4 follows directly from Proposition 2.2 and 2.3. Writing

E(z) E+(γ

we have

E + (z)(E+-(z)Γ1E-(z% for Z G Λ + . (2.19)

The advantage of this representation formula is that E(z\E±(z) and E+~(z)
can in principal be calculated up to any order. According to (2.9),

E+~(z) = diag(z - j

To identify the zeros of d e t £ + " ( z ) with the resonances of P(β)9 we establish the
following result.

Lemma 2.5. Let Λ = {(f c)eL2(Rπ) x <Cm; f(x) = e~aχ2p{x) for some a>0and some
polynomial p( )}. Then there exists a complex neighborhood of λ0, which we still
denote by Ω, such that for any ul9u2eA the map z -» < ${z)uuu2 > defined for zeΩ+
has a holomorphic extension into Ω.

Proof. Denoting the distortion operator by U(3), we set R(z;β,3) =
U(9)R(z9β)U(9)~1 for 5 e R with \S\ small. We define a natural extension of U(3)
to L2(R") x <Cm by

W(S)(f, c) = (U(S)f, c) V(/, c)eL2 x C".

Then ^{z,9)=W{9)^{z)W{Syι defined for 5 e R with | 5 | small has a natural
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holomorphic extension in 9 into some small complex neighborhood of 0. In fact

E0(θ)φ E£ (z)J

For fixed # e C with Im 9 > 0, say 3 = θ, we can easily show that R(z\ β, 9) defined
for Im z > 0 has a holomorphic extension in z into Ω, because P(β) has no resonances
near λ0. This shows that ^ ( z , 9) has a holomorphic extension in z into Ω. A similar
result holds for Jf(z). Thus g(z9 9) = W(^)S(z)W(9)~\ first defined for 9 real and
then extended to Im,9>0, extends holomorphically to zeΩ. This proves the
lemma. #

From Lemma 2.5 and (2.19) we see that for distortion analytic functions fg

has a meromorphic extension in z into Ω, with poles at the zeros of det£+~(z).
But we already know that the poles of R(z,β) near λ0 are exactly {z±(β\...,zm(β)},
which by assumption are all simple. We conclude that the zeros of det E+ ~(z) are
exactly {zγ(β\... ,zm(β)} and there is no non-trivial Jordan block in the canonical
form of E+~(z).

Theorem 2.6. Under assumptions (1.2) and (1.3) let λ0 < 0 be an eigenvalue of P(0)
such that the resonances {Zj(β)}i^j^m of P(β) close to λ0 are simple for 0 < β ^ β0

for some small β0 > 0. Then for every s ^ 0, r ^ 0 with s + 2r > \ there exists C > 0
such that

max

(2.20)

for λ near λ0 and 0 < β ^ β0.

Proof Note that || E+ " (z)" x || g C max \z - zβ)\~x and that the results of Corol-

lary 2.4 remain true if we replace <D>S by {Diy
s in the definition of Hsr

(cf. Lemma 2.1). (2.19) for R(λ + lΌ, β) follows immediately, and taking the adjoint

of R(λ + ίθ, β) one obtains the estimate on R(λ - iθ, /?). #

3. Asymptotics of the Spectral Function

Let e(λ,β) denote the spectral projection of P(β) onto the interval (— oo,Λ,]. By
Stone's formula, one has at least formally de/dλ = l/2πi(R(λ + ιΌ, β) - R(λ - /0, β)).
We shall derive the leading asymptotics of the spectral function de/dλ(x, y; λ9 β)
which by definition is the distributional kernel of de/dλ. The starting point of our
arguments is the representation formula (2.19). We write

S(z) = &(z)(\ - JΓ(Z) + Jf(z)2) + G(z\ (3.1)

where

3/1 I 'tfrί~\\-1
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Lemma 3.1. With the notations ofSect. 2, for any r>(n+l)/4,n/2<s<2r—j, one has

\\G(z)\\^H-s,rχ€rn;HS,-rχ([:rn) = δ(e-2S^l j3jθ, (3.2)

uniformly in zeΩ+.

Proof. As in [7] and [18] one checks that for every fixed zeΩ+, J f (z)3 = O(e~2S{β))
in S£(L2 x Cm). By the arguments already used in the proof of Proposition 2.2, we
can prove that the norm of J f ( z ) 3 : # - S Γ x (Cm^Hsr x C m is of order 0(<r 2 S ( / ? )),
uniformly in zeΩ+.

Now (3.2) follows from Proposition (2.2) and (2.3). #

From now on we assume that λ0 < 0 is a simple eigenvalue of P(0). Then

E+~(z) = (z- z(β))(l + δ(e~2S^)X (3.3)

where z(β) is the unique resonance of P(β) near λ0. We write

and define X(z) and B(z) by

y|(z) = χE0(z,θ) + R(z,β)(l -φ)-E + (z)E-(z)(z-

B(z) = R(z,β)-A(z), z e β + . ( 3 4 )

Proposition 3.2. With the above notation, one has for r>(n+ l)/4, M/2 < s < 2r — \,

f e-2S(β)

^ ^ ) ( | z _ z ( / 0 | j (3.5)
uniformly in zeΩ+.

In particular, the distributional kernel Kλ(x, y; z, j?) of B(z) is continuous on R" x R"
and satisfies

/ - - / e~2S(β) \\

|X1(x,3;;z,iβ)|^C<iSx1>X^1>^O(β-^2) + O ^ ^ - ^ J j (3.6)

for any r>(n+ l)/4, uniformly in zeΩ+.

Proof. Equation (3.5) is a consequence of Corollary 2.4, Lemma 3.1, (2.19) and
(3.3). Note that B(z)* also satisfies the estimate (3.5). Thus (3.6) follows from a
theorem of Agmon-Kannai on kernels of operators in Sobolev spaces [1]. #

Making use of the expressions (2.8) for Kip we can obtain a formula for the
operators E±(z). After a calculation using the ideas of the proof of Proposition 2.2
one finds

iT(l -(P(β)-z)R{z9β)(l -ψ + lD2

l9χ]E0(z,θ)φ))

+ 0(e-Siβ)/2) + 0(e-Siβ)\z-z(β)\-1\ (3.7)

for zeΩ+.
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Here 77= EQ(Θ)EQ(Θ) is the spectral projection of P(β,θ) associated with the
eigenvalue z(β). To eliminate any dependence on θ in (3.7), we next replace E0(θ, β)
and Π by the corresponding quantities related to the Dirichlet realization PD(β)
of P(β) in M = {xeR"; X, > (λ0 + η)/β}.

Lemma 3.3. PD(β) has a unique eigenvalue λ(β) such that

λ(β) = λ0 + O(β), λ(β) - z(β) = 6(β-2S«»)

Let uD(β) denote the normalized eigenfunction satisfying PD(β)uD(β) = λ(β)uD(β\

\\uD{β)\\ = 1. Then one can choose u(β,θ) and u*(β,θ) such that

u(β9 θ) - uD(β) = 0{e-m-d^m\ (3.8)

u(β, θ)* ~ uD(β) = δ(e-S{β)-d^dM))9 xeM. (3.9)

Let ΠD denote the projection onto the subspace generated by uD{β\ and set
ΠD=\- ΠD. Letting Rf

D(z,β) = (PD(β)Π'D-z)~ιΠ'D, one has

χE0(z,θ)ψ - χR'D(z,β)ψ = O ( ^ S ( ^ 2 ) , in ^{H~^HS% (3.10)

for any s ^ 0, r ^ 0, uniformly in zeΩ.

Proof Equation (3.8) was proved in [18], Sect. 3. Equation (3.10) follows from the
construction of the Grushin problem given in [18] by suitably choosing the cut-off
functions. Equation (3.9) can be derived as (3.8). #

Combining Lemma 3.3 and (3.7) yields

R(z, β) = χR'D(z, β)ψ + R{z, β)(l - φ ) ^^ ( χ (
z - z(β)

ΠDχ(l -(P(β)-z)R(z,j8)(l -ψ + [D?,ΨWD(Z,β)Φ))

where the remainder terms are estimated in J?(H~sr;Hs~r\ uniformly in zeΩ+.
Making use of the relation

ΠDχ(P(β) -z) = (λ(β) - z)ΠDχ + ΠD[χ, D?]

= (z(β) - z)ΠDχ + ΠD[χ, DU

one obtains in £f(H~s'r;Hs ~r), for r,s ^ 0 with 2r - s >

R{z, β) = χR'D(z, β)ψ + R{z, 0 ( 1 -φ)- — ί ^ XΠDχ

-z(β)\-1), (3.11)

uniformly in zeΩ+.

Applying the same arguments to the operator P(β, θ) with Im θ < 0, we see that

(3.11) remains true for zeί3_ = Ω n { I m z < 0 } , provided we replace z(β) by its
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complex conjugate z(b). Note that R'D(z,β) is holomorphic for zeΩ. We set
f(β) = luϋ(β) a n d assume without loss of generality that χ and uD(β) are real.
Combining (3.11) for zeΩ+ with Stone's formula, it follows that

de de
{

O(e-2Siβ)\λ-z(β)\-1) (3.12)

in ££{H sr;HSj r), uniformly in A in a neighborhood of λ0.
Here de/dλ and de/dλ denote the derivative with respect to energy of the spectral

projections oϊP(β) and P(β) respectively, and F(λ, β) is obtained from the boundary
values of the fourth term in (3.11).

Finally we can state the main result of this section.

Theorem 3.4. Let de/dλ ('9-;λ,β) and de/dλ('9-;λ9β) denote the spectral function of
P(β) and P(β) respectively. Let KF(,;λ, β) denote the distributional kernel ofF(λ, β).
Then for r > n + 1/4 and for λ in a small neighborhood of λ0, we have

f(x,β)f(y,β)-KF(x,y;λ,β)

•zί/OΓ1)} (3.13)

as β[O, uniformly in x jelR".

Theorem 3.4 follows immediately from (3.12) by taking (n/2)<s<2r — \.
We remark that the remainder estimate in (3.13) is not optimal iίi the sense

that it does not show the expected off-diagonal decrease of a spectral function.
But our results become better when restricted to the diagonal x = y.

The semiclassical analogue of (3.13) was shown by Gerard and Martinez in [4].

4. Proof of the Main Results

Lemma 4.1. Let p( ) be a smooth positive function on R such that p ( x j = I for xί>0
and p(xj) = <Xj > for xx < -1. Then for any k ^ 0, 5 > (n + l)/2, we have:

(4.1)
de

dλ(X'X;λ>1

for λ in a small neighborhood of λ0.

Proof Since λoφσ(P(0)\ for λ sufficiently near λ0, one has: λφσ(P(0)). By Corollary
2.6 in [20], one has for any 5 > \, k ^ 0, r = {k + l)/2,

< X l > aΓ
Here dE/dλ = (l/2πi)(R(λ + iO, β) - R(λ - zΌ, β)). Note that for any meN,

oλ oλ
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and by successive commutator estimates, one can show that

\\<Diy\x1y(P(β) + i)-m(xiy-rp(βx1)-s\\^Csr, for OϊsSm, reR,

uniformly in β > 0. Consequently it follows that for $ > (n + l)/4, (n/2) <σ<2s — j ,

By Agmon-Kannai's kernel theorem, one derives that

\de,

cλ

This proves (4.1). #

Proof of Theorem 1.1. Assume (1.2) with σx > (n + l)/2, σ2>n-\. Let (n + l)/4 <
r<{σJ2).

Applying (1.9) and (3.13), we obtain

β JJ.V^ ^ ^ ^ . . ^ ^ ^ ^ - I r n /<t \ / o ^/(x,)g) 2 + KF(x,xU,i8)
P R«

To estimate the integral / = JJ{(1 - φ{xι)){deldλ)dXγ Vdx, we divide it into two
parts: Rn

ί = ( ff + ίί )(ί-φ)~dxιVdx^Iι+I2,
^Xί>C/β

where C > 0 is fixed. For the first term, we apply (4.1) with fc = 0. This gives
J i = O(j8σi"ι). For the second term, we apply (4.1) with k = σ1. Since supp (1 - \j/) c
{xj > — C/jS} for some (7 > 0, p(βxx) is bounded on supp (1 - ψ). So we have also:

Just as in the proof of Proposition 2.2 one can show that the norm of F(λ, β)
as an operator from H'sr to Hs~r is of order Oie'^λ-z^Γ1) if s>(n/2),
r > (s/2) + i Thus, as in Theorem 3.4, one obtains that for every r > (n 4-1)/2,

|XF(x,x;Λj?)| g <)Sx1>
ΓO(^-S(^μ-z()S)r1), uniformly in xeR".

Thus it follows from (4.2) that

τ(A,β) Λim—L— { 3x,nx)/(x,0)2<** + O(βσi"2) + δ(<Γs<*>μ - z(β)l"^.
P λ - z(/j) Eπ

(4.3)

To calculate the leading term in (4.3) we use the relation

Note that <lDl9P(β)-]f(β)>f(β)> = O(e'2S^) and ||/(j?)||2 = 1 + O(^ 2 S ( ^), since
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uD(β) is normalized, and uD(β) and its derivative are of order O(e~2S(β)) on the
support of χ'. Now (1.6) follows immediately from (4.3). #

Proof of Corollary 1.2. Assuming (1.2) with σ1>(n+ l)/2, it is known that τ(λ,β)
is continuously differentiate with respect to λ. We let s(λ, β) denote the scattering
phase satisfying s'(λ9 β) = τ(λ, β) and write z(β) = E(β) - ίΓ(β) with Γ(β) > 0. Then

E(β) + a(β)

Δ + S(λo,β)= J τ(λ9β)dλ
E(β)

E(β) + a(β) f(β\

ί
(β)

=2 ί )

\λ-z(β)\

(4.4)

Now (1.8) for Δ + S(λ0,β) follows from (4.4) by taking the limit β[0. Equation (1.8)
for Δ_S(λθ9β) can be proved in the same way. #

Our results show that for simple resonances the time-delay has a sharp peak
near the resonance energy and the scattering phase increases approximately by
2π. This agrees well with physical intuition ([11]). We remark that both a peak
in time-delay and in the scattering cross-section are characteristic of a resonance
process. By establishing a representation formula for the cross-section via the
spectral function, we can also study the asymptotic behavior of the cross-section
for the pair (P0(β), P(β)) in the limit /?J,0 and justify rigorously the appearance of
a peak in the cross-section when the energy is near the resonance energy. Since,
however, this is similar in spirit to the semiclassical case, we shall not give the
details here. We refer to [3,5] for related problems in the semiclassical case.
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