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Abstract. A general patching matrix P for the twistor construction of anti-
self-dual Yang-Mills fields is approximated by a terminating Laurent series.
The approximate patching matrix P(m) is triangularized (so that it becomes one
of the Ward ansatze) and the associated Riemann-Hilbert problem is solved,
thereby generating an anti-self-dual solution of the Yang-Mills equations. The
approximate patching matrices and the associated (exact) anti-self-dual
Yang-Mills solutions are then shown to converge on P and its corresponding
solution so that the Ward ansatze forms a dense subset in the solution space
in the Weierstrass sense.

I. Introduction

For some time now there has been great interest in anti-self-dual (or self-dual)
solutions of the Yang-Mills equations [1-6]. One of the reasons for this interest
is that many of the familiar non-linear equations of mathematical physics (for
example, the Bogomolny equation, the sine- and sinh-Gordan equations, the
Toda-lattice equation, the stationary axial symmetric Einstein and Einstein-
Maxwell equations, the KdV equation, the non-linear Schrodinger equation, and
others) are symmetry reductions of the anti-self-dual Yang-Mills (ASDYM)
equations for various gauge groups [7-10]. The ASDYM equations fall into the
class of differential equations which are usually described as integrable or solvable
[8]. Many solution generating techniques have been developed for the ASDYM
equations, including the matrix-valued Sparling equation, the use of Lax pairs,
the application of Backlund transformations to known seed solutions, and of most
importance to this work, the twistor construction where twistor data is freely
prescribed and the solution of a classical Riemann-Hilbert (RH) problem is
required in order to obtain the anti-self-dual field [11-13]. While various
correspondences between these different methods have been known for some time,
recently it has been shown that most can be directly obtained from a single
construction [14].

Even though the ASDYM equations are in some technical sense solvable,
obtaining explicit solutions given arbitrary data is difficult at best. It has been
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shown, for either the twistor construction [3,5,11] or the Sparling construction
[13], that if the appropriate matrix-valued data is of upper or lower triangular
form then the general solution (in terms of quadratures) can be given. While the
solutions obtained from this triangular data do not constitute the complete solution
space of the ASDYM equations, it has been conjectured (at least for gauge groups
SU(2) or SL(2, C)) that they do form a dense subset in the solution space [5].

In this work, it is shown how arbitrary matrix-valued data for the twistor
construction can be approximated by data which can then be triangularized; the
explicit solution for this approximate data can then be given by quadratures. This
exact solution from the approximate data, as this data approaches the exact data,
converges to the solution of the exact data. The set of approximate (or
triangularizable) data thus forms a dense subset (in the Weierstrass sense) in the
entire data space and the solutions of this triangular data forms a dense subset
in the solution space.

In Sect. II, a brief description of the ASDYM field equations and their
correspondence with the twistor construction (and the RH problem) is given.
Several of the important features of the twistor construction, e.g. certain types of
gauge freedom, which will be exploited in the approximation scheme, are described.
Section III contains an explicit method for obtaining the solutions of the ADYM
equations via the RH splitting (twistor construction) for triangular data (for an
arbitrary gauge group). (This is a direct extension of previous methods of solving
the RH problem for two dimensional triangular data [5,11]. In Sect. IV, the
procedure for approximating arbitrary SL(2, C) data which can then be explicitly
triangularized is described; the solution to this triangularized data can then be
obtained by employing the method given in Sect. III. In Sect. V, the solutions to
the approximate data are shown to converge to the solutions of the exact data as
the approximate data converges to the exact data. The procedure described in
Sect. IV is generalized to arbitrary SL(n, C) data in Sect. VI. In conclusion, the
importance of demonstrating the density of the solvable solution space for the
ASDYM equations is discussed. Also, the prospect of obtaining similar results for
the remaining solution generating techniques such as the Sparling equation are
considered.

II. Twistor Construction of the Anti-Self-Dual Yang-Mills Equations

In this section, we review the ASDYM equations and describe our notation. The
twistor construction for generating solutions is briefly introduced and the
properties (gauge freedoms) of this construction are described. These gauge
freedoms are extensively used in the approximation and triangularization scheme
of Sects. IV and VI.

On Minkowski space M or an open set of M, consider a trivial n-dimensional
complex vector bundle B = M x Cn associated with some gauge group, 5L(w, C).
We introduce the matrix-valued connection (or vector potential) yα, where a is the
space-time index and the associated (Yang-Mills) gauge field F defined by

Fab = 7b,a - ya,b - [y«> Vb]> (2 *)
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The ASDYM equations are three matrix-valued differential equations on the
connection,

Fl=-iFΛ, (2.2)

where * is the Hodge duality operator given by

n = K*c ,̂ (2.3)

where εabcd is the alternating symbol and ε0123 = - 1.
The ASDYM equations can be represented as the integrability conditions for

a linear system as follows. Firstly they can be rewritten as [14]

FabL
ab = FabM

ab = FabN
ab = 0, (2.4)

where Lab, Mab, and Nab are any three linearly independent self-dual antisymmetric
tensors. These can be re-expressed as

Fabm
ab = Q9 (2.5)

with mab a self-dual skew tensor given by

mab = Lab + Mabζ + Nabζ2, (2.6)

where ζ is an arbitrary point on the complex Riemann sphere, Cujoo^CP1. A
constant normalized null tetrad on M is introduced as lα,mfl,mα, and na with
lana = — mama = 1, all other products vanishing. Define

L*(C)=l f l + Cm", (2.7a)
and

Ma(ζ) = ma + ζna; (2.7b)

mab can now be chosen as

mab = L[a(ζ)Mb](ζ)

= l[amb] + ζ{l[anb] + m[amb]} + ζ2mlanb\ (2.8)

Applying (2.8) to (2.5), the ASDYM equations become

FαbL
l*(C)M51(0 = 0, (2.9a)

which are the integrability conditions for the existence of solutions to

yα)G = 0, (2.9b)

with some matrix G = G(x, ζ). The skew tensor mab at any point in M defines a
family of self-dual null two-surfaces through that point. For each value of ζ, mab

defines a self-dual null two-plane through the point, the vectors La(ζ) and Ma(ζ)
being two linearly independent vectors within the plane. The set of all such two
surfaces in complexified Minkowski space (CM) is projective dual twistor space
PT = CP3. It can be coordinated by the local coordinates

L = Lβ(ζ)xfl, M = Mfl(0*fl, and ζ. (2.10)

Note that L, M, and ζ are complex and xa are coordinates on CM L and M satisfy

= Q and Ma(ζ)daL = Ma(ζ)daM = 0.
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A correspondence exists between ASDYM fields and holomorphic vector
bundles over a region of PT [1,12]. Holomorphic vector bundles on PT can be
described as follows; Consider PT covered by two patches U0 and U^ such that

C/0 = {PT/C=oo} and Ua = {PT/C = 0}, (2.11)

and l/o n^/ αo projects to an annular region in the ζ-Riemann sphere containing
the equator, the circle \ζ\ = 1. A holomorphic vector bundle can be specified by
an n x n matrix of functions P(L, M, ζ) holomorphic in the annular region t/0 n l/^,
known as the patching or transition matrix; it transforms a frame for the bundle,
defined on (70 to one defined on U^. Specifying the patching matrix P determines
the bundle which in turn determines an anti-self-dual Yang-Mills connection and
field (associated with the indicated vector bundle); the problem then is to explicitly
obtain the connection and fields on M from the patching matrix P. These fields,
on M, can be obtained by "splitting" the patching matrix, i.e. by writing it (using
(2.10) to express L and M as functions of xa and ζ) as

or

GJ^C)P(L,M,0 = G0(*α,0, (2.12)

where G0(xfl,ζ) and Gαo(xfl,0 are n xn matrices of functions, holomorphic on
UQ = {M x CPVC = 00} and U^ = {M x CPVC = 0} respectively. This splitting is
the solution of a classical matrix-valued Riemann-Hilbert (RH) problem for each
value of xa (the space-time points acting as parameters in the splitting).

Remark 1. The general splitting of any non-singular holomorphic matrix of
functions is given by

where G0(ζ) and G^ζ) are the matrices given above and H(ζ) is a diagonal matrix
whose entries are integral powers of ζ. This splitting is known as a Birkhoff
decomposition. If H(ζ) = 1 the above splitting is known as a Riemann-Hilbert
(RH) problem. A generic patching matrix P(ζ) will possess a Birkhoff decomposition
with H(ζ) = 1 and therefore possess a RH splitting [15].

In the scalar case the RH problem is to find Φ^ζ) and Φ0(ζ) such that

where Φ^(ζ) is a holomorphic function on U009Φ0(ζ) is a holomorphic function
on l/o, and F(ζ) is a given holomorphic function on the overlap l/oπl/^. The
solution to this splitting is obtained by taking logarithms of both sides

lnF(0 = lnΦ0(0-lnΦ00(0,

and applying the Cauchy integral theorem, provided that the function lnF(ζ) is
single- valued around any contour linking the annulus (if In F(ζ) is not single- valued,
one must first multiply F(ζ) by ζm for some integral m before taking logs in order
to ensure that the logarithm is single valued).

Associated with the scalar RH problem is the non-homogeneous RH (or Hubert)
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problem given by the splitting

where K(ζ) is a given holomorphic function on the overlap l^nl^. Solutions
to the non-homogeneous problem are obtained by reduction to an additive RH
problem using the solution to the homogeneous problem [16]. When the ζm factor
is nontrivial for the associated homogeneous problem, there are obstructions to
solving the nonhomogeneous problem. These obstructions arise because the
problem reduces to the following additive RH problem:

One can only solve this RH problem for g0 and g^ when the Laurent expansion
for K' has no powers of ζ between 1 and m — 1 since Q^(ζ) only contains powers
of ζ smaller than 1, and ζmg0(ζ) only contains powers greater than m — 1. These
obstructions play an essential and subtle role in the solution of the Ward ansatze.

Given P9 the solution to the RH problem is unique up to premultiplication by
a matrix depending only on xa. Given G0 or G^, the ASDYM connection γa is
defined by

,G» (2 13a)

and

yαM
α(0 = Mfl(QG0,αGo l = ̂ ΠOG^G'1. (2.13b)

These expressions given the four components of the connection ya(xa) which are
automatically solutions of the ASDYM equations, (2.9) [14]. This can be seen
from the fact that (2.13) implies that G0 and G^ solve the linear system (2.9b) so
that the integrability conditions (2.9a) are automatically solved.

Remark 2. The first equality in (2.13a) shows that γaL
a(ζ) is regular for \ζ\ < infinity

and the second equality shows that it has a simple pole at infinity arising from
that in La(ζ) (cf. (2.7)). Therefore γaL

a(ζ) is linear in ζ by an elementary extension
of Liouville's theorem. By applying a similar argument to (2.13b) it can be seen
that (2.13a,b) do indeed determine just the four components of the connection.

The patching matrix P is effectively a freely specified holomorphic SL(n,C)
function of three variables for SL(n, C) Yang-Mills fields. [P would be subject to
certain algebraic constraints and/or reality conditions when the gauge group is a
subgroup of SL(n, C); P would also be subject to further conditions if we required
global solutions.] Conversely starting with a general ASD solution to the Yang-
Mills equations, we can always produce a P by solving 2.9a with G0(x,£) for
I C I < oo, and GJ^ζ) for |ζ| >0, and then put P = G^Go

The patching matrix P is given up to the "gauge" freedom

P'(L, M, 0 = N ~ ̂ L, M, C)P(L, M, ζ)S(L, M, 0, (2.14)

where S and N are non-singular n x n matrices of functions holomorphic in U0

and U oo respectively; the matrix P' being equivalent to P. This transformation can
be seen to generate a "right-gauge" transformation on the matrix-valued functions
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GO and G^ obtained from the splitting, (2.12), of P',

G'0(xfl, 0 = G0(x
and

G'Jx', 0 = GJx , ζ)N(L, M, 0. (115b)

Note that this right-gauge transformation has no effect on the ASDYM connection
yβ, defined in (2.13a,b), i.e. the ya constructed from the G is the same as that
constructed from the G.

A different type of gauge transformation, namely left-multiplication of the G0

and G^ by a non-singular n x n matrix-valued functions of xfl, can be defined.
Such left-gauge transformations, given by

xfl,0 (2.16a)
and

G'Jx", 0 = C(xfl)G00(xfl, 0, (116b)

do not alter the patching matrix P, i.e. they represent the freedom in the solution
of the splitting problem. They correspond to ordinary gauge transformations on
the ASDYM connection yβ, (2.13a,b).

These transformations can be fixed by specifying the value of G0(xfl,0 or
GOO (**,£) at some £ = d for each value of xβ (effectively fixing the matrix C and
the gauge for γa). Such a procedure, is referred to as left-gauge fixing. A common
choice is to set G^x", oo) = /. The quantity G0(xα,0) then turns out to determine
the entire connection of the solution. It is often referred to as Yang's J-matrix [2].

III. Splitting of a Triangular Patching Matrix

In this section a procedure is given for solving the n x n matrix-valued splitting
Eq. (2.12) to obtain G0 and G^, for a patching matrix P that is of triangular form.
This procedure generalizes the 2 x 2 version of Corrigan et al. [3, 11].

Note that P is a given function of the arguments (L, M , £), but in the splitting
problem, we restrict the values of L,M via (2.10), so that P becomes a function
of xa and ζ. Consider an upper triangular SL(n, C) patching matrix P = [py], i.e.,

Pij = 0 for i>j
and

detP=l. (3.1)

Remark 3. A GL(n, C) matrix could be considered, but such a matrix can be
factorized into an SL(n,C) matrix and the determinant part, whose splitting is
accomplished by solving a scalar RH problem. Therefore only SL(n, C) matrices
need to be considered.

The diagonal elements of P can be expressed as

Pn = ζΛiefi (3.2)

with det P = 1 equivalent to

£αί = 0 and £/i = 0. (3.3)
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For each i, the integer αf, the winding number or index of the function pih is the
number of times the value of the function winds about the origin, as ζ moves
around the annulus (70n U^. The winding number is given by

(3-4)

or

0^ = — [logpjv]c, (3.5)
2nι

where C specifies a closed loop linking the annulus once and [ ]c denotes the
increment of the expression in the brackets as a result of a circuit around C. The
functions ft have zero winding number and are single-valued functions on the
annulus. The form of the decomposition of the diagonal elements of the matrix
given in (3.2) assumed that the functions pu contained no zeros in the annulus;
this follows from the condition det P = 1 and the fact that P is upper triangular,
so that det P is just the product of its diagonal entries.

Remark 4. It is worth noting that in order to split the upper triangular matrix P,
the following conditions must be satisfied:

If these conditions are not satisfied then the Birkhoff decomposition for a triangular
matrix will always have H(ζ) ^ 1. Roughly speaking this is because the lower right
n—jxn—j block of the matrix is the patching matrix of a subbundle of the full
bundle, and when this inequality fails, this subbundle has positive Chern class.
On restriction to a Riemann sphere, this subbundle will then have more than n—j
independent sections. This means that the bundle is nontrivial on restriction to
spheres, so that when split, the patching matrix will always yield non-trivial H .
Generically, if these conditions are satisfied we will have that H(ζ) = 1. Note that
the above inequality and the detP = 1 condition ensures that αx is positive.

Before splitting the matrix P, we split the functions /, into the functions /?
and /7°, holomorphic in l/0 and U ̂  respectively, such that (on the annulus)

/ι = /?-/Γ (3.6)

The functions /? and f™ will be used extensively in the splitting of the matrix P
which follows. This splitting of fi is an example of a scalar RH problem and is
given by

/Γ=- and /?-
Jt 2π/ίC'-C 2πiϊί'-C

where the integral is taken along a closed contour C in the annulus l/0n 17 ̂  with
ζet/oo for /j00 and ζeU0 for /?. The expressions (3.7) are obtained from a direct
application of the Cauchy integral theorem to (3.6).

The splitting problem, (2.12), if written out with P in upper triangular form,
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yields n2 scalar RH problems, n of which are homogeneous problems for the
diagonal entries and the remaining n(n — 1) equations form a hierarchy of
inhomogeneous RH problems. Each step in the hierarchy can be solved by
quadratures using the results discussed previously in Remark 1, once the preceding
steps have been solved. The results are now summarized.

Denoting the elements of the matrix-valued functions G0 and G^ by 0? and
gfj respectively, we write the solutions to the n homogeneous RH equations as

s = 0

and

li C'- ', (3.8)

with Ais for the moment being arbitrary functions of x. We give the ansatze for
the solutions to the n(n — 1) inhomogeneous RH equations (for j ^ 1)

.
2πiί

and

,

ff- =„-/;-£-•" — 4 - - ,
2πiί (ζ'-O

where the integral is taken along a closed contour C linking the annulus A once.
For the first integral ζ lies on the zero side of the contour and for the second ζ
lies on the infinity side of the contour. This ansatze does not solve the RH-problem
unless the following quantities vanish:

-f>

for 0 > s > αt .
These conditions result from the fact that if the Ωijs for 0 > s > αf do not vanish,

the inhomogeneous RH problem is obstructed as in Remark 1. The Ωijs depend
on the choice of Ais and by varying this excess freedom in the homogeneous
problem we can (generally) make these obstructions vanish. When αf > 0, there is
again excess freedom in the solution to the problem, but this will in general have
to be used to put further obstructions equal to zero. Counting the number of free
functions and the number of conditions in (3.9), it can be seen that (3.9) fixes the
freedom in the choice of the functions Aίs to the point where there are only n2 — 1
free functions to choose. This remaining freedom just corresponds to the general
SL(rc, C) gauge freedom.

It is not always possible to eliminate the obstructions. There are however
nondegeneracy conditions on certain components of the Laurent series for the off
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diagonal ptj that, when satisfied, guarantee that the freedom in the homogeneous
problem can indeed be used to set the obstructions in (3.10) equal to zero. These
conditions are referred to as the catalecticant (or simplex) conditions [18,19]. If
these conditions fail at some points, the Yang-Mills field will be singular at those
points. Generically they will not fail.

Having obtained G0 and G^, the corresponding SL(rc,C) anti-self-dual
connection ya can now be calculated according to (2.13a,b).

IV. Triangularization of the SL(2, C) Patching Matrix

We shall delay the approximation and triangularization of an arbitrary 5L(n, C)
patching matrix P until VI and first analyze the SL(2, C) case. We show how an
arbitrary SL(2, C) patching matrix P can be approximated, with arbitrary accuracy,
such that each approximate patching matrix can be put into upper triangular form
so that it can be split and used to construct an exact ASDYM connection and
field which approximates the field of the original data.

Consider first a general SL(2, C) patching matrix P. We wish to transform it,
via (2.14), to Pτ which is upper triangular. Choosing N(L9 M, ζ) = 1, the transformed
patching matrix is given by

Pr(L, M, ζ) = P(L, M, C)S(L, M, ζ). (4.1)

The condition that Pτ be upper triangular leads to one equation for the two
components, sn and s21 °f S i*1 terms of the two components p21

 and P22 °f Λ
namely

0. (4.2)

where sn and s21 are to be holomorphic in L/0, while p21 and p22 are holomorphic
in £/0n U^. This expression can be rewritten as

^=-^i. (4.3)
P22

 511

The ratio p2ι/p22 is meromorphic on UQnU^ whereas the ratio s21/511 is to be
meromorphic on t/0. Obtaining such a ratio s21/sn for general functions p21 and
p22 is not possible. (Note that if p21/p22 were meromorphic on l/0, then (4.3) could
be solved for the components sn and s21). When p21/p22 is not meromorphic on
l/o, the ratio p21/p22 can still be approximated by a sequence of meromorphic
functions on ί/0, namely (p2ι)/(p22)

(m), (thereby effictively approximating one of
the two components p21 or p22 and so approximating the general patching matrix
P by the approximate patching matrix P(m)). A solution for sn and s21 can be
explicitly obtained for the approximate P(m). The remainder of this section details
the approximation scheme for SL(2, C) patching matrices and the triangularization
procedure for the approximate patching matrix P(m\

We first define a closed annular subset t/0n U1^ of the full annulus l/0n U^
as the intersection of the two closed patches t/0 and t/^ which cover PT defined by

and t/r

co = {PT/|C|^r}, (4.4)
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for 0 ̂  r < 1. The annulus Ur

0 n [/^ (with t/ό and U^ as defined above) is a closed
annular subset of ί/oπl/^. This change does not affect either the twistor
construction described in chapter III or the triangularization condition (4.2) or
(4.3), but does affect convergence arguments for the approximation procedure
which follows.

We now describe the approximation procedure for the ratio p2i/p22. From the
Mittag-Leffler theorem [20], the ratio p2ι/p22

 can be expressed on l^nl/^ as

, o^M} „ αn(L,M)ζ", (4.5)
„ /τ \/r r\ *—* i f ΐ ίr \Λ\\a.i *—*
p22(L,M,ς) j (ς — ζ lL f jMJ) w = - o o

where all the poles of p21/p22 in 17 Jn 17^ are at ζ = ζ, (these poles are of order

αt) and the second term on the right-hand-side I the Laurent series, Σanζ
n J is

\ n J

holomorphic on Ur

0 n 17 .̂ Note that the zeros of p22 are at ζ = (f and of order αf

(the zeros of p22 define the poles of p21/p22) and that the fef(L,M)'s are non-zero
at ζ = ζt because p21 and p22 do not contain common zeros (otherwise the patching
matrix P would be singular on L

Remark 5. The set of functions an are analytic functions of the variables L, M in
the domain under consideration, which will be Ur

0 with L and M in some
neighbourhood of zero. This can be seen from the fact that our considerations are
local in M and can be taken in the neighborhood of xa = 0 so that since L =_La(ζ)xa

and M = Mα(£)xΛ, which are linear in ζ, gives a neighbourhood_of L = M = 0 in
UQ. Thus the αn's will be analytic in the neighborhood of L,M = 0. This point
becomes important later when the an's have to be evaluated on Ur

0.
The ratio p2i/p22 will be uniformly approximated by

2 1 , , ; , -
I n / r a n ) =Σ(r rπ MW+ ^ fln(^M)C +—Γl—^> (4.6)\p22(L,M,ς)/ f (ζ-ς^M)) π =- m 2 ς

where the aΛ(L, M)'s are the same functions are given in (4.5). The Laurent series
in (4.5) is approximated by the partial sum in (4.6), and such a Laurent series is
uniformly convergent on the closed annulus Ur

0 n U^ [21]. Because we are working
on the closed annulus and the Laurent series in (4.5) is uniformly convergent, the
ratio (p2ι/P22)(m) can approximate the general ratio p21/p22 as closely as desired
by varying the limit m of the partial sum [22]. Also note that the approximated
ratio uniformly converges to (4.5) as w-> oo. The term (l/2m+1)/(l/Cm + 1) has been
added to the partial sum to assure that the coefficient of the lowest power of £,
the - (m + 1) power, is non-zero; this condition is not required for the
approximation schemes but is important in triangularizing the approximate
patching matrix, and will be more fully explained later.

The triangularization condition (4.3) now becomes

Given the expression (4.6) for the ratio (p2ι/P22)(m)> ̂ e triangularization condition
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can easily be satisfied by letting

and

s2 1 (L, M, ζ) = Cm + 1 Σ &ί(L, M) Π (C ~ Ck

Π(C- Ci(L,M))" Σ «„(*,M)ζ"+m+1 + r . (4.8)

The components sn and s21 are polynomials in positive powers of ζ and are
therefore holomorphic in 17 J>. It is important that the components sn and s21 do
not contain common zeros; sn vanishes at ζ = 0 and ζ = ζt but 521 does not vanish
at Ct , since the bt's are non-zero, and does not vanish at ζ — 0 by virtue of the
added factor 1/2™+1.

Having obtained expressions for sn and s21, the other elements of the trans-
formation matrix S, namely s12 and s22, must be determined. Imposing det S = 1
on the transformation matrix not only assures that S will be non-singular, but
also provides the condition by which the elements s12 and s22 can be determined.
Note that it is possible to satisfy the determinant condition on Ur

Q only because
5n and 521 do not simultaneously vanish.

Since the functions sn and s21 are polynomials in positive powers of ζ, they
can be expanded as

2 m + α + l
v^ / r jf>yw

and

(4.9)

where a = £af. Some of the coefficients, slln and s21π, may be zero, but it is
/

important to note that s210 ̂  0 (since s21 does not vanish at ζ = 0). The other two
components, s12 and s22 are assumed to have the expansions

and

2ro+α+l

= Σ

2 m + α + l _

Σ s22n(L,M)ζ". (4.10)

The determinant condition on S,sns22 ~ s12s21 = 1, can be viewed as defining
relations on the coefficients s12π and s22π in terms of s1 ln and slin. These relations

n

q)--s2ίqsl2(n-q)) = δl9 ne{Q9...,2m + α + 1} (4.11)
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from a set of non-homogeneous linear algebraic equations which can be written
in matrix form as

BX = C9 (4.12)

where B is a (4m -f 2α + 4) x (2m + α 4- 2) matrix of the coefficients of sn and s21,
ί̂ is a column matrix of the coefficients of s12 and s22, and C is a column matrix

of constants. The matrices B, X, and C can be written

5ι ι«»w = * — f°Γ7 even OΓ 0

(7-D- s21π, n = i -— for; odd

Js22ί, for i even or Ol

Is12<izυ,fori2c -i), for i odd j

C, = a?. (4.13)

This set of algebraic equations has a non- trivial (but not necessarily unique) solution
as long as Boί ^ 0 [23] for some i. Note that an underdetermined system of algebraic
equations has a non-trivial solution when the rank of the coefficient matrix (the
matrix B) is the same as the rank of the augmented coefficient matrix (the matrix
B with the column C added). This follows since £01 = — s210^0 (again the
importance of the (l/2m+1)/(l/Cm+1) term in the partial sum (4.6) can be seen; its
addition ensures that the set of algebraic equation (4.1 1) has a non-trivial solution).
Therefore, given the functions sn and s21, functions s12 and s22 can be found,
yielding a non-singular transformations matrix S.

Remark 6. An important point is that the construction of the transformation matrix
S will diverge in the limit m->oo (since the elements s12 and s22 contain factors
of 2m+1). Therefore the triangularization of a general patching matrix P, obtained
by taking the limit m -» oo of (4.6), cannot be accomplished by this method.

Remark 7. A more abstract argument for the existence of the elements s12 and s22

is the following. The construction of the functions sn and s21 produces a line

subbundle L of £ which consists of vectors proportional to ( I on U^ and vectors

proportional to I n j on U0. This means that a line bundle M( = L*) can be
\s2J

defined to be the quotient E/L. On l/0 all bundles are trivial and so a non-vanishing
section of M can be found. This is an equivalence class of sections of E modulo
sections of L. Since U0 is analytically trivial, a representative element of this

is \
equivalence class ( 12 I exists on all of l/0 and the matrix S is thus obtained.

[It may be necessary to rescale this section so that S has unit determinant].
Having obtained the transformation matrix S, the triangular patching matrix
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P(r° which is equivalent to the approximate patching matrix P(m) becomes

P(

τ

m)(L, M, ζ) = P<"«>(L, M, ζ)S(L, M, Q. (4.14)

This triangular patching matrix can now be split by the procedure described in

Sect. III.

V. Convergence of the Approximate Solution

The triangularization procedure outlined yields a patching matrix P(m) which is
an approximation to the general patching matrix P. Each P(m) can be split to yield
G(

0

m) and G^, and then by differentiation, a solution γ(™} of the ASDYM equations.
We shall assume that for the original P we have a regular splitting over some
compact domain in space-time, so that there are no jumping lines for the original P:

and generically we will also have

G<*V, OP^L, M, ζ) = G<r>(*a, 0-
The question arises as to how closely the split solutions G(

0

m) and G^ obtained
from the patching matrix P(m) approximate G0 and G^ obtained from the patching
matrix P, and how closely the connection γ(™] obtained from G(

0

m) and G(£}

approximates ya obtained from G0 and G^.
Firstly in order to obtain convergence for G(™} and G^, we must fix the gauge

ambiguity by setting G(^}(x, oo) = / = G^(x9 oo). The approximate split solutions
G(

0

m) and G(£* can then be seen to converge respectively to G0 and G^ as a
consequence of the fact that the map from the patching data to the splitting
functions is continuous. More formally, in ref. [17], in Proposition 1.1, pp.205, it
is proven that if P = G0G00 then for all ε>0, there exists a δ such that
|| P - P(m) \\ao<δ implies that

\\G^-G0\\^<ε and ||G<*>- G^ IL <ε

together with the same inequalities for their inverses. This theorem is stated in the
context of just one RH problem. It is clear that if the domain in space-time is
taken to be compact, then there is no difficulty in finding a δ valid for the whole
region.

In Proposition 1.2 on pp. 206 of [17] it is proved that if P depends analytically
on some parameters, in this case the space-time coordinates, then the G's also
depend analytically on the parameters. The same also goes for the P(w)'s. Therefore
we have a sequence of analytic functions of x, and ζ, G(

0

m) and G(™} converging on
G0 and G^ in the || || ̂  norm. The analyticity implies that if the functions converge,
then their derivatives also converge. Thus, since the connection yj,m) which
approximates yα, is obtained from the derivatives of G(

0

m) from (2.13), it converges
to γa as the approximate patching matrix P(m) converges to P.

The arguments given in this section apply to any 5L(n, C) patching matrix.
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VI. Triangularization of the 5X(/f, C) Patching Matrix

In Sect. IV the approximation and triangularization of an SL(2, C) patching matrix
was discussed; in this section, this procedure is generalized to the SL(n, C) case.

Consider a general SL(n, C) patching matrix P. We shall attempt to transform
this patching matrix, as in (4.1), to Pτ which is upper triangular; the condition
that Pτ be upper triangular leads to a set of (n(n — l)/2) equations for the
components of S,sjk9 in terms of the components of P,pjk. The triangularization
conditions are

n

Pjk = Σ Pjh*hk = ° for k<Λ (6.1)

where the s '̂s are holomorphic in U0(or Ur

0), the p7 fc's and pj^'s are holomorphic
in UQ^UK (or l/ϋnl/^), and the pj^'s are the elements of the triangular Pτ. In
general, these triangularization equations have no solution. Nevertheless the
general patching matrix P can be approximated by patching matrices P(m} for
which the equations can be solved. The remainder of this section outlines a
procedure by which a generic SL(n, C) patching matrix may be approximated and
this approximate patching matrix may be triangularized.

It has been shown in Sect. IV that a general SL(2, C) patching matrix may be
approximated and that this approximate patching matrix may be triangularized.
In order to show that a general SL(n, C) patching matrix may be approximated
and triangularized, assume that such a procedure exists for a general SL(n — 1, C)
patching matrix. It will then be shown that the triangularization conditions, (6.1),
for the general SL(n, C) patching matrix reduce to two sets of equations. For the
first set of equations, an approximation scheme and solution will be developed.
The second set of equations is equivalent to the triangularization equations for
an SL(n — 1,C) patching matrix, which is soluble by assumption. This completes
the inductive argument for the triangularization of the SL(n, C) patching matrix.

Begin by assuming that a general SL(n - 1, C) patching matrix (n > 2) can be
approximated and triangularized as before. The triangularization transformation
(4.1) for an SL(n,C) patching matrix P can be rewritten as

, M, 0 = P- \L, M, 0PΓ(L, M, 0, (6.2)

where Pτ is upper triangular. In terms of components, the matrix S is given by

S /L, M, 0 = £ Δ^L, M, 0p£(L, M, ζ). (6.3)
fc=l

where the Δki's are the cofactors of the patching matrix P and the pj/s are the
components of the upper triangular patching matrix Pτ(plj = 0 for; < k). Because
Pτ is upper triangular, Eq. (6.3) for stl is particularly simple,

Sil(L, M, 0 = Δn(L, M, ζ)pτ

ll(L9 M, 0. (6.4)

In keeping with the spirit of Sect. IV, consider ratios of these components of the
form:

S± = ̂ ±. (6.5)
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This set of expressions is the analogue of the expression (4.3) for n = 2 (for n = 2,
we have Δ2i — —P2i and 4n =/?22) The ratios Δiί/Δiί are meromorphic on the
closed annulus l/ϋn 17̂ , an(* so can also ^e expressed in a form similar to (4.5),
namely

, . + β? ^

where all the poles of Δiί/Δίl in E/QΠ l/^ are at C = (* (of order αk) and do not
depend on i since these poles correspond to the zeros of Δ11. The second term on

the right-hand-side of (6.6) I the Laurent series, Σan}ζn ) ™ holomorphic on
\ n )

/^. It is important to note that the fcj^'s cannot all simultaneously vanish
at ζ = ζk, otherwise, the patching matrix would be singular. Again the functions
αj,0 are to be considered analytic functions of the variables L and M.

These ratios can now be uniformly approximated by

1 1

<6 7>
where the α(

n°(L, M)'s are the same functions are given in (6.6). These approximated
ratios uniformly converge to (6.6) as w->oo and so the ratio (Δli/Δίί)

(m) can
approximate the general ratio Δn/Δlί as closely as desired by varying the limit
m of (6.7) [22]. Again, the term (l/2m+1)/(l/ζm+1) has been added to the partial
sum to assure that the transformation matrix S, defined from these approximated
ratios, is non-singular.

With the ratios Δil/Δll approximated in the above manner, (6.5) becomes

' = X (6.8)

Given the expressions (6.7) for the ratios (A^JA^^)^, the elements of the
transformation matrix, sα, can be determined, yielding

Sll(L,M,C) = ζm + 1Π(ζ-UJ

and for i Φ 1,

(6.9)

Sil (L, M, 0 = Cm + J Σ H°(̂  M) Π (C - ζ
fe qφk

The components of sn are polynomials in positive powers of ζ and so are
holomorphic in Ur

0. Note that the components sn cannot all simultaneously vanish.
(sll vanishes at ζ = 0 and ζ = ζk but the stl's (i φ 1) do not vanish at ζ = 0 by virtue
of the added factor l/2m + 1 and cannot all vanish at ζ = ζk since the b(

fc°'s cannot
all simultaneously vanish.) The expressions (6.9) determine the first column of the
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transformation matrix 5; the explicit construction of the sα's insures (at this stage
at least) that S is non-singular.

We have approximated the patching matrix P with P(m) in such a way as to
obtain the first column of the transformation matrix S. Care was exercised in order
to ensure that this column vanished nowhere. We can now choose the subsequent
column of S in such a way as to guarantee that the matrix S in nonsingular with
unit determinant on U0. This follows from a generalization of either the abstract
or the concrete argument at the end of Sect. IV. The abstract argument follows
by considering the column vector as a nonvanishing section of the vector bundle
on l/0, and by choosing a frame for the quotient of the bundle by this section on
U0 (which must exist since U0 is Stein). This frame gives (n — 1) independent
sections of the vector bundle on l/0 which are also independent of the first column
of S, and so constitute a frame. The components of this frame are the entries of
S. The concrete argument followed by expanding out the undetermined entries of
S in a power series, and solving for them subject to the condition that S has unit
determinant, and showing that there exists a solution; cf. Eq. (4.11) and the
arguments applied to it.

Using this S, we can gauge transform P(m) so that the first column of P(m)S is
zero apart from (P^S) .̂ Effectively n — 1 of the triangularization equations (6.1)
(for the approximate patching matrix P(m)) have been solved and there remain
(n(n — 3)/2) 4-1 = ((n — l)(n — 2)/2) triangularization equations of the form (6.1).
These remaining equations are the triangularization equations for the general
SL(n — 1, C) patching matrix.

Since it was assumed at the beginning that an approximation and triangulari-
zation procedure for the SL(n— 1,C) patching matrix existed, the remaining
triangularization equations can be solved. We have therefore given a construction
by which the approximation and triangularization procedure for the SL(n,C)
patching matrix is reduced to that of the SL(n— 1,C) case, so the inductive
argument is complete.

VII. Discussion

Throughout the above, it was assumed that the patching matrix P is effectively a
freely specified holomorphic SL(n, C) function of three variables. By subjecting P
to the reality conditions P(z)1 = P(z*\ where ! represents the adjoint of the matrix
and * represents the appropriate complex-conjugation on twistor space, it becomes
a freely specified holomorphic SU(n) function of three variables and for n = 2 the
triangularized approximate patching matrix P{™] becomes equivalent to an element
of the Ward Ansatz sim [5]. Imposing these reality conditions does not affect
the convergence or density arguments given for the approximate SL(n, C) patching
matrix and so these same arguments confirm the hypothesis of the density of the
s/m in the SU(2) solution space. It is not always, however, entirely straightforward
to articulate reality and symmetry conditions on upper triangular data, see [5]
for some examples. It is worth noting that the set of solutions for the 5L(n, C)
ASDYM equations with triangular data includes all anti-self-dual instantons and
monopoles [3,5].

We have shown that an SL(n, C) patching matrix can, locally, be approximated
by a patching matrix which can be triangularized; this triangularized patching
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matrix can be split into two matrix-valued functions from which a local ASDYM
connection, associated with this approximate SL(n, C) patching matrix, can be
obtained. Since a general SL(n, C) patching matrix can be approximated in this
manner, this shows that the set of solutions for the SL(n, C) ASDYM equations
for triangular data forms a dense subset (in the Weierstrass sense) in the solution
space. Since there exists a method for obtaining explicit solutions in terms of
quadratures for triangular data, the ASDYM equations can be thought of as
essentially "solved.")
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