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Abstract. Relationships between the modular properties of affine G characters
and the modular properties of the affine characters of regular subgroups
of G are derived by considering the branching functions that appear in
calculation of the index of the Dirac-Ramond operator on super-coset models.
Various applications of these relationships are described, and in particular a
simple algorithm is given for generating modular invariant combinations of
characters of affine G at any level by using the shift vector method on suitably
chosen Lorentzian, self-dual lattices.

1. Introduction

The construction of modular invariants for arbitrary unitary representations of
Kac-Moody algebras has been of interest for some time. Moreover, with the
advent of N = 2 supersymmetric coset models [1] the construction of such
invariants has become of some significance for string theory. My intention here
is to introduce a technique that helps one to classify these invariants, and as
a by-product yields an elementary computational algorithm for generating vast
numbers of (and possibly all) modular invariant combinations of characters for
Kac-Moody representations of any level.

The basic idea is decribed in Sect.2 of this paper and rests on a simple, but
powerful identity that can be derived for any supersymmetric coset model. This
identity was essentially derived in [2], however the emphasis there was on the
properties of the coset model, whereas here the coset model in literally orthogonal
to the discussion. This identity will be used to study the modular invariants of
affine G-representations via embeddings of regular subgroups, H, of G.

In Sect.3 a number of applications of the results of Sect.2 will be given. In
particular, one can obtain an elementary derivation of the formula for modular
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transformations of affine G-characters. One can also easily recover, and generalize,
the work of [3] and [4] in which modular invariants of affine H can be obtained
via special conformal embeddings of H into some larger group. Perhaps the most
interesting application is that if one knows a modular invariant for some regular
subgroup H of some group G then one can generate a modular invariant for
G. Indeed one can generate all the modular invariants for G in this manner. If
one takes H to be the maximal torus of G then the problem of finding modular
invariants for affine G (at any level) reduces to finding modular invariants for a
set of bosons compactified on a suitably chosen lattice. As a consequence one can
obtain new modular invariants for G by merely generating a particular family
of Lorentzian, self-dual lattices using the shift vector method [5]. The latter
technique is a simple and established piece of lattice technology that has found
considerable application in generating modular invariants in string theories based
on level one representations of Kac-Moody algebras. Here this technique finds
broader application.

As one might expect, there is a price to be paid for generating modular invari-
ants so easily. The problem is that one generates modular invariant combinations
of characters that are, in general, not good partition functions for corformal field
theories. The modular invariants that one generates do not necessarily have po-
sitive coefficients in their g-expansions. That is, the “occupation numbers” can
be negative. This problem will be discussed in Sect. 4.

2. Supersymmetric Cosets and Modular Relations

Consider the Kac-Moody algebra & that is constructed from some rank 7, semi-
simple Lie algebra 4.! The Lie group corresponding to ¢ will be denoted by G.
A unitary representation of 4 will be denoted by its level, k, and by a dominant
weight, 4, of the (finite) underlying Lie algebra 4. As usual, the label 4 is the
highest weight of the G-representation that forms the ground-state of the Kac-
Moody representation, and A is required to satisfy the inequality 4 -0 < k, where
0 is the highest root of 4. The co-root lattice (i.e. the lattice generated by the
long roots) of ¢ will be denoted by I'(¥%). Let H be a subgroup the Lie group
G. Suppose that H also has rank /, and is semi-simple except possibly for U(1)
factors. Because H has the same rank as G, it follows that is must be regularly
embedded, that is, the co-root lattice I" (5#) of H is a sub-lattice of I (%9).

The super-GKO construction [1] for the coset G/H can be thought of in terms
of the usual GKO construction [8] for the coset model .# = (G x SO(d))/H,
where d is the dimension of G/H and H is diagonally embedded into G and
S0O(d). The SO(d) factor represents the bosonized fermions of the super-GKO
model, and the embedding of H into SO(d) is induced via the H action on the
tangent space of G/H. The embedding index (or level) of H in SO(d) is g — gu,
where g and gy are the dual Coxeter numbers of G and H respectively.? The

! For a review of the relevant material see [6], or see the appendix of [7]
2 If G and H are products of several factors then g — gy is to be thought of as a vector in the
obvious manner. The dual Coxeter number of U (1) factors is defined to be zero
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characters of the coset model .# are branching functions [6], b, ;4, defined via:

29050 =b, M, @2.1)

where xflG) is the level k, 4 character of affine G; Xif’ is the level 1, A character

of affine SO(d) and x&H) is the level k+ g — gn, A character of affine H. The index
1 is to be summed over all characters of # at level (k + g — gn).

The Ramond sector of the coset model .# is obtained from the spinor
representations of affine SO(d). For every 4 and A one can define an index
branching function, I1,%,

10650 =120 = L, 22)
where x3° are the characters of the two spinor representations of affine SO(d).
(Note that d is always even.) The branching function I,* can be thought of as
the contribution of the (4, 1) representation of affine (G, H) to the index of the
Dirac-Ramond operator on the super-coset model [2]. Now take the characters
to be functions of v and t, where v is a vector of parameters corresponding to
a Cartan subalgebra of H. This means that X(AG) and 39 are to be viewed as
functions of v and 7 as induced by the embedding of H. In particular, it means
that the chiral character (3¢ — x59) does not vanish identically. Indeed,

S0 S0 _ Or(a-v 1)
0 =250 0, 1) LI [ e ] , 2.3)
where T = AT(G)\AT(#), and AT (/) denotes the positive roots of /. By
definition, I 4* is independent of v, and by the usual index arguments it must also
be independent of 7. Thus I,* is a constant.
Consider the general modular transformation
at +b v
— Vv —
ct+d’ ct +d
acting on both sides of Eq. (2.2). First, there are overall phases, usually known as
modular anomalies, that have the form exp[inav?/(ct +d)], where « is a constant.
These anomalous phases are the same on both sides of the transformed Eq.
(2.2), and thus cancel. Therefore the modular anomaly terms will be neglected
henceforth. The affine G and H characters transform according to

' (G H ' (H
O s atDs AP - 2.5)

where % 4 and ¥ ,* are unitary matrices [6]. Moreover the chiral character of
S0(d), given in (2.3), is a modular invariant up to twelfth roots of unity. More
precisely, under © — © + 1, (3¢ — ¥59) gets multiplied by a factor of ™I'1/6,
where |t7]| is the number of positive roots in ¢*. Under t — —1/t the factor
is simply (—i)!""!. Tt therefore follows from Eq. (2.2) that, under the modular
transformation (2.4), one has: I,* — e®% A 1,%¥7}%, where € is a twelfth
root of unity. However, as was noted above, the index branching functions are
constants and hence are trivially invariant under modular transformations. It
follows that for any modular transformation:

U =L v ), (2.6)

24
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where ¢ = —%|t*| for 1 — v 4+ 1 and ¢ = §[t*| for 1 — —1/7. This somewhat
remarkable identity yields non-trivial relatlons between the modular properties
of level k characters of , and level k + g gu characters of #. However, to use
this identity one must first determine I 4*.

It is a virtually trivial apphcatlon of the Weyl-Kac character formula to derlve
an explicit formula for I,* [2]: Indeed, multiplying the character formula for x
by (2.3) one finds that the result instantly decomposes into characters X(H ),

Let W(G) and W (H) denote the (finite) Weyl groups of G and H respectively,
and let p be the number defined by

W(G r
= \wa l le) &1
Consider all the vectors of the form:
v=w(4d+gc) + (k+gu, (2.8)

where w € W (G) and p € I'(%). Then [2] there are precisely p vectors v of the
form (2.8) that satisfy the following conditions:

(v—og) a=>0 2.9)
for all positive roots, «, of #, and
(v—on) p=<(k+g—gn), (2.10)

where y is the highest root of H. In other words there are precisely p vectors of
the form v such that A = v — gy is an admissible representation label for H at
level k + g — gp. For a given A, let #(A) denote the set of all these admissible
labels of the form 4 = v — gg. One then finds [2] that I/* vanishes unless A is an
element of #(A), in which case one has

Lt = e(w), (2.11)

where ¢(w) is the sign of the determinant of the Weyl reflection, w € W(G), in
Eq. (2.8).

There is a simple algorithm for computing %(A). Take coset representatives,
w, of W(G)/W (H) and representative vectors u of I'(%)/I" (#). Consider the
corresponding vectors v defined in Eq. (2.8). For each such v pick the representa-
tive 4 so that v has the minimum possible length. That is, if necessary, modify v
by adding to it a vector of the form (k + g)ug, ug € I' (#) so that the result has
minimal length. Having chosen such a minimal v, act with a Weyl rotation of
W (H) so as to place v in the fundamental Weyl chamber of H, i.e. so as to ensure
that v - o« > O for all positive roots « of #. One will find that the rotated form of
v in fact obeys v -a > O for all positive roots of H, and thus v — gy satisfies (2.9).
Moreover, the fact that one has minimized the length of v guarantees that (2.10)
is satisfied. It is also elementary to see that all the vectors A = v — gy generated
in this manner are distinct. From this it also follows that

z I e = pdan (2.12)
A

where p is given by Eq. (2.7).
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3. Applications

Observe that if M4y ?(;¢) is a modular invariant for & at level k, then
pH ) (X(H)) is modular invariant for # at level k + g — gy, where

P¥ = M1 1Y (3.1
Conversely given an invariant, P**, of # one can obtain one for by taking
M = PP L (3.2)

More generally, if # is a product: # = H#'1 X #, X - - - X # p, then given modular
invariants for % and 5, ..., 5y, one can obtain an invariant for #; by taking
the tensor product of I w1th itself and contractmg the indices corresponding to
4 and #», ..., #, with the appropriate given modular invariant.

The latter procedure has essentially been applied in a very restricted context
in [3] and [4]. Specifically, one can take k = 0 and 4 = 0 (i.e. the trivial, one
dimensional regresentatlon for ?9) Suppose that one then takes the diagonal
invariants for 2, ..., #,, then one obtains an invariant for # 1. In [3] G was
taken to be an 4, D or E Lie group and H was SU(2) x H, with an embedding
into G in which the SU(2) was generated by Eg, E_y and 0'X;, where 0 is the
highest root of ¥ and X; denotes the Cartan subalgebra. The corresponding
SU (2) embedding into SO(d) has level g — 2, and the induced modular invariant
for SU(2) was found to be a simple linear combination of the 4,_, invariant and
the type ¢ invariant. Thus this technique afforded one some link between A-D-E
modular invariants of SU (2) and the corresponding A-D-E Lie group.

The arguments of [3] and [4] rely on gauging the group H, and then sending
the coupling constant to infinity in order to induce the new modular invariant for
1. This technique is only valid for conformal embeddings of H. In other words,
if one uses the gauging trick to remove the s, Hilbert space then one has only
generated a modular invariant for the orthogonal Hilbert space, which is only a
finitely reducible representation of #; for conformal embeddings. The advantage
of the procedure outlined above is that it does not require one to take k =0 and
A = 0, or take a conformal embedding. The Hilbert space orthogonal to that
of #5 x -+ X Ay is essentially a product of a coset model and representations
of # 1. The modular invariant for the coset has been chosen to be the trivial
(constant) index branching function, and we are then left with an invariant for
H1.

Another elementary application of (2.6) is to derive the general formula for the
modular transformation of ¢ characters. In particular consider the transformation
7 — —1/1. Take H = (U(1))’, where ¢ is the rank of G, and set I' (#) = I' (9).
Thus the H-theory is that of / free bosons compactified on the integral lattice
vk + gI' (%). The H-partition functions are then the shifted theta functions of
this lattice, divided by [5(1)]’:

2
0@ =@ Y exp [in(k—i—g) (v+ (kj_g)> r] : (3.3)

vel (9)
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By Poisson resummation one knows that

ul.—

1 (=1/7) = F—' Ze it (o), (34)

‘(k+

*

where I'* is the dual of I' = I'(%) and the sum is taken over y €

Using the results given at the end of the last section one sees that: (k+g)I
€ if A=w ;
IAA _ (w) . (4 4+ 06) (3.5)
0 otherwise

where w € W(G). In Eq. (2.6) take 1 = A’ + g¢, for some fixed A’, then using
(3.4) and (3.5) one obtains the following matrix for the transformation of affine
G-characters under 1 — —1/7:

1
2

F*

o | I
S4° = () k+or

S o) exp |~ v +ea) (44e0)|, 50
weW (G)

where |4™| is the number of positive roots of G. This result is well known (see
Chap. 13 of [6]), but the proof given here I believe to be somewhat simpler than
the usual one.

Perhaps the most novel application of Eg. (2.6) is the process by which one
can generate new modular invariants for ¢ given modular invariants for .
There are a priori a myriad of ways in which one can do this. For example,
given that one knows all the modular invariants for SU(2) [9], one can embed
products of SU(2) into G, adding U (1) factors if necessary, then choose 4, D,
or E invariants for each of the SU(2) factors and, for instance, choose the
trivial modular invariant for each of the U (1) factors. From each such choice
one obtains a modular invariant for G. The simplest non-trivial example of this
procedure of using SU(2) factors is to take ¥ = SU(3) at level k, and take
H =SU(2) x U(1), where SU (2) has level (k + 1). For the present I will always
use the trivial invariant for the U (1) factors. One would naturally expect some
SU (3) analogue of the type D modular invariants for odd values of k, and some
analogue of the type E modular invariants when k is 9, 15 or 27. For example,
taking k = 3 and using the D4 modular invariant of SU(2), one obtains an
SU;(3) invariant of the form 34 — I3, where A is the trivial (diagonal) modular
invariant and

Iy = |00 + 130 + x031* + 3011/, (3.7)

where the subscripts on the y’s are the Dynkin labels of the highest weight
vectors, 4. Note that SU(3) — S0;(8) is a conformal embedding and one can
check that (3.7) is in fact the partition function of the Englert-Neveu lattice [10]
based upon SO(8). The SU(3) analogues of the type D modular invariants are
readily computed for higher values of k, and, for example, for k =5 and k =7
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one finds invariants of the form 34 — I, where

Is =x00 — 122> + 4lx11* + lp1a + xa1?
+ {(lxs0 — 1121 + a0 + 1101 + 4xas?) + (1 nmy)}, (3.8)

I =lx00 + 152 + x251* + |10 + %60 — X221
+ {(x70 + 202 + x051* + 261 + X0 — x231%) + (11 > n2)}, (3.9

and where (n; < n,) indicates an identical expression to the preceeding one in
parentheses, except that the Dynkin labels n; and n, are to be interchanged. One
can also easily compute the SU (3) analogues of the other D invariants or for the
E invariants.

At this point one should observe that there is a problem with some of the
modular invariants that have been generated thus far. While they are indeed
modular invariant, they are not necessarily good partition functions for a con-
formal field theory. This is because some of the occupation numbers might be
negative since some of the characters appear in the invariants with negative
coefficients. This difficulty will be discussed later since I first wish to describe
a more fundamental and systematic method of generating modular invariants
for .

It is important to note that given a modular invariant M of & at level k,
if one uses (3.1) to obtain a modular mvarlant P™ for # and then uses (3.2) to
obtain a modular invariant M44' for & again, it follows from (2.12) that

M = ™ (3.10)
Therefore every modular invariant of & can be obtained from a modular invariant
of #.In practice, one also finds that several different invariants of # can lead
to the same invariant for 4.

Consider, once again the situation when H is (U (1))?, where ¢ is the rank of
G. There is, a priori some ambiguity as to what lattice to choose for I' (#). The
obvious choice, and the one that I shall make i is to use I' (%), or more precisely
vk +gI'(%). Since all modular invariants of @ will yield modular invariants
for H = (U(1))’ compactified on this particular lattice, it follows from the
considerations above that this lattice suffices to generate all modular invariants
of G at level k.

The difficulty is that one does not know how to generate all the modular
invariants of bosons compactified on a given lattice. However, I believe that
it can be done by the algorithm given below, and even if this belief should
prove unfounded then at the very least one can generate many, many modular
invariants for G.

Consider the following Lorentzian self-dual lattice of dimension (7, ¢):

L= , V) i, v € ——=I (% YeNVk+egTl(% 3.11
{Ws,02) 1oy, 0- € \/IT (@), (o — Vk+gl'(@)} (311
and consider its partition function

P, )= Y g¢git. (3.12)

(v4,v-)€L
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This function is the trivial, or diagonal, modular invariant for H. One can easily
check that this induces, via (3.2), |[W(G)| times the diagonal modular invariant
for G, ie. [W(G)| Y 1192

A

One can generate new modular invariants for s#, and hence for ¥, by finding
a new Lorentzian, self-dual lattice, L', that contains /k+ g (I'(9), I' (%)) as
a sub-lattice. All such lattices can be generated by the shift vector method
[5]. That is, one finds an (¢, /)-dimensional vector, ¢ = (04, 0-), lying on

r*@,r*« h that Lbut No € L f NeZ, N > 1. Let
\/m( *(%), I'* (%)), such that ¢ ¢ Lbut No or some > e

N be the least such N. The vector ¢ must satisfy a level matching condition [11],

which can be reduced, without loss of generality, to assuming that 6> = 6,2 —0_2
is an even integer [5]. One then defines a new lattice
= U&o +Jjo), (3.13)
j=0
where
Ly={veL:v-oeZ}. (3.14)

The lattice L’ is even, Lorentzian and self-dual, and so defines a new modular
invariant partition function for 5. To obtain all the Lorentzian, self-dual lattices
than contain /k + g (I' (%), I (%)) as a sub-lattice it may be necessary not only
to act with all admissible shift-vectors on L, but also to iterate the foregoing
procedure on each new lattice that one generates.

As far as the induced modular invariant for ¢ is concerned, the relevant
vectors of L' are those of the form

W4 (44 + 06), w—(4- +06)) » (3.15)

1
vk+g
where wy, w— € W(G) and 4, and 4_ are admissible weight labels for some
level k representation of 4. Thus it suffices to restrict attention to shift vectors,
or combinations of shift vectors that have this form. The requirement that such
vectors have even Lorentzian length is the same as requiring that

1
k+g

where Cy(A) is the quadratic Casimir of the representation corresponding to A.
In other words it suffices to consider the shift vectors, g, that can be generated
by taking Weyl rotations of the weight labels of all possible primary fields of
the level k, % theory such that the spin (the difference of left and right moving
conformal dimensions) of the primary field is integral. The labels (44, 4_) of
such fields will then necessarily satisfy Eq. (3.16).

Thus every operator of integral spin can be used to generate new modular
invariants for ¢ in an elementary manner. It is also clear that there are only
finitely many Lorentzian self dual lattices containing +/k + g (I' (%), I' (%)) and
all of them can be enumerated in this manner by applying successwe shifts.

As mentioned earlier, the problem with this algorithm is that it not only yields
modular invariant partition functions of conformal theories, but it also generates

o G4) - G4)] € Z, (3.16)
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a host of modular invariants that cannot be thought of as partition functions.
However, if one can classify all the modular invariants of bosons compactified on
the lattice /k + g I' (%), then one can classify all modular invariants of ¢ at level
k. Moreover, it is just possible that the self-dual lattice method will enumerate
all such invariants.

As an example of this procedure it is instructive to consider the level k SU (2)
invariants. In this instance one has

LY =001 — (0%e1) (3.17)

where £ =0, ..., kis the usual SU (2) label (¢ is twice the spin of the ground state
representation) and ¢’ is the U (1) charge of a boson /2(k + 2) d¢(z) compactified
on a lattice with charge spacing 2(k + 2). The trivial U (1) invariant (3.11) yields
the type A invariant (multiplied by |W(SU (2))| = 2). If k is a multiple of 4
one can choose ¢ = (1, k + 1) and if k is even but not a multiple of 4 one can
take 0 = (0, k +2). The SU,(2) modular invariant resulting from this is precisely
2(A — D), where A and D denote that 4 and D modular invariants of SU (2) for
k even. Alternatively, for any even k one could take ¢ = (%(k + 2), —%(k + 2))
and one gets 24 — 4D or 2(A — D) for %k even or odd respectively.

If k is 10 or 16 one can generate the invariant 2(D — E) by shifts of (1,7)
and (3,15) respectively. If k = 28 one needs two shift vectors, for example the
sum of the two modular invariants generated by (1,11) and (1,19) generate the
modular invariant 2(E — D). These are, of course, not the only shift vectors that
generate these modular invariants. One can also generate other combinations of
these modular invariants by employing successive shifts. It is thus clear that one
can trivially generate all the modular invariants of SU(2) in this manner. Indeed
in obtaining all the modular invariant partition functions for SU,(2) the authors
of [9] employed a method that is essentially equivalent to the foregoing one.

As a final note on this SU(2) example, there is an amusing and perhaps
significant numerological coincidence. With a minor exception for the E; invar-
iant, one can choose the shift vectors required to make the A, D and E SU(2)
invariants in such a way that their orders relative to vk +2I'(SU(2)) is the
same as that of the abelian subgroups of the finite subgroups of SU(2). This is
reminiscent of the construction of ¢ = 1 models by orbifoldizing SU (2) (at level
one) with respect to finite subgroups [12]. Whether there is a deeper connection
remains to be seen.

4. Conclusions

Once again it is apparent how the ideas of supersymmetry can be applied to better
understand, and partially unravel a problem that does not necessarily involve
supersymmetry at the outset. Here I have shown how one can easily derive the
modular properties, of affine G-characters, and in addition find methods for
generating non-trivial modular invariants. The most interesting of these methods
reduces the problem to one of constructing certain Lorentzian, self-dual lattices,
and can be thought of as twisting (or more precisely, shifting) the theory by
operators of integral spin. The price one appears to pay for the simplicity of this
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lattice method is that the corresponding modular invariants are not good partition
functions for conformal theories. However, in practice, it is relatively easy to
circumvent this difficulty. First, for a given affine ¢ at a given level, there are
only finitely many Lorentzian self-dual lattices, containing /k + g (I' (%), I' (%))
as a sub-lattice, or equivalently there are only finitely many integral spin primary
fields that can be used to generate shift vectors. It is computationally very easy
to generate all the associated modular invariants, and then check to see which
combinations of them yield good partition functions. One can also proceed more
systematically. Suppose one has applied some shift vector, o, of the form (3.15),
and obtained an invariant, I. By changing the sign of the I, if necessary, one
obtains an invariant that contains a term of the form a(y4, (x4 ) + xa_(X4,))s
where a is a positive constant. If I contains other terms with negative coefficients
one can attempt to remove them by either (i) adding on some other known
invariant to cancel them or (ii) modifying the Lorentzian lattice by trying to
shift with another vector that preserves the desired term, but projects out the
offending terms or (iii) manufacturing a new modular invariant by using a shift
that generates some or all of the offending terms and then subtracting this new
invariant from the old one. Finally, if one obtains an invariant with positive
coefficients one, of course, must also make sure that there is a unique ground
state.

While it is essential to impose these requirements on the modular invariants
of & in order to obtain a conformal field theory based on g, it is by no means
clear as to whether one has to be quite so stringent if one is interested in coset
models based on %. That is, one might be able to get an acceptable conformal
theory on G/H by usmg invariants for 4 and # that would not correspond to
conformal theories on 4 and # separately.

Finally, the classification modular invariants of G can be accomplished by
classifying the modular invariants of any subgroup H whose rank is equal to
that of G. In particular, if one takes H to be the torus of G, then all the modular
invariants of ¢ can be obtained from all the modular invariants of bosons
compacted on a given lattice. Whether this observation helps with the general
classification problem remains to be seen, but it is evident that one can readily
generate many of the modular invariants of affine G by using elementary lattice
technology.
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