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Abstract. We study the Thomas-Fermi-von Weizsdcker theory of atoms and
molecules. The main result is to prove universality of the structure of very large
atoms and molecules, i.e., proving that the structure converges as the nuclear
charges go to infinity. Furthermore we uniquely characterize the limit density
as the solution to a renormalized TFW-equation. This is achieved by
characterizing the strong singularities of solutions to the non-linear TFW-
system.

1. Introduction

The Thomas-Fermi-von Weizsdcker (TFW) theory for a molecule of K nuclei at
positions #,, ..., Zx € R? and with nuclear charges z,, ..., zx R , is defined by the
energy functional

Ewim@)=A [ (Pp(Pdx+3y [ (b0 dx

- £ 5 ] P k-] dxr D), 0
where
D(f, g)=%]Ra .LRQ S )x—y| ™ g(y)*dxdy. 2
Here z=(z,,...,zg) and Z=(Z,, ..., Zg). & is defined on the set
G={ype L3Ry real, Vye L?, D(yp? p?)<w0}. 3)
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On G, |&(p)| < 0. This and all the following statements about the TFW theory are
proved in Lieb [10, Sect. VII] in which the foundation of the TFW-theory is
established, see also Benguria et al. [1].

The first two terms in & represent the kinetic energy of the electrons in the
molecule. The nuclei are considered infinitely heavy so they do not contribute to
the kinetic energy. The third term is the nuclear attraction while the last term is the
electronic repulsion. We are using units in which #?(2m) ™' = —e=1, where eand m
are the charge and mass of the electron. The unit of length is 1a, =#?(2m)~ 'e?,
where a, is the Bohr radius.

The physically correct value for y is given by the Thomas-Fermi (TF) theory,
y=(3n%)?3, (the TF theory corresponds to A=0 above, see again [10]). The
constant A4 is usually chosen so as to reproduce the Scott term in the asymptotic
Z-expansion of the true quantum energy (see [10, Theorem 7.30] and [7, 15, 16]).
The numerical value is A =0.1859 (see [8]).

By rescaling y(x)—A%%y " 3y(A4?y " 32x), § > A71?y 928, z— 4317y~ 3127 and
R—->A" Y2329 we get A=1 and y=1 in (1) above. For simplicity we will
henceforth assume 4=1 and y=1.

If K=1 we get the TFW-theory for an atom. We will usually choose £, =0in

K
this case. For molecules we will denote the total nuclear charge by Z= 'Zx z;.

In the TFW-theory we define the energy of a molecule with N electronsj (N not

necessarily an integer), to be

E(z;N)=inf{é"(w;z;QZ)lw€G, i) wde§N}- 4

In the present work we are not interested in the dependence on the nuclear
coordinates so we do not write it explicitly.

It is known that there exists N (z) > Z such that the variational problem (4) has
a unique minimizer y(x;z; N)=0 with [p?>=N, if and only if N<N(z). We
interpret

as the maximal (negative) ionization the molecule can achieve, i.e. the maximal
“number” of extra electrons a neutral molecule can bind.
The function

o(x; z; N)=w(x; z; N)? (6)

represents the electron density for the molecule. For N<N/(z) the unique
minimizer y(-;z; N) of (4) is the unique positive function pe G with [y*=N
satisfying the TFW-equation (The Euler-Lagrange equation for (4))

K
—Aw+<w“"°‘—j§1 Zjlx—gf,-l"+w2*|xr1>w=—ﬂw, ™

for a unique Lagrange multiplier 4= u(z; N). Here * denotes convolution. Since

O0E
—H=o we call — u(z; N) the Chemical Potential. Since E is a convex function of

N, pis decreasing in N and there is a one to one correspondence between y and N.
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When N = N (z), p(x; z) =(x; z; N,) is the total minimizer for & on the set G. In
this case u(z; N,)=0. This case will also be referred to as the maximally ionized
molecule.

We define the Potential Function,

K
o zN)= % Zilx =R —w(-; 2 NP =[x ®
R

In the atomic case the functions y and ¢ are radially symmetric. In the special case
of the maximally ionized atom there exists a unique radius R;>0 such that
0,¢0(R;)=0 or equivalently
[ e0)d*x=2, )
Ix|=Rz
i.e. the total charge inside the ball of radius R, counting both the electrons and the
nucleus is zero. We call R, the Radius of Neutrality for the atom.

Our main interest here is the behavior of the TFW model in the limit as some of
the nuclear charges go to infinity. We could of course let all the nuclear charges go
to infinity but we will consider the more general case.

If 1 £ L< K we will consider z;— oo, for j=1, ..., L while z;, j=L+1,...,K are
fixed. We denote z'=(zy,...,z;) and z"'=(zp44,....2g). We will write z'—>o0
meaning z;— oo forj=1, ..., L. In Benguria and Lieb [2] it was proved that Q (z) is
bounded by a constant uniformly in z. Here we will prove that Q, actually
converges as z'— c0. This was conjectured in [2]. Furthermore we will prove that
the electron density for the maximally ionized molecule converges away from
Ry, ..., R At these points the limit density will have singularities that are not in
L', this reflects the fact that the “limit molecule” has an infinite number of
electrons, that clump together near the big nuclei. It will also be possible for us to
give a surprisingly precise description of the order of the singularities (see
Theorem 6 below) and thereby uniquely characterize the limit density. We will not
restrict our attention to the maximally ionized case, but in general specify how N
tends to infinity with z'. There are two different cases. We either specify that u(z; N)
or N—Z should be fixed as z' goes to infinity. The maximally ionized case
corresponds to fixing u=0. The main results are summarized in the following
theorems.

Theorem 1. If p=>0 there exist functions y,(-;z")>0, ¢,(-;2") and an excess
charge Q(z"; w) eR such that if we fix u(z; N)=pu then
lim p(x;z; N)=vp,(x;2"), (10)

Fade]

uniformly on the complement of any neighborhood of {R,, ..., R},

lim @(x; z; N)=0,(x; 2", (11)

in LL (R3\{%,,...,%,}), all p<3, and uniformly on the complement of any
neighborhood of {R, ..., &k},
lim (N-Z)=0(z"; p). (12)

z' >
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Theorem 2. There exists Q(z")>0 such that

lim Q.(z)=0(z")- 13)

z' =

Corollary 3. Inthe case of the maximally ionized atom there exists R ,, € (0, 00) such
that
lim R,=R,,. (14)
Z-©
Remark. If u(z; N)=0 then N=N(z). The existence of the limit in (13) therefore
follows from (12) and Q(z”; u=0)=Q . (z"). The only part of Theorem 2 which does
not follow from Theorem 1 is the statement that Q . (z”)>0. A priori it is not clear
that the “limit molecule” can have a negative ionization.

Theorem 4. If Qe(— 0, Q. (2")) then Q <QJz) for z' large enough. There exists a
chemical potential u(z"; Q)eR , such that if we fix N—Z=Q, then

lim p(z; N)=pu(z"; Q). (15)
The function u(z"; -) is the inverse of Q(z"; -). Again fixing N —Z =Q we find with
the notation of Theorem 1 and writing u=u(z"; Q),

lim p(x;z; N)=v,(x;z"), and lim @(x;z; N)=9,(x;z"), (16)

Z — 00 Z — 00
in the same sense as in Theorem 1.

Remark. Q =0 corresponds to neutral molecules. Hence — u(z”; 0) is the limit of the
chemical potentials for very large neutral molecules.

Corollary 5. With the assumptions of Theorem 4 we get the convergence of the
ionization energy

lim (E(z; Z)—E(z; Z+Q)=£€(2"; Q), (17)

2’
where é’(gﬁ; Q) € ( — 00, éamax(Z”))’ éamax = éo(zﬂ; Qoo)
Proof. This is an easy consequence of the dominated convergence theorem and

. OE
(15), since —u= N Indeed we get &(z"; Q)= j wiz";0hYdQ'. O
The next theorem gives the asymptotic expansions near each %, j=1,..., L.
The surprising conclusion of this theorem is that even if the #,’s are distributed in a
highly non-symmetric way, both ¢ and y will be spherically symmetric to very
high order near %, j=1,...,L

Theorem 6. (a) Asymptotically near each %, j=1,...,L,

31/n_3/2|x| 3_ 31/_ 1/2H 1_ 31/_ 5/2|x|

Pux+ 2

3231/ 722 |x|3 a+1
g R0l Y, (18)
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and
27 25 37
c MYy — -2 -4 __ =" -2_ =72 0T 4 2 2
Qx+R;;2")—p=91"*|x| 4 |x]| 647I 768n Ix|*+0(Ix]), (19)
where o= —1/2+]/7-3/2z3.8.
(b) The asymptotic form at infinity. If u=0

lim |x]™12 logwo(x; 2) = —2)/Q(2")- (20)
[x[ =
If p=*0
lim |x|™!logy,(x;z")=—p. 21
|x]—
For all u=0
Illirn IXlpu(x;2)=—0("; p). (22)

Remark. The highest order terms for the asymptotic expansions of ¢ and v in (a)
are the same as in the TF-theory. The power ¢ also appears here (see Veron [20] or
Sommerfeld [18]). The asymptotic forms (20){22) hold, with the obvious changes,
for finite z also. These properties for finite z, especially that vy is exponentially
decaying at infinity, and that ¢ <O for large |x| if N> Z, will be used throughout
this work.

As an important step in the proofs of Theorems 1-4 we give a unique
characterization of the functions ¢, and y,. This characterization which is
interesting in itself uses the following renormalization procedure. Define the
Renormalized Electron Density,

L
Q20 2") =, (x;2")* — j;l (dilx—R)™°+dy1x—R)|™%), (23)

where d, =27n "3 and d,= —(27/8)n ! are computed from (18). Then

Theorem 7. v, is the unique positive function onR> such that 0@ € C,(IR*)NL'(IR?)
(C,=continuous and bounded), and which satisfies the Renormalized TFW-
equation

L
— Ay, + {wﬁ’s— Zl (@ 1x— 2R}~ *+ayIx~2] %)

K
- ;1z;lx—%‘lwf)*|x|—1+u}wu=0, 4

on RN\{®,,..., R}, where a, =91~ % and a,= —27/4. ¢, is given by

L K
(Pu(x)= > (allx_gj|—4+az|x—~@jr2)+ Y Zj|x"=@j|—l_95;2)*|x|_l-
i=1 j=L+1
(25)
0D satisfies

[OPOEx=0 51+ 3 5=0+2". 6)

Remark. Equation (26) illustrates the role of ¢{?) as a renormalized density. In
Theorem 37 below we give a different characterization of ¢, and y,,.

The proofs of the theorems presented here will be given in Sect. 8. We will
conclude this introduction by describing the general ideas.
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Theorems 1-4 state that in the TFW-theory the configuration of the outer
electrons becomes more or less independent of the nuclear charges when these
charges are very large. This implies on the one hand that molecules do not become
very big and on the other that they do not collapse as the nuclear charges go to
infinity. If electrons were treated as bosons, i.e., y=0 in (1) molecules would
collapse as zy, ..., zx become very large, i.e. the electrons would all sit on top of the
nuclei.

The idea in the proof of the main theorems is to prove first that molecules
remain bounded. That is to give upper bounds to  uniformly in z. This is done in
Sect. 3. Next we prove in Sect. 4 that molecules do not collapse, i.e. uniform lower
bounds. In Sect. 5 we prove that any sequence of z’s and N’s has a subsequence
such that the convergences in Theorems 14 hold. To prove the theorems we have
to prove that all subsequences have the same limit. To conclude this uniqueness
property we first prove in Sect. 6 that the limits ¢ and p of any subsequence satisfy
the asymptotic expansions in Theorem 6. In Sect. 7 we use the asymptotic
expansions to derive the renormalized TFW-equation. We finish the proof of the
main theorems by proving that the solution to this equation is unique.

In Benguria and Lieb [2] a series of estimates independent of z were derived for
¢ and p. These estimates subsequently yielded an upper bound to Q(z)
independent of z. In the present work we will rely heavily on these estimates. For
the sake of completeness and since we improve some of the results in [2] we
summarize these estimates in Sect. 2.

In [13] Rother gets upper and lower bounds on ¢, y, and Q.. Unfortunately
these bounds are not uniform in z.

In [17] the atomic case was studied numerically. It was found that in terms of
real units with the choice of 4 that reproduces the Scott correction, i.e., A =0.1859
and y=(3n%)?3,

0,=0.031e and R, =18.1a,,

where e is the electron charge and a,, is the Bohr radius. This might seem like a very
bad value for Q, compared to the expected physical value Q =1. That this is

o)
0.002

0.001+

-0.001 4

<0.0024

Fig. 1. ¢, (solid curve) and its asymptotic forms at 0 (dotted curve) and at co (dashed curve). The
unit for r is ay, the unit for @ is ag !



Thomas-Fermi-von Weizsiacker Theory 567

really not too bad can be explained from the fact that if we restrict ourselves to
integer values for N and ask when is the energy smallest we find

E(N=Z2,Z)>E(N=Z+1,Z)=E(N=Z+2,Z)(=E(N=Z+0,, Z)).

We would then conclude that it is possible to ionize an atom with exactly one extra
electron.

Alternatively we can take into account the fact that an electron is not
interacting with itself by introducing the Fermi-Amaldi correction (see also [2]),
i.e., replace D(y?, w?)in (1) by (1 — 1/N)D(y?, w?). The effect of this is to multiply 4,
y, and Z by the factor N/(N —1). The critical number of electrons is then 1.03.

In the Thomas-Fermi-Dirac-von Weizsidcker (TFDW) model this effect is
taken into account by introducing an exchange term in the energy functional. A
numerical analysis has been made for a modified TFDW model in [19] (with
A=0.2). For the critical charge the result is Q. =0.3 (Dreizler [4]).

The graph for ¢, for the universal (infinite) maximally ionized TFW-atom is
shown in Fig. 1. The unit for r is a,, the unit for ¢ is a, *. The figure also shows the
asymptotic forms given in Theorem 6. It is worth noticing how accurate the
asymptotic curve agrees with the numerical solution even for fairly large values of
r (r~15-20a,). More detailed results are given in [17].

We finally mention that it is an interesting open problem to prove that
Z—Q/(Z) is an increasing function.

2. The Estimates of Benguria and Lieb

With ¢ given in (8) we can write the TFW-equation as
—Ap+ W™ —p+pyp=0. (27)

Notice that we also have

dp(x)=4n (wz(x)— '§1 zj(S(x—,%j)). (28)

=
We will call (27)+28) the TFW-system.
Proposition 8 (Benguria and Lieb). For all N, and z
Ap(x; 2; NY* < (x5 2; N)+ [C(A) — p(z; N+ (29)
for all 2€(0,1) and all xeR3, where C(2)=(9/4)n*L~2(1—1)" L.
We use the notation [a], =max{a,0} for acIR.
Proof. Let u(x)=1(x)*>. Then from (27)

—Adu+@4/3)(u—o+pu=o. (30)
Let v(x)=Au(x)— @(x)—[C(A)—u] +. From (28) and (30) we obtain
Av(x)Z@/3)Mu—o+pu—4mu?, xR, allj. (31)

Let S = {x|v(x)>0}. Our aim is to prove that S = . Clearly #;¢ S for all j. Thus on S
Av(x) = (4/3) Au(u— Au+[C(A) — u] 4 + p) — 4nud/?
2ul(4/3)A(1 — Au—4nu'’? +(4/3)AC(A)] =0 (32)
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with our choice of C(4). Since u(x), ¢(x)—0 as x— 00, v(x)—»> —[C(A)—u], <0.If S
is bounded v=0 on 45 and it follows that S =, since v is subharmonic on S. If S is
unbounded v(x)—0 as x— o0 in S and we conclude again that S=¢. [

Corollary 9. For the chemical potential of a neutral system we get
—u(z; N=2)z —3%27%n?. (33)

Proof. C(J) takes its minimal value 352742 at A=2/3.If u> 32" *n? we get from
Proposition 8 that ¢(x) = Ay(x) >0 for all x. Hence we must have N < Z. Since u is
continuous in N for fixed z we conclude that N<Z. [

The bound (33) is an improvement of the bound given in [2, Theorem 7] which
replaces 3°27*n2(~150) by 271%(~266).

Later on we will need to extend the bound in (33) to =N—Z<0. Such a
bound is more complicated and we have to wait until Sect. 5 to give the proof [see
Proposition 29 proof of case (Q)].

In the next lemma which is also in [2] we derive an estimate which in some
sense is converse to Proposition 8. Let eg(x) be the normalized ground state of the
Dirichlet Laplacian on the ball of radius R centered at the origin, i.e., eg(x)
=(2nR)™'?|x|~ ' sin(zR ~!|x|) for |x| < R and ex(x)=0 otherwise. Then | |Veg|?dx
=n2R ™2, Define gg(x)=eg(x)>.

Lemma 10. Let QCIR3 be any open set. If 0 <y e H3(Q) satisfies Eq. (27 ) on Q with
@ e L*(Q)+ L*(R), then for all xeQ with dist(x, 02)> R,

gr* 0(x) = (gr* v*?) (X)+ u+n?R™2, (34)

Furthermore if Q does not contain any nuclei we conclude
P(X)=gr* @(x). (35

Proof. Since 0 <1,  is the ground state for H= — 4,,+ (y*/* — ¢). Here 4, denotes
the Dirichlet Laplacian on Q. Thus for all ye Hy(9),

sJ;IVxIZ+ sjz(w“”—so) Ix?dx= —p 312 x> dx. (36)

Using this inequality on y = eg(x — - ), where dist(x, 0€2) > R gives (34). If ¢ satisfies
(28), @ is subharmonic on £. g is spherically symmetric, positive and of total mass
one. This implies (35). [

In[2, Lemma 10] was used to prove an upper bound to ¢(x)independent of the
z; Unfortunately this upper bound is not completely satisfactory near the nuclei.
Here we will give an improved bound which is optimal to leading order near the
nuclei. To do this we first notice (see also [3]) that if ¢ solves #(¢t + 1) = 18, then for all
kelR,

o=971"2|x|"*+ kx|, (37
satisfies

Aw(x) £4no(x)*?* for |x|+0, (38)
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on the set where w=0. We denote the positive root of t(t+1)=18 by ¢ and the

. 1 73
negative root by —t. Then o= — 3 + Q is the exponent that appears in

1
Theorem 6, t= 3 + —V2L—3 >4 is used in the following
Lemma 11. Assume ¢ is a positive function on the set {x||x|> R}, ¢ is bounded, goes
to zero at infinity and satisfies Ap=4n$>? on {x||x|>R}. Then
POO)=AR/AXDIxI™* on  {x|Ix|>R}. (39)
Where x:[0,1)>IR, is defined by

*@)= {Zzn:;f—a;):‘ :; 20§ goid ;. “40)
Here (C,u,) is the unique pair which makes y e C*([0, 1)).
Remark. We have C~167.6z~2 and aq~1/7.
Proof. We first notice that

P(x)<25n *(x|—R)~* for |x|>R. 41)

This follows easily from a comparison argument using that f(x)
=251 (x| — R)~* satisfies Af <4nf3* and f(x)— o0 as [x|>R.

From the choice of (C, &) we find that for |x|=ag 'R, f(x)=w(x), where w is
defined as in (37) with k= CR*~*. By the very same comparison argument as for f
we conclude that ¢(x) < w(x) for |x| = ag ! R. This together with (41) gives (39). [

We can now give the improved version of the bound of Benguria and Lieb, by
simply copying their proof.

Proposition 12 (Benguria and Lieb). For all «e(0,1) and all x,
K
@(x;2; N)—p(z; N) = -21 (@) x— 2|~ *+n%a2|x— 2] ?), (42)
I=

where y(«) is given in (40).
Proof. Given R>0. For all xe R® we get from Lemma 10,

gr* 9(X)—p=(gr*p*?) (x)+n’R™7.
Using Hélder’s inequality and the fact {g,=1 we obtain

P(x)=gr* @(x)—p—7"R™*<(gg * 0)**(x). (43)
On the set {x]|x—%,|> R, all j}, we get using (35) that
@(x)—p=P(x)+n*R"2.
Convoluting on both sides of (4n) "' 4o = — Yz, 0(x—R;)+e we find
j

K
(@n)~'4pz — ,-;1 z2gr(x— ) +[¢13.
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Since @ is continuous and converges to —pu—n?R~?2 at infinity it is easy to
compare it with the corresponding TF-potential. That is the positive function ¢
which satisfies

K
@n)~'4¢=— PN Zgr(X—R)+ 7. (44)
=

We find
P(X)=P(x).
It is known (Lieb and Simon [11, Theorem V.12] or Lieb [10, Corollary 3.6])
K

that p(x)< 3 ¢,(x), where §;is the TF-solution for an atom with nuclear charge

density z;gp(x—%;). Then ¢; satisfies the assumptions in Lemma 11, and

. R -
¢’(x)§x<lx—ﬂ~|>|x—%jl * on {x|lx—2]=R}.
J

For all x satisfying |x—2,|> R, all j, we hence get

LS R
—u< _ |1—4 ZR—Z.

For any x+ %;, all j, we now choose R=amin;|x—%;|. Then

RZ2SYa -2 2,
J

and since y is an increasing function we obtain (42). []
Remark. In [2] the bound (42) was proved with () =257~ %(1 —«)~*. The ¥ given

here satisfies lim y(«)=9n~ 2. This limit is optimal (compare Theorem 6 and the

remark after Lemma 21).

Remark. In Proposition 12 ¢ is bounded in terms of u(z; N). It is thus important as
mentioned earlier to prove that u is bounded if Q=N—Z is fixed (see
Proposition 29).

3. Upper Bounds

In this section we will prove that the electrons stay in a bounded region as z— co.
More precisely we will prove that the L>-norm of i on the set {x||x|=r} goes to
zero uniformly in z when r— co. From Propositions 8 and 12 we only know that y
is uniformly bounded by a constant for large |x|. Our first step is

Lemma 13. For all a€(0,1) and all x,
K

w(x;z;N)“”é(Hgiz) Y (@) |x—R)| P x—R17%),  (45)

27[2 i=1

where yx is given in (40).
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Proof. Let f{x)=B(x()|x—2R|~*+n’a"?|x—2;|~ %), where p>1. Define f(x)
=Y f{x). Proposition12 states that pB(¢p—pu)<f Consider the set
S={xy*3(x)> f(x)}. Then clearly ;¢ S, all j, and since y decays exponentially at
infinity, S is open and bounded. On S we have y**> B(p — u). Hence the TFW-
equation (7) gives

Aw4/3 ;(4/3) (1/)4/3 —((P _u))w4/3 > (4/3) (1 —ﬁ_ 1) (w4/3)2 .
On the other hand for x+ %,
Af;=Pp(12x(0) [x— R, ¢ +2n%a " 2 [x — R, ") < 6(n*a”2p) " f7.

Hence
Af <6(n2a~2p) "1 ji fAS6(n*a2p) "1 f2

for x+2;. If we choose 6(n’a™?p)"'=4/3(1—p""),i.e, f=1+(9/2)n~ *a?, then
y*3 — f is subharmonic on S. On 48, y*?— =0, we conclude that S=0. []

With this lemma we can now improve the upper bound Q,<270.74K given
in [2].

Proposition 14. Q(z)<178.03K.

Proof. As realized in Benguria-Lieb [2] it is enough to consider the atomic case
K=1. As in [2] we use the fact that if we define

p(x)=(dmp(x)* + p(x)*)'2,

then @, < x| p(x) for all x 0. We choose to estimate |x|p(x) at |x| =0.9086. If at this
point ¢(x)>0 we use Proposition 12 to estimate ¢ and Lemma 13 to estimate
w(=0). In both cases we take a =0.4424. We get 0, < 141.03. If ¢(x) <0, we use the
estimate in [2] (p. 1052 formula (44)): 0.<178.03. [

Remark. Compared with the numerical value Q , =11.54 (with A=1 and y=1, see
[17]) this is an order of magnitude wrong.

Unfortunately the bound on y given in Lemma 13 is not in L?. To get a better
estimate we will consider the problem of finding y outside the ball {x||x|>r}. The
origin x =0 is arbitrary but should be thought of as being somewhere in the center
of the molecule, r should then be so large that |2,/ <r for all j.

For the outside problem of finding v on {x||x|>r} the function

K
Px)= Z Zi|x— R~ I Q(y)lx Ity —p, (46)
will be considered as known.

Lemma 15. There exists a constant C>0, such that for r> max |2,/ +1,
J

P)SCr 12 |x (47)

on the set {x||x|=r}.
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Proof. Let 6=(max|2#;|+1)"/? then ' =0r'/? clearly satisfies max |#,|+1<r' <r.
j
On the set {|x|>r'}, @, is subharmonic. An easy comparison argument shows
that for all |x|=>7,
P x)= sup, '@, Ix 7.
y|=r

Now the definition (46) implies that

sup Gy)< sup (p(y)—m)+ sup [ o(y)ly—y|""dy.

yl=r Iyl=r yl=r ly'lzr
From Proposition 12, sup (¢(y)—u)<const(r')"? and from Lemma 13,

yl=r

sup [ e()ly—y| 'dy' £ sup r[> const|y'|3ly—y'|"'dy’

Iyl=r" ly'|2r Iyl=r" Iy

<const ‘[ ||~ *dy’ <constr™!.
y'lzr

Hence
@x)<const(r " +rr Y|x| " < Cr 2 x| !
for all x with |x|>r. [

Lemma 15 states that on the set {|x|>r}, @, is smaller than the potential
coming from a central charge of size Cr~'/2, It is a well known fact (Lieb [10] or
Lieb [9]) that the total number of electrons of an atom is of the order of the nuclear
charge (for real atoms N <2Z+1). Using the method of Lieb on the outside
problem we can now prove that the amount of charge outside the ball of radius r
goes to zero uniformly in z as r goes to infinity. This idea is being used on the true
quantum problem in [14].

Proposition 16. There exists a constant M >0 independent of z and N such that for
all r>2 (m?x |2, + 1),
| ;I w(x;z; N dx<Mr~ 12, (48)
Proof. Choose ne C*(R ) with suppyC[1,0), 0=#=1 and (t)=1if t=2. Let
1,:R3—RR be defined by #1,(x)=#(|x|/r). Then if r> max %] +1,
J

W

A ) =pAn,+2VnVyp +(n,p) (w*? — o+ p)
zwdrl,+217'1,l7w—(rlru>)</3,+(rlrw)I |I> o) Ix—yl~tdy.
ylzr

We multiply this inequality by |x|#,p, integrate over R? and use (47),

[ xlnpAmw)Z [ |xInw(4n)p +2Vn,Vy)dx—Cr= 2 f (n,p)*dx
+ [, 0) Ix—yI ™ x| (n,)* (x)dxdy . 49)



Thomas-Fermi-von Weizsidcker Theory 573

It is not difficult to see (Lieb [9]) that [|x|(n,v)4(n,p)dx <0. By symmetrization
and using the triangle inequality
§ ) ) e — yI = x| () (x) dxdy
=(1/2) [ (mp)* ¥) e — yI ™ 1 (x1 + [y) (1,9)* (x)dxdy = (1/2) ([ (m,)* dx)? .

Finally we estimate the “boundary” term, that is the first term in (49), using that for
|x| = max || +1, w(x) < const|x| ™32,

j
X
x|

If (xlm,dn,p* + Ix1n, P,V (p?))dx| = ’— ) (71, Vin)w® +Ixl(Vn, 21/’2) dx

2r
<constr™* | s?ds=constr~'.
r

Inserting the two above inequalities into (49) we arrive at
02 —constr ™' —Cr™ 12 { (np)*dx +(1/2) ([ (n,p)*dx)* .
The right-hand side here is a quadratic expression in | (,p)* dx. We conclude that
[ wx)dx< ((qp)*dx<Mr~'2. O

fxiZ2r

Later on (Theorem 28) we will prove a uniform (in z) exponential bound on .
The reason why we cannot prove this now is that we have to know that Q(z) is
bounded away from zero for large enough z; This together with Proposition 16
will then imply that for a maximally ionized molecule we can find a ball
independent of z such that the total number of electrons inside will exceed the total
nuclear charge Z. For an atom this means that the Radius of Neutrality is bounded
above independent of z. But for the moment we can only say that the number of
electrons outside a ball B, goes to zero uniformly in z as r—co.

4. Lower Bounds to ¢, y, and Q,

The aim of this section is to prove that the electrons do not collapse to the point %;
as z;— 0. We begin by proving a lower bound to ¢. The major implication of this
lower bound is that ¢ is positive in a z-independent neighborhood of %; (see
Corollary 18). We use this result to compare the TFW-system to a much simpler
boundary value problem to give improved lower bounds to ¢ and y near each
nucleus. We then extend the lower bound to y to a global bound and derive lower
bounds to Q, and u. Finally we use these lower bounds to give the uniform
exponential upper bound on .

Lemma 17. Forallj=1,...,K there exist ;>0 and s;> 0 such that for all 0 <{ <z;
and k> x; with k(3> s,

(2, N)ZCx—R) ™ =K |x— 2| =12 (50)
for all xeIR3,
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Proof. Define the functions
h(X)={|x =R~ — x> |x—R) 1.
We will use a comparison argument to prove that ¢ =hY. Denote R=(1/2)

min |%,— %,| and let
l¥k

Q,={xeR3|x—%,/>R for all j} and Q_=R*Q, .

Let S={x|p(x)<hP(x)}. Since {<z; it is clear that #;¢S for all i=1,...,K. At
infinity we get from Proposition 14 that lim |x|¢(x)= —Q.z)> —const. Thus S

. fxl~co .
is open and bounded with ¢ = h’ on 3S. We will prove that hY’ — ¢ is subharmonic
on S, which implies that S=0. We divide the proof of this into two steps.

Step 1. SnQ,.
If xeSnQ2, then from Lemma 13,

K 3/2
Ap(x)=4nyp(x)? < const ( Y x(@)x—R| "+ nPa 2 x— R 2)
i=1

<const|x—%,| 73,

where (after minimizing in «) the constant only depends on the #,. On the other
hand

AR =5 3P |x— )| 732 (51)
Thus if k{*? is large enough we get 4hY)>4¢ on SNQ,.

Step 2. SNQ_.
In this case we estimate p by Proposition 8,

Ap=4nyp> <4n[A o+ A" C(H)]Y>.
On Q_, |x—4%,~"/? is bounded below. Hence for any fixed 1€(0, 1),
A+ A7 1CA] . SA7 Ix—2) 7!
if x¢3/? is large enough (depending on A). From (51) we obtain for xe SNQ_,
Am[A™ThY + A7 COYI2 SAmA~ 320302 |x— R =32 < AW(x),
if x is large enough (depending on A). Thus on SNQ_ , 4h(x)Z dp(x). O

Corollary 18. There exist ro withQ<ry<1/2 m1n | R, — R,| and {,> 0 independent
of z and N such that if z;>{,,

@(x;z; N)>0 for |x—2j<r,. (52)

Remark. As z;—0 the TFW-solution will converge to the solution without the j**
nucleus. Whether ¢ will be positive or negative near #;in this case depends on the
position of #; relative to the other nuclei.

For a maximally ionized atom Corollary 18 gives a lower bound to the Radius

of Neutrality R, for large Z, since ¢(R;) <0. For small Z it is easy to see using the
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results of Benguria and Lieb [ 2] Sect. 3 that lim R, = oco. Corollary 18 implies that
zZ-0

R, is bounded below by a non-zero constant for all Z (for an upper bound for large
Z see Proposition 27).

4.1. Comparison with Simpler Boundary Value Problem

With the help of Lemma 17 and Corollary 18 we can now compare the solutions ¢,
p of the TFW-system to the solutions y>0, V>0 of the following much simpler

boundary value system:

AV=4n(V3?—-{5(x)) on {x||x|<r}, (53)
Ay=(* P —BV+wy on {x|lx|<r}, (54)

and
Vlg=n=0,  Ygq=n=0, (55)

where { >0 and $>0. Equation (53) is identical to the atomic TF problem with

nuclear charge (.
Before examining the solution to (53)+(55) we will show how to compare it to

the TFW-solution.

Lemma 19. With the notation of Corollary 18 we can for all C>1 find O<rc<r,
independent of z and N such that if V,, y, are solutions to (53)55) with r=ry,
B=C"?% and {,<{ <z, then on {x||x— R <rc},

P(x;2; N)ZC2V(x—R)), (56)
Yix;z; N)Zyx—2Z)). (57)

Proof. Let A=C~'3¢(0,1). It follows from Lemma 17 that we can find r such that
(C*3—1)¢>C(4) on |x — &;| <r¢, where C(4) was defined in Proposition 8. Hence
from Proposition 8 we obtain

p(xP <[+ A7 IC(ATP? = Cp
on [x—2;|<r.. We thus get
Ap=4n(p*—z;0(x—R)) S 4n(Cp** —z,6(x — R))).
Let ¢.=C?¢p then
AP <4nC3p*? —4nC?2;0(x — R)) S 4n(Pe* —z,0(x — R))) .

A simple comparison argument shows that Vi(x—%;) < ¢(x) on [x—Z;| <rc.
Since ¢c=V,>0 on |x—R;| <rc we have

Ap=*P -+ =<*?-C*V,+pp.
On the other hand since f=C"2,
Ay=(P—=C 2V +py, for |x—Rjl<rc

with y,=0on|x— 2| =rc. To arrive at y <y we appeal to the comparison theorem
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of Hoffmann-Ostenhof [6]. To use this theorem we actually need to know that y,
and V, satisfy some regularity properties. These are given in the next theorem. []

Theorem 20. For all r>0, >0, and u>0 we have {, 5 ,>0 such that for all
(>, p,, there exists a unique solution pair (y,, V) to (53}+55) with y,.e H)(B,), y,>0
for |x|<r and V;20. y, and V; have the following properties:

() e CoU<r).
(i) y, Ve C*({0<|x|<r}).
(iii) ¥;>0 on {0<|x|<r} and lin; Vix) x| =C.

(iv) V; and y, are spherically symmetric and strictly decreasing as functions of |x|.

Proof. Equation (53) is the Thomas-Fermi equation. All the stated properties of V;
can easily be concluded from well known facts of TF-theory (see Lieb [10]). The
existence can also be proved by standard ODE-techniques (see Veron [20]).

Equation (54) is studied in exactly the same way as the TFW-equation (Lieb
[10]) by considering the functionals

&o)=[(")/0)*+3/5[¢**—BVo+nuje and &(y)=E(?).

¢ is defined on H{({x||x|<r}) and ¢ is defined on {Qéoll/éeH(l,}. That y, is
radially decreasing follows from the fact that V; is radially decreasing as in [10,
Theorem 7.26]. The only thing we have to prove is that y,%0. Choose
ne Cg(|x]<r)such that =1 on |x| <(1/2)r. We can then prove (Lemma 21 below)
that hm | Vin= oo. It is therefore clear that we can find {, ;4 , such that £(n) <O for

C>L’, o ThlS implies y,#+0. []

Remark. Since in Theorem 20 we need {, ; ,<{, we see that (57) in Lemma 19 can
be used only if z;>{, ; , which depends on C and . This again shows the necessity
of knowing the boundedness of u given in the proof of Proposition 29 [case (Q)]
below. Equation (53) by itself of course has a unique solution for all {>0.

The next lemma about solutions to the TF-equation is essentially due to Veron
[20].

Lemma 21 (Veron). For fixed r>0 we have for the solutions V, to the boundary
value problems (53)55) that

Vix) 2 VO(x) as oo, (58)
for all x, 0<|x|<r. The function VY satisfies
V(x) =91~ 2|x|~*+0(|x[°), (59
with 6= —1/2+]/73/2.

Proof. 1t is clear by comparison that {; <{, implies ¥, <V,,, and that V(x)
<9n~2|x|"*. Thus hm V.=V, exists pointwise and in the sense of distributions

on 0<|x|<r. Hence we have that AV, =4nV>? on O<|x|<r. Since
lim |x| V,,(x)= oo, it follows from Veron [20, Theorem 5.1] that V,, =97~ %|x|~*

x—0

+0(x[°). O
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Remark. Equations (56) and (59) show that the y(«) in the upper bound (42) has the
optimal limit lim y(x)=97 "2
a=0
Since Lemma 21 gives good control on V,, our goal is to estimate ¢, y below in
terms of V. For ¢ this was achieved in (56). To get a lower bound to y we will use

(57), so we have to give a lower bound to y, in terms of V.

Lemma 22. Let V,, y, be the solutions of (53)~(55). If 0<|x|<r and a € (0,(1 —|x|/r)
(1+]x|/r)~ 1) then,

Y0¥ 2 BYV((1 =) x) =m0 *(1 — ) |x| "2 — . (60)
Proof. Using (34) and (35) we see that for R<|y|<r—R,
BV(y)Sgr* yP)+n+n’R72. (61)
If we use that y, is radially decreasing we find
BV =y (¥l = R)y/WD*> +p+n*R™2.

Now choose R=aly| and x=(ly|—R)y/ly|]=(1—a)y. Since 0<|x|<R and
ae(0,(1—|x|/r) (1 +|x|/r)~ ') we clearly get R<|y|<r—R. []

Corollary 23. For all C>1, py>0 we can find 0<rc and 0<{, such that if {,<z;
and u(z; N)< po we get

(x+R; 2, N 2 CT V(1 —0)x)—na” (1) x| "> —u(z; N),  (62)
for all |x|<rc/2 and all a.€(0,1/3).
Proof. This is just Lemma 19 and Lemma 22. []

4.2. A Global Lower Bound to y and Lower Bounds to Q, and p

From Corollary 23 and (59) we get good lower bounds for p near each nucleus
with large nuclear charge. It is not difficult as we will see to extend this to a lower
bound for p everywhere. Such a lower bound will then in turn imply lower bounds
to Q. and to u(z; N). We will first give the proof in the atomic case (K =1), because
the molecular case is technically much more complicated.

Proposition 24. (Atomic case: K=1,#,=0) For all r, u,>0 we can find Z” such
that for all NXN,, Z satisfying Z>Z and w(Z,N) £ po,

w(x; Z; N)Z(3/4)°* x| 32 exp(—elx]), for |x|zr, (63)
where e=max{N —Z, u(Z, N)'/?}.

Proof. Since y and ¢ are radially symmetric it follows from Newton’s theorem that
o(x)= —(N—2Z)|x|~ 1. Inserting this into the TFW-equation gives

Ap=p"P+(elx| ™ +e%)p.
We compare p with f(x)=(3/4)**|x| 3% exp(—e¢|x|). For |x|+0,
Af()Z f() +(elx] "' +€%) f(x).
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Hence f — 1 is subharmonic on S ={x| f(x)>wy(x)}. It follows from Corollary 23
and Lemma 21 that for any C > 1 we can find 0 <7’ <min(r, rc) and Z” such that
{Ix|=r'}nS=0 for all Z>Z? and w(Z,N)<pu,. Since p—f—0 at infinity it
follows that Sn{|x|>r'}=0. O

We can now prove the lower bounds on Q and x in the atomic case. Notice that
for the maximal ion (N=N,), (N, Z)=0s0 e=N—Z=Q,. For the neutral atom
N=2Zsoe=pu(Z,Z). A general lower bound to ¢ thus implies a lower bound to Q,
and Y, euerar- Since Q(Z)—0 as Z—0 (see [2]) we of course have to assume that Z is
bounded away from 0.

Theorem 25 (Atomic case). There exists 6 >0 such that for all Z large enough and
all NXN,,
ey.z=max{N—2Z,u(Z,N)'*} =4. (64)

Proof. 1t is clearly enough to consider N, Z such that u(N, Z) is smaller than some
constant. For any >0 we can therefore assume from Proposition 24 that

| w(X)zdx§(3/4)3’2| |§> x| ™2 exp(—2¢|x|)dx

Ixfzr

>47(3/4)%? } s exp(—s)ds= —4n(3/4)¥%e 1 In(2er). (65)

Using Proposition 16 we get a bound on ¢ for all r>2. []

Remark. We see that the physically correct exponent p=>5/3 in TFW-theory is
critical for the above proof, i.c., the lower bound to | w(x)*dx is only

logarithmically divergent in &. For p > 5/3 the proof will still V|V01‘k but for p<5/3it
would not be a useful method. For the same reason if one tries to give numerical
values for the lower bound the result will be quite unsatisfactory.

We now turn to the molecular case. Unfortunately the proof here is technically
complicated.

Theorem 26. There exists 6 >0 such that if z, (say) is large enough then
e=max{N—Z,u(z; N)'*} 26. (66)

Proof. The proofis inspired by a proof by L. Jeanneret of Lemma 7.18 in Lieb [10]
given in an unpublished note to Haim Brezis. The proof will be divided into several
steps.

Step 1. A Lower Bound to y
As in the atomic case we can assume that u is bounded above by some constant.
From Corollary 23 we can then assume that v is bounded below independent of z
near #,. That means that we can find 0<r; <(1/2) min |%;— 2| such that

iFj

p(x)=const for |x—%,|=r,.

Now from Proposition 8 we know that
o(x)=— min C(1)=—32"4n2.

4e€(0,1)
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Thus
Ap <P+ (3274 + .
Just as for the atomic case we can prove that
P(X)ZC'|x—Ry| P exp(—¢|x—R,) on {x|[x—R[>r}, (67)
where &' = (3°2~*n? 4+ u)'/2. Notice that this bound is not as useful as (63), since it is

not given in terms of ¢. For simplicity we will from now on assume #, =0.

Step 2. Spherical Average
Here we use the trick of Lieb [10, Lemma 7.17]. Let [y], denote the spherical

average of p, i.e.,
[wl.(@)=@n)"" sz y(ro)do.

Define f(r)=exp([Iny],(r)). Then from Jensen’s inequality f(r)<[y],(r). Fur-
thermore f has the property (see [10])

[Aw/w]a(r) 2 Af (r)/f (7).

Thus for r> max |#/|, again using Newton’s theorem we find
j

Af()S[W*? = o+ pla) f ) S [*1a() () +(er ™" +2) £ ().

From Holder’s inequality we have [y*3],<[w?]33=[0]?. Defining g(r)
= —Af(r)+[e]2*(r) f(r) we obtain

gz —(er~ 1 +¢%) f(r). (68)
Step 3. Choice of Radius
Choose R>2 (max |2 |+ 1) =2 <max |%;— R 1|+ 1> >r,. From (67) we see that
j i

f(R)=ZC'R™3*?exp(—¢&R)=Cy.
Choose me N (depending on R) such that
(@43)nCim* 1R3> | wp(x)?dx.
IxIZR

From Proposition 16 we can choose m independent of zand N. We claim that there
is R' (R, mR) such that

f'(R)<O0.
If not f=Cg on (R,mR) and Hoélder’s inequality gives
mR
[ wx)dxzdn [ [wl2e)ridr
Ix(ZR R
mR
24n | f(r)*r*dr=(4/3)nCi(m*—1)R?
R

which is in contradiction with the choice of m.
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Step 4. Auxilary Function
Define for r= R the auxiliary function,

br)= [ dss™ | [Q124(0e%dr. (69)
Then
be)=r~ [ [elP0dr, (70)
and
Ab(r)=b"(r)+ 2 () = [12(r). (1)

Notice that
r r r 2/3 [/ 1/3
b(r)= [ [e]2(®)t* [ s~ 2dsdt < (I [Q]a(t)tzdt> (I t_ldt)
R t R R
=((47t)‘1' { w(X)ZdX)2’3(ln(r/R))”3§M§’3(1n(r/R))”3,
x| =R

from Proposition 16 we can choose Myz=(4n)"*MR™ 2, Choose 1€ C°(R),
0=<n =1 with #(t)=1 for t <1 and #(t)=0 for t = 2. Define #,(x) =7(x|/n). For the
function g defined in Step 2 we find (with R’ as in Step 3)

|x1£ . g(x) exp(b(x))n,(x)dx = ;x|j= o "n,0,f — f0,(e’n,)dS
ke fe*{[e)Z n,—n,(Vb)*
—n,4b— An,—2VbVn,}dx .
We assume that n is so large that #,=1 on (R,mR). If we use that 0, f(R)<0
(Step 3), 0,b(R’)=0 and Ab=[g]2/* we obtain
[ ge'ndxs — leiR,fe”{(l7b)271,,+Ar1,,+217bl711,,} dx. (72)

|x| =R

In the next three steps of the proof we will consider the three terms on the right-
hand side of (72). We will prove that the first term is bounded by a constant and
that the last two terms go to zero as n—oo. We begin with the last two terms.

Step 5.
§ fe"A17nd><|én'”z(@ﬂ)'1 | w(X)ZdX)”Z(I eZb‘""’IAﬂ(IXI)IZdX>"2,
x|z R’ Ix121

Ix|2R’

since An(t)=0 if t<1. Now from Step 4,
2b(nx) < 2M2> In(n|x|/R)~ > In(n|x|/R).
Choose n, so large that 2M%3(In(n,/R)) %> <1/2. Then for n=n,,
[ fetAn,dx| <n'2MY? <1xlj>1 (nlxl/R)”z|A;1(x)|2dx>‘/2

x|z R’

<const,n” V*M}ZR™14, (73)
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Step 6.
f fe"Van,,dx‘ §n'1M}{2< | (Vb)2(l711(|x|/n))2e2bdx)”2.
|x| =R’

|x|zR’

Now

r 2/3 /r 1/3
[Vb(r)| Sr~2 <1Iz [Q],,(t)tzdt> <i‘z tzdt> <37IBMEBrL,

As in Step 5 if n=n,,
| 'iRl (Vb)*(Vn(lx|/n))* e**dx < const, My *n3>*R™1/2

Thus

| AR' Je'VbVn,dx| <const,n™ ' *MYCR™14. (74)
Step 7.
Since b>0

”I feWbyndxz [ fu,(Vb)*dx.
x| =R’ |x]=mR

From (67) we see that f and [¢], are bounded below. Hence from (70) (Vb)? is
bounded below. If we make sure n, is not too small, there exists dg_,,> 0 such that

L SOOB b2 d . 15)

Going back to (72) we see from (73)~75) that if n, is large
| li o 8(x) exp(b(X))11,(X)dx = —(1/2)dp, .-

Step 8. End of Proof
From (68)

| l; N exp (b)) 1uy(x) £ (%) (elx| ™ +e2)dx = (1/2)dg -

But now the final result (66) follows from

| li o PO () f () (elx] '+ e?)dx

é(f w(X)de>”2(R { ex1>(2b(x))(6IJCI"‘+.92)2dx>‘/2

IxIzR =|x[=2no

S CY(R,np)e* + CA(R, ny)e,
for some constants C'* and C®. [

4.3. The Uniform Exponential Decay of v

In the atomic case, we will now prove, using the lower bound on @, that the radius
of neutrality R, for the maximal ion is bounded from above for large Z. This result
is essentially equivalent to the uniform exponential bound as we will see in the
proof of Theorem 28 below.
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Proposition 27. For the maximally ionized atoms there exist R _, R, >0 such that
R_=ZliminfR,<limsup R;=R, (76)

Z—© Z-®
Proof. The lower bound follows from Corollary 18 since ¢(Rz) <O (see also the
remark after the corollary). The upper bound is a consequence of the lower bound
on Q(Z) and the bound on | w?dx given in Proposition 16. We just have to

|x[2r

recall that | w(x)’dx=Q.2). O

Ix|ZRz

Remark. For molecules Corollary 18 states that the set {x|¢(x; z; N)>0} is not too
small for large z. As for atoms we can now also prove that for the maximally
ionized molecule {¢(x; z; N)> 0} is bounded for large z. This will follow from the
proof of the next theorem (see (81) below) in which we give the uniform exponential
decay of .

Theorem 28. There exist constants m,>0 and a radius R >0 such that if z, is large
enough and |x|Z R then

p(x;z; N)Smexp(—n|x|'?) (77)
for all N.

Proof. From Proposition 16 we can find a radius R, > max |%;]+1 such that

J
{  w2dx=(1/2)d, where § is the lower bound in Theorem 26. Now consider

|xIZ Ry

com(x)szzjlx—%jl- N () |x—y|"tdy.
J

VISR
Lemma 15 implies
sup @g,(X)SCR7+p. (78)

|x|=Ry

On {x||x|> R}, @g, is harmonic and ¢z, —0 as |x|—>co. We can thus express @g,
using the Poisson integral formula for an exterior domain, i.e., if |x|>R,,

2 R2
= a5,

<(@nR,)"! ,g,ix Or (DSl

@r,(X)=(4nR)™"! I

2_ p2
+nR)(CRTP ) f S

1¢1= Ry

as;,

where dS; is the Euclidean measure on {|¢|=R,}. If |x| > 2R, and |{|=R, we find

x*—Ri 1

Lad Nt GENLE P57 WV LY
=P |x|’~ il
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Furthermore from Newton’s theorem
@rR)™" | @ (OdSi=Yz;— [ w(y)dy
1€]=Ry J I¥ISRy

=Z—-N+ | wO)?dy<Z—N+(1/2)s.

IyIZ Ry

Putting everything together we obtain for |x|=2R,,

Pr,(X)=(Z—N+(1/2)0)Ix| ™' + C"Ri|x| ">+ C'uRE|x| 2. (1)
From (78) we of course have the much simpler estimate
Pr()SCRTYZ x| +uR x| 7!, for |x|ZR;. (80)

Indeed (80) is true for |x| =R, for |x| > R, it follows from the maximum principle
since both sides are harmonic. The difference between (79) and (80) is that for N—Z
large enough (79) will be negative for large [x|. We know from (66) that either N— Z
>d or u!*=4. If N—Z =6 we use (79) to conclude that for [x| =2R,,

P(x) == or,(X)— 1= —(1/2)0x]” "+ C'R?|x| 72 + w(C'RY x| 2 —1).
If 4'2 =5 we use (80)
9()—p=CR X ™!+ 82 (Ry x|~ — 1),

for |x| = 2R,. It is now clear that we in both cases can choose R = 2R, independent
of z and N (i.e., independent of u also) such that

@(x)—ps—(1/3)dlx|"", for |x|zR. (81)
From the TFW-equation we obtain for |x| =R,
Ap(x)Z (%) +(1/3)81x] " Mp(x) 2 (1/3)8 x|~ p(x).

We compare p with f=mexp(—2(5]x|/3)*/?). Using Lemma 13 we can choose m
such that p(x) < f(x) for |x|=R. Since 4f(x)<(1/3)3|x| ' f(x) we conclude < f
for [x|=R. [J

5. Compactness

In the previous sections we have proved pointwise upper and lower bounds to y
and ¢. We will now study the limit z;— o0 for j=1, ..., L and z; fixed for L<j<K.
As in the introduction we will denote this limit by z’'— co. We first have to specify in

what sense N tends to infinity. We are interested in two different cases
N<N{z), N—-Z-Q as z-oo, Q)
wz; N)-»p as z'—o0. ()

In this section we will prove that given sequences (N,,), (z,) with z, — 0o as n— 0o and
satisfying (Q) or (1), then we can find a subsequence () such that y,=(-; z,,; N,,)
and ¢, =o(-; z,; N,,) and all their partial derivatives will converge uniformly on
all compact sets disjoint from {Z,,...,%}. Furthermore in case (Q) the
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subsequence can be chosen such that u(z,, ; N, ) converges and in case (u) such that
N, —Z,, converges. We first prove the last statements.

Proposition 29. In case (Q) we can choose a subsequence such that

lim u(z,,; N,,) exists.
k—

In case (1) we can choose a subsequence such that

lim (N, —Z,,) exists.
k=

Proof. We have to prove that u, is bounded in case (Q) and that N,— Z,, is bounded
in case (y).

Case ()
This follows exactly as in [2]. Let

Pa(X)=(4np,(x)* + 0,(x)°) 2,
then

Ap,z4n(y, "+ py)p, ' 20

away from the nuclei. p, is thus subharmonic on the complement of the nuclei.

From Proposition 8 and Proposition 12 it follows that |p,| and y, are bounded for

|x| =r where r is any radius larger than max |2,|. Hence p,is bounded on |x|=r and
J

since p, is subharmonic

Pu(%) < <Is:1p p.,(y)) r/lx| for |x|>r,
yl=r

thus

|Nn - Zn‘ = lim |x|pn(x) é r sup pn(x) éCOHSt .
%] = e

x|=r

Case (Q)
This is more complicated. We can assume that Q <0, since if Q =0 we know that y,
is bounded from Corollary 9 if we recall that u(z; N) is decreasing in N.

For fixed z the function N+—E(z; N) is convex and decreasing and

3_11\2[ = —u(z; N). Hence with Q,=N,—Z,,
0 <ﬂ(Zn, Nn) =:u(Zm Zn - lQn')
S1Ql ™ H(E(23 Zu—21Qul) — E(243 Z0) - (82)

We will prove that E(z,; Z,—2|0Q,|)— E(z,; Z,) is bounded as n— co. Without loss
of generality we can assume Q,=Q. Let p, =y(-;z,; Z,) be the TFW-function
corresponding to a neutral molecule. Choose ne C*(R ), 0=<# =1, such that
n()=0if t<1and n(t)=1ift 2 2. For r <(1/2) min |#;— #,| we define 7, : R*->IR3
by < i*j

m) =1~ T nlx—gtm,
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1, is 1 near each nuclei. Define ¥ =1, n,. We will use p? as a trial function to
estimate E(z,; Z, 2|Q|) We must show that we can choose r such that ||1p(')||2
<Z,-2|0l Slnce ,, is the solution for a neutral molecule the corresponding p is
zero. From Lemma 21 and Corollary 23 we conclude that

lim lim inf § (y,,(x)? ~ 0 dx=co.

10 n-o
We can thus choose r such that
lim inf { (¥, (x)> —y)x)*)dx>2|Q].
Then o
lim sup | Wix)2dx= lim sup | ¥, (%) = (., (%) —p{(x)})dx < Z,—210],
where we have used that [y2 =Z, From the definition of the energy
E(z,; Z,—2|0Q|) we get that
EW) 2 E(z4; Z,—21Q))
for large n. Or since E(z,; Z,)=6(y,,)
E(zy; Z,—210)— E(z,; Z) S EWE) — E,)
= [ =)V, ) +v2 (V) +(1/2)V (7)Y (w7 )dx
+G3/5) fwz P —Ddx + [ o, p2 (1 =)+ D(A =12y, (A —n2)w}).
Since #7,<1 we arrive at
E(zy; Z,—21Q) — E(zy; Z,) < [ (V1) —(1/2 A2 7 dx + [ @, p2 (1 —n?)dx
+D((1—n7)wz, (1 —=n7)wz,).

Since 1 —n? is supported away from the nuclei, it follows from Propositions 8, 12
(with u=0) and Theorem 28 that the above quantity is bounded as n— c0. Going
back to (82) we see that this finishes the proof of the lemma. []

We can now prove the main result of this section. In the proof we will need the
inequalities of Gagliardo and Nirenberg (Gagliardo [5], Nirenberg [12]).

Lemma 30 (Gagliardo and Nirenberg). If u,ve L°(R")nH™R") and F € C"(R),
with F(0)=0, then

||uv||Hm(mn)éCm(”“||Hm(mn)||v||Lw(1Rn)+ ||u”L°°(]R")||U||Hm(]R"))’ (83)
| F (“)”Hm(]kn)§ Cn 15511113 LIF (’)(u)||L°°(R")|Iu”lL:°}]R")] ”u“H"'(]R") . (84)
=Sism

The main result is

Proposition 31. Given a sequence (N, z,),cn> With N,<N/z) and z,— oo as n— o
and satisfying either (Q) or (u), we can then choose a subsequence with the following
properties.

() The limits pu= lim y, and Q= lim (N, —Z,) exist.
k= k=
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(i) O<yp= l}im Py, and @ = k]im @n, €xist in the sense of convergence in
-0 -0

COO(IR?,\{'%D AR '%K})s

i.e., Yy, @, and all their partial derivatives converge uniformly on compact subsets.
(il) @, converges in L, “(R3*\{%,, ..., &.}) for all £>0.

(iv) w,, converges in H* on the complement of any compact neighborhood of
(R, ... R}

(V) The limits @, p, and u satisfy

0=—Ap+yp">—(p—py

. on RN@,,... %) (85)
Ap=4n <1p2 -~ j=§+1 zﬁ(x——%,))
(vi) For j=1,...,L, ¢ and vy satisfy
xlig. Ix—2R;*p(x)=9n"2, xlirgl Ix—%j|31p(x)=3]/§n3/2 , (86)
lim |x[p(x)=—Q. 87

X o0

Proof. From Propositions 29 we can assume that (i) is satisfied.

(i) We will prove that for all open sets Q2 whose closure is compact in
R*\{%,, ..., R}, (p,) and (¢,) are bounded sequences in H™(2). We will do this by
induction on m. From Propositions 8 and 12 we see that (¢,) and (y,) are locally
bounded on R*\{Z,, ..., Z¢}. Hence they are bounded in H(Q)= L*(Q). If (¢,),
(,) are bounded in H™(Q) for all  compactly in R*\{%,,..., %} we easily
conclude from the Gagliardo-Nirenberg inequalities that (p,’3), (p2), and (,v,)
are bounded in H™(Q). Thus (4v,) and (4¢,) are bounded in H™(Q). It follows from
standard elliptic estimates that (¢,) and (y,) are bounded in H™* () for a smaller
compact set Q.

This concludes the induction argument. From the Sobolev embedding
theorem we get that (¢,) and (p,) are bounded in the topology of
C*(R3*\{4,, ..., Zx}). From Ascoli’s theorem we conclude (ii). That 0 <y follows
as in Step 1 of the proof of Theorem 26.

(iii) We only have to prove that (¢,,) converges in L*>~* near each nucleus %,
j=I141,..., K. Since we know that (¢, ) converges pointwise away from the nuclei,
we can conclude the L? ~*-convergence from the dominated convergence theorem,
if we show that |(¢,,)| is bounded by a L* ~*-function near #;,j=L+1, ..., K. From
Proposition 8 we know that ¢,, is everywhere bounded below by a constant. On
the other hand for r < min |%;,—%}|, ¢,, is bounded above by a constant C; on

i*j
|x—2,|=r (see Proposition 12). Thus ¢nk§(zj+1)|x—9?jl‘1 +C; both near %;
and for |x— %, =r. Now
¢nk_((zj+1)|x—'%j|—l+cj)

is subharmonic on {0<|x—2%; <r}. Hence
P S(z;+ ) x—R| "'+ C; for |x—2Rj<r

and the L3 ~*-convergence follows.
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(iv) For j=L+1,...,K we have on {|x—2,|<r} [r chosen in (iii)] from the
TFW-equation,

Ap, Z(—(z;+ 1) Ix— 2]~ = C)y,, . (88)
We compare y,, with f(x)=cexp(—(1/2)(z;+2)|x—2,|) which satisfies
Af =((1/4) (z;+2) —(;+2) Ix— 2| ™) f.
If we choose r;<((1/2)(z;+2)*+C;) ™", then for [x— 2| <r},
Af S(=Ci=(z;+ D) Ix—R]| ™) f. (89)

As k—oo we know that since z; is fixed v, is bounded by a constant on

{Ix—2;|=r;} (see Lemma 13). We can thus choose ¢ such that y, <f for
|x—2;|=r; From (88) and (89) it then follows by a comparison argument that

Y x)=cexp(—(1/2)(z;+2)|x—2)|) for |x—2R;)|<r;.

Especially y,, is bounded by a constant near each #;,j=L+1, ..., K. This together
with the exponential bound in Theorem 28 and the dominated convergence
theorem imply the L?-convergence of w,,. (iv) then follows from the TFW-
equation. :

(v) Itis now clear that(¢,,), (w,,), (%), (y?),and (¢, y, ) converge in the sense
of distributions on 2°\{%,, ..., %, }. Since (85) holds for ¢, , w,,, and p,, it holds in
the limit as well.

(vi) The bounds

lim sup [x—2|*¢(x)<9n~? and lim sup [x—,@j|3tp(x)§3[/§n3/2
x—Rj X—>R,
follow from Propositions 8 and 12. The lower bounds

liminf [x —Z|*@(x)2977% and lim inf|x—2 P p(x)=> 31/§7r3/2

x-’.@j x—"@j

follow from Lemmas 19, 21 and Corollary 23.
To prove (87) we write as in Theorem 28 for |x|=R,,

<pn(><)=(</)R1),.(X)+I ) . V(9 Ix—yl " dy.

y[Z R
Using the Poisson integral formula as in Theorem 28, we get for |x|=2R,,
|(pn(x)—(zn_Nn) |X| N ll
S 0 w0 0x T Hx =y DAy +@En) T ICIXITE [ (g )a(&)IdS,.

[ES 3t 1¢1=Ry

From the uniform exponential decay (77) and the bound on ¢ we see that given
&¢>0 we can choose R, such that for some constant C and |x|>2R,,

x| 1@u(x)—(Z,—N,) Ix| " |Ze+Clx|*.
If we let n— oo we find

Xl p(x)+ QI Se+@m) " 'C'Cy,IxI™". O
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6. Asymptotic Expansions Near the Nuclei

Our goal is to prove that given u =0 then ¢, p, and Q are uniquely determined from
(85)(87). Likewise given Q then ¢, p, and y are uniquely determined. This together
with Proposition 31 will then imply Theorems 1 and 4. In this section we will
present the first step which is to prove that ¢ and y satisfy the asymptotic
expansions in Theorem 6. For technical reasons it will be necessary for us to keep
track of the asymptotic expansion of the function

W(x)=p(x)*" —o(x). (90)
Define the functions
)= xI"Ha; +az x>+ ... +a,]x?"" V), n21,
Va)=1xI73(by +bolx| + ...+ b, x> Y),  nzt, 01
Wi ()=x|"Xc, +c,lx| 2+ ... +c,— 1 |x]*""2), n=2, W;=0,

where a,, b,, and c, are uniquely defined by requiring a,,b,+0 and that
asymptotically near x =0,

Ap,(x) =P, (x) W(x) +O(|x**~7), (92)
A@,(x) =4mp,(x)* +O(|x>"~°), 93)
W,(x) =, (x)*> — @,(x) + O(1x|*" ). 94
It is not hard to see that a; =97~ 2, b, =3l/§n"3/2, and that for n>1,
APy~ Wy=c,by x> 77+ 0(x[*"~3), 95)

Ap,—4nyp;=(8nb, by —(2n—3)2n—4)a,. ) X"+ O(xI*""%),  (96)
W, =W — @) =(4/3)b1by 11 — ¢y =y 1) IX"~* + O(xI>"~2). N

From this we can compute all the a’s, b’s, and ¢’s. ¢, and y, are the functions given
in Theorem 6.

Proposition 32. If ¢,y e C*({x|0<x<R}) satisfy

— Ay +y"P—pp+up=0, 98)
Ap =4nyp?, 99)
and
lﬁ% () |x[*=a, and li_l}(l) w(x) |x|*=b,, (100)
then
P(X)—p=@a(x)+0(xI°),  Y(x)=p4(x)+0(x|"*),
and

W(x)+p=Ws(x)+0(|x|"*?),
where o= 1/2+l/ﬁ/2.
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Remark. We can compute
Wy(x)=6|x|> +(3/8)n* +(n*/32) |x|* — (T=®/1152) |x|*.

Strategy of Proof of Proposition 32. Without loss of generality we can assume that
1=0. We formulate the proof as an induction argument. We assume that for some
n, 1 £n<5, the following estimates hold:

@(x)—@,(x)=0(1x|>"" )+ O(x["), (101)
W) —p,(0)=o(x|*" ")+ 0(Ix|" 1), (102)
W(x)— W (x)=o(x[*"~°)+ O(|x|"*?). (103)

We then prove that they hold for n replaced by n+ 1. First notice that (101)+103)
hold for n=1.Infact (101) and (102) are equivalent to (100), (103) follows from (101)
and (102).

In proving the induction step it is important to proceed in the right order. First
we prove (103) for n replaced by n+ 1. Using (103) for n+ 1 we then prove (101) for
n+1.(102) is then a trivial consequence of (103) and (101). Before proving (103) we
have to settle an important technical point.

Lemma 33. If (101)103) hold for some n, 1 <n<6, then
Vo(x)=V@,(x)+o(xI*"~7)+0(x|"" 1), (104)
and
Pp(x)=Vp,(x)+o(xI*"~®)+ O(x]°). (105)

Remark. While (104) has the right power law behavior compared to (101), (105) is
very bad compared to (102), unless n = 6. Since we eventually will prove (101)-(103)
for n=6 this defect is unimportant, see also Corollary 36 below.

Proof. Choose ne CP(R ), 0=n =1 with suppn<(1/2,5/2) and n=1 on (1, 2). For
0<r<(2/5)R, let n,eCF({0<|x|<R}) be defined by n,(x)=n(|x|/r). For all
feC¥({0<|x| < R})define f,= fy,. Then by a trivial identification f,e CY(R?)and

Afy=fan,+2VfVy,+n,4fe CER?).
Thus by integrating by parts
S0 =—@n)~ Y (Af) * x| ™! = —(@4m) " [(— fAn, +n,Af) * x| 71 =2(f V) * x/Ix]*] .

Differentiating with respect to x we obtain for x ¢ supp(Vyn,),

4nVf(x)=(n,Af — fAn,) * x/IxI* + 2(f V'n,) * 1/|x|?
—6[f(»(x—y)- V) |x—yl~>(x—y)dy.

Since x ¢ supp(V,) we do not pick up delta functions from differentiating x/|x|.
For f we will insert ¢ — ¢, and p—y,. Notice that

A — @) =4n(y* — )+ O(xI*"~ ) =o(xI*"~ %)+ O(|x|"?)
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from (93) and (101) (which we assume holds for n). Likewise

Al —,) =Wy —Wp,+0(x*" ") =0(x>"~°)+ O(Ix|"" ).
Using ¢ — @, =o0(|x|>*"~®)+ 0(|x|°), with (5/4)r <|x| Z(7/4)r gives

V(9 —@,) X = V(¢ — @), (x)]
<[o(r**~)+ 0 ) ([ 14n,») Ix—yI™*+Vn,»)llx—y )
+[o(r*" %)+ 0"~ )1 {ny) Ix—yI~*dy
o)+ 0 H=o(x[*"" )+ O(Ix|""1).

Likewise for p—1,=o0(x|*"~ %)+ 0(x|°*?),
V(=) ()| L0(r®~®)+0(*)=o(Ix[*"~ )+ 0(x[). O
Lemma 34. If (101)(103) hold for n, 1 £n<5, then (103) holds for n replaced by
n+1.
Proof. We have to prove that
W (x) — Wy(x) =, x> * +o(|x|*" %)+ O(|x|"*?).

For any ¢>0 we will prove that there exists 0 <R, <R such that for |[x|<R,,

(cu—26) [x[>"~* < W(x) = W,(x) + O(xI° ") < (c, +2¢) Ix[>"~*. (106)

We concentrate on the lower bound, the upper bound is proved in exactly the same
way. For 0<r<R define

a;=(c,—¢)"" Sup (x1°7 2" W (%) — W0l + e, —el7?). (107)

From (103), we get that lim a;=0. Define for k=0,

r—=0
JF=(W )= W) 1x1° 2" +(cy — &) (= IxI* +ag(lx|/r)) + k|x|7*® 72", (108)

It is only relevant to have k+0 if n=35. Our aim is to prove that we can find
0 <r,<Rsuch that f(x) = 0 for |x| <r.. The final result (106) will then easily follow.
From the definition of a; we get f,°(x) = 0 for |x|=r and from (103), £,’(x)—0 as x—0.
Thus either f%(x)=0 for all |x|<r or there exists x,, 0<|x,|<r such that

fAxo)<0, VfiAxe)=0 and Af%(x,)=0. (109)
We prove that for r small enough (109) cannot occur.
V()= (VW —VW,)|x|° 2" +(6—2n) (W —W,) |x|*~*"x
+(ca—8) (—2x+3ag(x|/r)* x| ~2x) + O()x|"* 7 ~2")
=) PVp(x) =V o(x) — VW, (x))|x|° =" +(6 —2n) (W — W) Ix|* ~*"x
+(c,— &) (—2x+ 3a¥(|x|/r) |x] " 2x) + O(|x|"* 7 ~2"). (110)

Here o(-) and O(-) are vector-valued functions that are independent of r. Even
though (105) gives an unsatisfactory estimate for V', we can get a good estimate for
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Vp(x,) by using the above expression together with (103),, (104), and (109). We get
30(x0) PV (x0) =V @u(x0) + V W,(x0) + O(lxo|” ™)+ 0(|x0]**7)
+a([xol/r)> O(1xo**~7)
= 51,(x0) PV ,(x0) + 0(1"0|2'l =7
+ai(1x0l/r)> O(Ixo** =)+ O0(1xol” 1) (111)

here we have used (94).
We know that W— W, =o(|x|>"~®), thus since Vf*(x,)=0 we get from the first
equality in (110),

0, W (x0) — 0, W,(xo) = 0(Ixol>" =)+ af(1xol/r)* O(xo[*" =) + O(Ix0|" " ).
Inserting this and (111) into the last inequality of (109) gives
0= 31,(x0) 2PV, (x0))> + FYn > Wy(Xo) — dny,(x,0)* — AW;(x,)
+4p(W (x0)— Wilxo) + (@) (1Xol/r)° O(lxo[*"~1°)
+ay(xol/r)> Olxol > ™)+ 0o(|xo*" %)+ O(1xo|”~?),
where we have used (102),. Now (95)-(97) easily imply that
AW, =89, 22 (V) + 93 W, —dmpd + ,b3 X224+ O (x> ~9).
Since |x| =r and a:—0 as r—0 we can finally write
0= —4%c,b1” +4p(xo)**(W(xo) — Wilxo)) IXol® =" +0,(1) + O(Ixo|”* * =27

Here 0,(1) is a function of r that goes to zero as r—0. We now use the definition
(108) of £ and (102) for n=1,

$¢,b33 S [3b1° + 0, (1)] ((ca— &) (1 — a(xo1/7)? [xo] ~2) — kIl * 6 ~2)
+0,(1)+ O(1xo|” 2.

We have used that f%(x,) <0 and assumed r so small that $b}/>+ 0, (1)>0. From
the definition of 4 it is clear that (c,—¢)ai=0, hence

33265 —[3017 + 0r (DI klxol” 7"+ 0,(1)+ O oI+ 2.

It is therefore clear that we can choose r, and in the case n=35, k, such that (109)
never can be satisfied for |xo| <7, i.e., £5(x)=0 on |x|<r, or

W(x)—W(x)2(c,— &) x>~ *(1 —agr,3Ix])+ O(xI”* ).

If we choose R,=min{r,,er3(di (c,—¢) "'} (recall that (c,—e)ai=0), then for all
|x| é RS’

(en—e)arr; >Ix|=<e.
Thus for 0<|x|=R,,
W (x)— W, (x) = (c,—2¢) |x|*" " *+0(x|°*?). O

Lemma 35. If (101)102) hold for n, 1 <n<5, then (101) holds for n replaced by
n+1.
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Proof. Since o <4, (101) for n=5 is equivalent to (101) for n=6. We thus only have
to consider n <4. As a consequence of Lemma 34 we are allowed to use (103) for n
replaced by n+1, i.e., (103), ;.

Let ¢,=¢,—¢,. We first prove

W2 =(¢—3,)* +(@n) " 4G, +1,[xI*" "+ o(x|*""°), (112)
where
lL=3a}"%c,+(4n)" ' [2n—3)2n—4)a, ,—6n(a,+  +c,)ai’*]
=(@4n)~'(2n—3)2n—4a,,,—3ai*a, .. (113)
Notice that I, =(3/2)a}’*c;. For n=1, ¢, =0 and
V2 =(p+W)*2=0*2+ 302 W+ 3 20(W?/p?)
=@ +3aicq x| * +o(x| 7).

We have used that from Lemma 34, W(x)=c,|x| ™%+ o(]x| ). Hence (112) holds
for n=1.
Forn=2,

(@ + W)l =(0,+ W)+ 3Hpu+ W)W — W)+ (0 — 9,))
+(@u+ W) 200 — o+ W—W,)* (0, + W,)?)
=(@ut+ W) + 3010 —0,) + 301 %c,|x[>"~°
+o(|x|>*~ %) +o(x|*"~19),

where we have again used Lemma 34. Since n=>2, 4n—10=2n—6, and we can
forget about the last term.
On the other hand recalling that ¢3/*>=(4n)"'4¢, we find

(0—3)° +(4m) "' 4¢,=(4n) " 40, + 301" (9 — @) +o(xI*~°).
Equation (112) now follows from the identity
(@n+ W,)*2 —(@dm)~ A, =(I,— 3ai%c,) IxI*"~° + O(Ix|*"~%).
Given ¢>0, if 1 <n<3 define
8%(%)=0(x) = Pp(x) —(@n+, £ &) IxI*" 7%, (114)
if n=4 define
82(0)=0(x)— §p(x) — (@, F) X" . (115)
Then writing g% =g we find for |x|=+0,
Ag—Aang>?? =4ny® — Ap, —An(o — §,)*"
+(ay+ 1 2 8) (6101 —(2n—4) (2n—3)) [x|*" 7+ O(Ix|>"~*).
Inserting (112) gives
Ag—4ng®? = +e(6nal’? —(2n—4)(2n—3)) [x|*"~® +o(|x|*" ).
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Recall that o, —t are the roots of t(t +1)=18, thus if —t1<2n—3<g,i.e,n<3 then
6naj’?—(2n—4)(2n—3)=18—(2n—4)(2n—3)>0,

and if n=4 this expression is negative. With the definitions (114) and (115) for g% it
is now clear that we can choose r,<R such that for all x with 0<|x|<r,,

Agt —4n(g-)¥?<0 and Ag’, —4n(g’)¥?>0. (116)

Now consider w= ¢, +k|x|°=97"%|x|"*+k|x|°. We know from (38) that for
|x| %0, Adw(x)<4nw(x)*?. Choose k=k,=0 such that w(x)>g*(x) for |x|=r,.
From (101), we know that g% /w—1 as x—0. We will prove that

o(x) 2 g% (x) (117)

for all x, |x|<r,. If not we must have x,, |x,| <r, such that

(8% /@) (xo)>1, V(g% /w)(x0)=0 and A(g%/w)(xe)<0.
But then

Ag°%(xo) = wA(g w) (xo) + 2V (g’ /w) (xo) + (8% /w) A (Xo)

Sdng’, w(xo)'? S4ngh, (xo)*2,
which is in contradiction with (116). Hence (117) follows, i.e.,
P(X) S o)+ (a4 1 +8) X177 * + 04 (x) + kIXI" = 9, 1 1(x) + elx|*"~* +O(|x]%)
if n<3. If n=4 we get since o <4,
P(X) S Gax) + (a4 — &) IXI*"* + @4 (x) + KIx|”
=¢5(x) + 0(|x|°) (= 94(x)+ O(x]")).

To get similar lower bounds we use Lemma 21 with r=r. V, solves
AV, =4nV>? for |x|#+0 and Vy|x|=r,)=0. Furthermore from Theorem 20 (iii)

lim (]x| V/(x))={ < 0. Since |x|*g(x)—>97~? as x—0, we can of course assume that
|x|—0
g% =0 for |x|<r, The set
S, ={x10<|x| <7, g% (x) < Vi(x)}

therefore does not contain {|x|=r,} nor points x such that |x| is small. An easy
comparison argument shows that S,=@ for all {>0. Taking { oo and using
Lemma 21 gives

9n~2[x| "+ 0(x) g (x),
orif n<3
PX)Z @y 1) —elx|>"* +0(x]%).
If n=4 we get
?(x) 2 @5(x)+ 0(Ix”) (= 94(x)+ O(x[)). O
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End of Proof of Proposition 32. We have proved that (101)-(103) hold forn=1 and
that if they hold for n then (103) and (101) hold for n+ 1. Then clearly (102) also
holds for n+ 1. We can then conclude that (101)-(103) hold for n=6. Since 3< g <4
this is equivalent to Proposition 32. []

We can now reformulate Lemma 33 as

Corollary 36. Vo(x)=V@,(x)+0(x|° ") and Vip(x)=Vy,(x)+ O(x[°).

7. Uniqueness

The proofs of the main Theorems 1-7 that are given in Sect. 8 below will be simple
consequences of the following theorem and its proof.

Theorem 37. (a) Given u=0, there exist unique ¢, 0<y and QelR, with
pe LY (R\{R,, ..., R,}) for some 6>0, and v in H' of the complement of any
compact neighborhood of {R, ..., R} and such that ¢, p, and Q satisfy (85)87).

(b) Let Q, be the value of Q for u=0 as described in (a). Then given Q €(— 0, Q ),
there exist unique @, 0<vy and uelR, with ¢ and v as in (a) such that @, yp, and p

satisfy (85)87).

The existence parts of (a) and (b) follow from Proposition 31. The uniqueness
parts will follow from a series of lemmas which are of independent interest.

Lemma 38.
q’:‘l’ecw(ﬂ{s\{gn a'@K}) and IPELFSC(]R3\{'@1’ aﬂL})
Proof. This is standard elliptic regularity. [

We can now conclude from Proposition 32 that for j=1, ..., L, ¢ and v satisfy
the following asymptotic expansions near %;:

P(X)—pu=04(x~R)+O0(x—R}") and PX)=p,(x—Z)+0(x—R|"*").

The idea is now to subtract the singular part from ¢=wy?2 We define the
renormalized density (see also (23))

L
0?(x)=w(x)*~ {Zl b%lx_‘@j,—G+2b1b2|x—‘%j|_4}a (118)
=
where the b’s are as in the previous section. From Proposition 32 we know that
0@(x)=0(Ix—#;|~?). In fact we can conclude more. From (93) we see that
A@4(x)=4mp,(x)* +O(|x|?),

thus y,(x)? contains no term of order |x| ~? (we could have concluded this from the
numerical values of the b,’s also). Hence ¢'®(x)=0(1) or

0P e L (R*)NLY(R?). (119

Notice that ¢'® is not necessarily everywhere positive, but we can think of it as a
charge density. ¢® has the following remarkable property:
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Lemma 39.
K
[ePx)dx=0+ Y z;. (120)
j=L+1
Proof. It is clear from (93) that A¢, =4n(b?|x|~®+2b,b,|x|~*). Hence if we define
L
PP (x)=p(x)— { 2 a1 |x—'@jl_4+a2|x—'%j|_2} , (121)
j=1
we get
K
A9 (x)=4n {Qm(x)— Y zo(x —'@j)} , (122)
j=L+1

for x¢{#,,...,#.}. From Proposition 32 ¢ e L2 (R?). Thus 49 e H 2(IR3).
Since the Dirac-measure 5,¢ H™ ¥%(R%) we see that 0°0,¢ H *(R®), for all
multiindices o with |« = 1. We can thus conclude from (122) that there exist z;e R,
j=1,...,L such that on all of R3,

K
Ap@(x)=4n {Q‘Z’(X)— ) 215()6—9?1)}
j=1
or
L K
y {q,m(m 5 zx— ) } —dngP()~ T zp(x—2).
j=1 j=L+1
Now the right-hand side is in L? near &), j=1, ..., L. Hence
L
PP+ 3 zlx—a !
ji=1

is in H? near #;. But from Proposition 32 ¢® is bounded near Z,j=1,...,L. We
conclude that z;=0for j=1, ..., L. Thus (122) holds on all of R . It is now clear that

K
h(X)=<P‘2)(x)—{ 2 Zjlx—%l_l—em*lxr‘}
=L+1

j=
is harmonic and h(x)—0 as |x]— co. Hence h(x)=0, i.e.,
K
PP)= ¥ zlx—R |7 =P x|x|"". (123)
j=L+1

From this and (87) we find
K

Q= — lim (pP(¥)[x)= [e®x)dx— ¥ z;. O
X0 j=L+1
We denote

L
W(X)=w“’3— (allx_'@jl_4+a2lx_'@jl_2)

J

=1
K
— _;Hzjlx—@j|_1+g(2’*|x|_1+u. (124)

j
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From (121) and (123) we find
Lemma 40. p solves the Renormalized T F W-equation

— A+ Wip=0, (125)
on RN{R,,..., R}

Lemma 41. W is bounded at infinity.

Proof. For the solutions constructed in Proposition 31 we of course know that
W— pas |x|— co. For the abstract solution we just have to prove that y is bounded
at infinity. This is not too difficult and is left to the reader. []

We define the following functional:
L(f)=n£3 WfI2+Wf12dx, (126)

for all functions in the set

F={feH'R3|f=0(x—2Z|"*),Vf=0(x—2R)°), for j=1,...,L}. (127)
Notice that L(f)<co for all feF.
Lemma 42, fe F = L(f)=0.
Proof. 1t is enough to consider fe CY(R*\{%,, ..., %,}). Then
—[WIfP=—=[Ulv/wIfP< =T 2Pl If P+2[p WiwlIfIIVAS IV, O

Lemma 43. If feF then
L= 1, (Ve + NI =17yl + Wip+ [ — Wp?)d®x.. (128)

Proof. The right-hand side of (128) is equal to
L(f)+Re {RL 2l7fl71p+2fAtp}.

Notice that
Il +1f114wl=0(x— 21"+ W] f1[p|=0(x— 2R},
hence is in L}(R?). We just have to argue that we can integrate by parts. But this is
clear from |Vy||f|=0(x—2)°7%). O
We can now give the

Proof of Theorem 37 (a). We have to prove the uniqueness. Assume (¢, @, @) and
(@, P, Q) are two different triples satisfying (85)-(87) for the same u. We have two
corresponding functionals L, L. Notice that from Proposition 32 and Corollary 36
w—peF. Thus from Lemmas 42 and 43,
0 LB —y)+ Ly —p)= [(W—W) (> —p?)dx
= [*P =) P —p?) + (P —6P) * x| 7B —p?)dx
< §(@@—)* ¥ 7@ —®)dx.
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Since |x — y|~ ! is a positive definite kernel this last expression is non-negative if and
only if ¢ =1. From (121) and (123) we find $=¢. Q=0 follows from (87). [

Proof of Theorem 37 (b). (Existence) From Theorem 37 (a) and Proposition 31 we
get that 0, = lim Q,(z)>0 (the lower bound is a consequence of Theorem 26).

The existence then follows from Proposition 31, since if 0 <Q,, then for z,, ..., z;,
large enough Q < Q(z).

For the uniqueness we proceed as in case (a). Given two triples (¢, v, #) and
(@, P, fi) satisfying (85)«87) for the same Q, then

0= [(* —F*) (37— )+ —3®) *IxI 7' — ¢ ?)dx
+(u— @ (> —P)dx.
But from Lemma 39
Jp?*—prdx= [¢® —§Pdx=0.
We again conclude p=1v, p=¢. fi=u follows from (85). [

8. Proofs of Main Theorems
As a simple consequence of the results of the previous section we can now give

Proof of Theorem | and Theorem 4. It follows from Proposition 31 that any
sequence has a subsequence satisfying Theorem 1. From Theorem 37 all the
subsequences must have the same limit. This implies Theorem 1. For Theorem 4, if
Qe(—00,0.(z", %)), then it follows from Theorem 1 that Q <Q.(z) for 2z’ large
enough. Then Theorem 4 follows in the same way as Theorem 1. []

Proof of Theorem 2. As noted in the remark after the theorem this is just a special
case of Theorem 1, except for the lower bound which follows from
Theorem 26. []

Proof of Corollary 3. We first note that Z+— R is continuous. This easily follows
from Theorem 6in [2]. If R, is not convergent we can find sequences converging to
any value in some open interval. Since ¢%(R;) =0 we would conclude that the limit
@,-o is constant in an open set. But then vy, is zero on this set since 4¢,_,
=4ny._,. O

Proof of Theorem 6 (a) and (b). This is just Proposition 32. Theorem 6 (b) is a
consequence of the exponential decay (77) and (86) and the TFW-equation. []

Proof of Theorem 7. That y, has the properties given follows from Lemma 40 and
Lemma 39. Equation (25) is just (123). The uniqueness follows from Theorem 37
and its proof, if we can prove that V', is in L? on the complement of any compact
neighborhood of {R, ..., %, }. But this is clear, since from (24) 4y, is in L? over
such a set. [
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