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Abstract. Time evolutions of the Toda lattice hierarchies of Ueno and Takasaki
are induced by Hamiltonians which are conservation laws for the original
(one and two dimensional) Toda lattice obtained by Olive and Turok. Moreover
these Hamiltonians for two dimensional Toda lattice hierarchy are also
conserved quantities of the two component KP hierarchy in which that system
is embedded. The one dimensional Toda lattice hierarchy is characterized by
the bilinear relations, and a new version of the one dimensional Toda lattice
hierarchy is constructed. Generalized Toda lattice hierarchies associated to all
affme Lie algebras are presented.

0. Introduction

The Toda lattice has been, together with the Kortweg-de Vries (KdV) equation,
one of the most important completely integrable non-linear systems, many features
of which have been revealed by various methods. In this paper we will investigate
the interrelationship between the Toda lattice hierarchy (K. Ueno, K. Takasaki
[U-T]) and the structure of the Toda lattice as a Hamiltonian system with infinitely
many constants of the motion (D. Olive, N. Turok [O-T1,2,3]), and conserved
quantities of the multi component KP hierarchy. We also give a characterization
by the bilinear relations and another version of one dimensional Toda lattice
hierarchy, and present a candidate for the generalized Toda lattice hierarchy
associated to any affme Lie algebra.

Ueno and Takasaki [U-T] introduced the Toda lattice hierarchy (hereafter
we will abbreviate it to TL hierarchy), inspired by the theory of the Kadomtsev-
Petviashvili (KP) hierarchies, and investigated its Lax representation, Zakharov-
Shabat representation, the linearization, the τ function and its bilinear equations
of Hirota-type etc., and showed that the TL hierarchy is embedded into the 2
component KP hierarchy. They also defined the periodic reduction and the
restriction of the system to the one dimensional sector.

On the other hand, Olive and Turok [O-T1,2,3] made full use of the classical
r matrix (they call it the P operator; cf. [Fa,Fa-T]) introduced from the theory
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of the quantum inverse scattering method to get infinitely many constants of the
motion for the one and two dimensional Toda lattice. Their fundamental principle
is, first, to express the simultaneous commutation relation using the r matrix, and
then, to construct infinitely many conserved quantities, and finally, regarding them
as Hamiltonians, to consider time evolutions corresponding to them, which
commute with each other. The final result gets the form of 0-curvature conditions.

The main theorem of this paper is the following:

Theorem

(i) Time evolutions of the 1 dimensional TL hierarchy are induced as a Hamiltonian
system by the conserved quantities of the original Toda lattice obtained in [O-T1].
(ii) Time evolutions of periodic reduced TL hierarchy are induced as a Hamiltonian
system by the conserved quantities of the A\1}1 type 2 dimensional Toda lattice
obtained in [O-T2,3].
(iii) These Hamiltonians of the TL hierarchy are conserved quantities of the 2
component KP hierarchy in which the TL hierarchy is embedded.

Here in the above theorem for the 1 dimensional case, some physical justification
is needed, for the theory developed in [O-T1,2,3] is based on the finite rank
Kac-Moody Lie algebras, while the TL hierarchy consists of Z x Z matrix
of formal power series. To avoid handling divergences, we construct a new
hierarchy by characterizing the Lax pairs algebraically which we get, following
the prescription in [O-T1], from the formal Hamiltonians. Then we show that
this new hierarchy is nothing but the one dimensional TL hierarchy of [U-T].

For the two dimensional system, we define a new system which naturally
includes the system of [O-T2,3] and corresponds to an affine Kac-Moody algebra.
This system associated to A\l\ type Lie algebra is identical with the /-periodic TL
hierarchy, when it is represented as infinite matrices. (M. Fukuma advised the
author to deal with the finite periodic lattice rather than the infinite lattice.)

While Olive and Turok discuss along the formulation of the inverse scattering
method convenient for quantization (cf. [Fa], [Fa-T]), in [R-S] the "half" of the
TL hierarchy is constructed by a clever use of the co-adjoint orbit method and
the central extension of Lie algebras.

The present paper is organized as follows:
In Sect. 1.1, we recall the materials in [U-T] which are needed later, without

fixing gauge specified by a parameter α; [U-T] used α = 1/2 gauge but α = 0 gauge
is of great importance and, at the same time, interesting from the historical point
of view. (This gauge brings historic Lax operators for the Toda lattice in sight of
the theory of the TL hierarchy.) Then we discuss the one dimensional TL hierarchy
and, when the gauge is fixed appropriately (α = 0), the system has high symmetry,
which allows the characterization of the one dimensional TL hierarchy by the
bilinear relations of the wave matrices.

In Sect. 2, making use of the classical r matrix as in [O-T1], we construct
infinitely many Lax pairs for the one dimensional Toda lattice and investigate its
structure as a hierarchy of Sato-type. On the other hand this system has a natural
interpretation as a Hamiltonian system, which we will explain in Sect. 2.1. From
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the bilinear relations for the wave matrices, we know that this "r matrix type" one
dimensional TL hierarchy is identified with that of [U-T] through a simple linear
transformation of time variables.

In Sect. 3, first we recall the theory of Olive and Turok [O-T2, 3], generalizing
it to all affine Lie algebras including twisted ones. In this theory the classical r
matrix plays an essential role, especially in the formula "fundamental Poisson
relation." Then, through the zero curvature conditions obtained, we can introduce
non-local elements of gauge groups, which behave just like solutions of the
linearized problem of the TL hierarchy (wave matrices). With the help of this "wave
matrix," the similarity between the theory of [O-T2, 3] and the TL hierarchy
becomes clear, and thus a candidate for the generalized TL hierarchy associated
to an arbitrary affίne Lie algebra is presented. As mentioned above, this system is
identified with the /-reduced TL hierarchy in the A\l\ case.

In Sect. 4, changing the standing point, we construct these conserved quantities
quite algebraically. [U-T] has proved that the TL hierarchy is embedded in 2
component KP hierarchy. Therefore it is natural to ask how the conserved
quantities are embedded in 2 component KP hierarchy. Here, after recalling the
r component KP hierarchy, we calculate its conserved quantities from the solution
of the linear problem (the wave operator) under suitable boundary conditions. This
is a generalization of the results of [W, Chi, Fl and Sa] to the matrix case.
Comparing their expressions in τ function, we know that the Hamiltonians of the
TL hierarchy and the conserved quantities of the 2 component KP hierarchy
coincide. The real reason of this coincidence has not yet been explained and should
be further studied.

We also remark that TL hierarchy and KP hierarchy are deeply related to the
2 dimensional field theories in physics, and the conserved quantities obtained
in the present paper are important in the theory of deformations of conformal field
theories [Fu-T].

Notations

• Usual abbreviations for differentiations: e.g.

Let (α(s))seZ be a series, then:

dia

i.e., the diagonal matrix, diagonal elements of which are α(s)'s.
• Λ±1:=(δi±lj)ljeZ: the shift matrices.±1._

Hence Z x Z matrix is written in a convenient form as

/••. ••. •-. \

'• βo(-l) f lι(-ϊ) M-l)
. α_!(0) α0(0) ^(0) ' - .

«o(D ••• ^
\
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• For lεN Z x Z matrix A = (a^) is called / periodic if for all i, jeZ atj — ai+lj+l.
• For a matrix A = (α/7 ), matrices A + ,A_,A0 are defined by:

, ίf i<j,

otherwise;

(A )» = {*"' ίf ί > J 9
lj (θ, otherwise;

(A )Γ = ίfly' lf Z = 7'0 ίj [0, otherwise.

Hence, A = A++A0 + A_. Our usage of + is different from that in [U-T].
• Hereafter, "function" means a formal power series.

1. Toda Lattice Hierarchy

1. Reviews of the TL Hierarchy of Ueno and Takasaki. Here we recall the Toda
lattice hierarchy (TL hierarchy) [U-T] in a slightly modified form, i.e., with one
parameter α which designates the gauge.

Let L *, Bn be the following Z x Z matrix valued functions of x ± = (x ± ̂ , x ± 2,...):

L+ = Σt<

with

0, Λ = l,2,..., (1.1)

where bf(s) = bf(s\x) are functions of x+ and x _ .
The Torfα /αίίic^ hierarchy under α-gauge is, by definition, the compatibility

conditions for the linear problem,

L+ W(co) = W(CO)Λ, L_

dXnW = BHW, n = ± l , ± 2 , . . . , (1.2)

of the Z x Z matrix valued unknown functions VF= W(oo) and W^(0).
Explicitly, the TL hierarchy is the following system for the unknown functions

bγ\ for all m, n = ± 1, ± 2, . . . ,

dXnL±=lBΛ9L
±l (1.3L)

[5Xn - Bn, dxm - Bm-\ = dXmBn - dXnBm + &„ £J = 0, (1.3ZS)

Proposition 1.1. Under the condition (7.7), (7.3L) and (1.3ZS) are equivalent to each
other.

Proof. We prove that (1.3L) implies (1.3ZS). The converse can be proved in the
same way as Theorem 1.1 of [U-T]. Let us introduce 1-forms ω, Ω±9ξ, X(±} by
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ω:= Σ ltd**,, £=° Σ Lm-dx-m,
m= 1 m= 1

Ω+ := (ω)+ + (i + α)(ω)0, *<.?»:= (£) + + β + α)(00,

β_ := (ω)_ + (i - α)(ω)0, Jf <_»>:= (ξ)_ + β - α)«)0

We denote the exterior differentiations with respect to x+ as d+. Then

d+ω = ω Λ β+ + β+ Λ ω, d+ξ =• ξ /\ Ω+ + Ω+ /\ ζ,

d-ω = ωΛX™ + X™Λω, d-ξ - ξ Λ Z(_00) + Jf<!°> Λ ξ, ί1-4)

follow from (1.3L). Since ω = ί2+ + Ω. and ω Λ ω = 0, the first equation of (1.4)
yields

d+ω==Ω+ Λί2+-ί2_ Λ / 2 _ .

As /?„ is upper triangular matrix for n > 0,

Ω+AΩ+= X [^,BJJxπΛdxm
0<«<m

is strictly upper triangular. Similarly Ω_ Λ Ω_ is strictly lower triangular. Hence

d+Ω+=Ω+ ΛΩ+,

which is (1.3ZS) n, m > 0. The last equation of (1.4) yields (1.3ZS) n, m < 0 likewise.
Using the second and third equation of (1.4), we obtain

Λ ί + + + Λ *

= d_Ω+ - d_X(

The left-hand side of this equation is upper and lower triangular at the same time,
that is, diagonal. The diagonal part is

This proves (1.32S) in the case when n and m have opposite signs.

If L+ are solutions of the TL hierarchy, then there exist solution matrices

(wave matrices) V^^\= W(0} or W(co)) to the linear problem (1.2) such that

where

ϊ^S)(x)=
j = o

with

w(

0

0)(s; x)~1/2+Λ = tff}(s; x)1/2 + α, vv (

0

) ̂  0,
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00

and ξ(x±9Λ
±l)= £ x±nΛ

±n. The proof is similar to that of Theorem 1.2 of [U-T].
w = l

The following proposition gives the complete characterization of solutions of
the TL hierarchy in terms of these wave matrices.

Proposition 1.2.

(i) Wave matrices satisfy the following bilinear relations for all x,x';

T:= W(*\x)W(*\x'Γ 1 = W(Q\x)W(Q\x'Γ l. (1.6)

T is called the transition matrix from x to x'.

(ii) Conversely, if W^ of the form (1.5) satisfy (1.6), then one can set

L+:=W(QO)ΛW(co)~l (=W(co)ΛW(co)~l)9

L-^W^M-1^-1 (=W(0)Λ-1W(0)-1) (1.7)

to obtain the solutions of (1.2) and (1.3).

(The products of infinite matrices above (e.g. in (1.5), (1.6)) are well-defined and
convergent when the topology of the ring of formal power series is introduced by
degree: degxn = \n\. In what follows, we don't make this kind of remarks.)

Proof. It is easy and differs from that of Theorem 1.5, [U-T] only in the point
that one must pay attention to the diagonal part of wave matrices.

(i) is also a direct consequence of the uniqueness of the solution of the Cauchy
problem:

τ(x,x)=l.

The relation (1.6) is formally equivalent to

W(0}(x)~l W(co)(x) = A = constant matrix.

This gives the Riemann-Hilbert decomposition of an element of GL(oo).

We define an important function w(s; x) such that

vv(

0

0)(s;x) = e(ll2+«)u(s\ w^s x) = e

(~1/2+^(s\

Then one of the equations (1.3ZS) n= l , m = - 1: [3X1 —Bί,dx_l — B_ t ] = 0 is
nothing but the original 2-dimensional Toda lattice equation

u(s+ 1 )~"dxιdx_ ί u(s; x) = eu(s)-u(s~ l) - e

Proposition 1.3. Let L(+ be solutions of the TL hierarchy of a-gauge, and define
B(Z} = Bn as above and
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Then

Γ (/?)._ Λ-l T(Λ)nL.+ .— g L.+ g,

is a solution of the TL hierarchy of β-gauge, and

Proof. It is straightforward, using Proposition 1.2.

This proposition states the gauge invariance of solutions of the TL hierarchy,
and allows us to use all the results of [U-T] which treats the TL hierarchy of
α = 1/2 gauge. Here we recall some of them without fixing gauge. (Later we will
use mainly α = 0 gauge.)

For W^*3' above there exists the so-called τ function τ(s; x) such that

(1.8)
j=o L'H4'f 1) ''W J

and for n > 0

Bn = Σ diai
m = l L τ(s + m + 1)1/2 +'τ(s +

y ,. _ n + m x _ _

" ' -

Here we use the notations

7 = 0

dx =(dx ,^dx ,%dx ,
x± V x+i92 x±2*6 x ±3 ?

The symbol D denotes Hirota's Z)-operator which is defined for a linear differential
operator F(dx) by

F(Dx)f(x) g(x) = F(dx.)f(x + x')^ - x')L-o-
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u = w(s; x) is expressed in terms of the τ function as

τ(s) '

The following modified wave matrices and the modified τ function are also
important:

K(oo)(x) =

τ'(x) = τ(x)exp
/ 00 \

£ nxnx_n }.
\ n = l /

Note that (1.8) and (1.9) also hold if W and τ are replaced to V and τ' respectively,
and that the τ (or τ') function is uniquely determined up to arbitrariness of the

( $ \factor asbexp I £ (cnxa + dnyn)\.
\/ ι=l /

l-periodic reduction (or A^^ reduction) of the TL hierarchy is defined by
imposing the following constraint on the TL hierarchy:

Ll

+=Λl, LL=Λ~l. (1.10)

Then L±9Bn, W^™' are / periodic matrices (cf. Notations), and

dXnL+ =dXnL_ =0 (1-11)

for n = 0 (mod /). We can also take the τ function as periodic in s and independent
of the variables xn (n = 0 (mod /)):

dXnτ'(s\ x) = dXnτ'(s; x) = 0, n = 0 (mod /).

Since u(s) = log^s H- l)/τ'(s)), this implies

u(5) = ιι(5 + ί), Σ^^^O. (1.12)
s = 0

As M(S) is /-periodic, g = gaβ is also periodic;

This equation together with Proposition 1.3 means the gauge invariance of the
constraint (1.10).

2. The 1 -Dimensional TL Hierarchy. In this section we will transform the gauge
of the TL hierarchy and discuss the 1 -dimensional TL hierarchy reduced from the
original one by freezing the evolution to the "space" direction.

First, regarding x±n(n>0) as the light-cone variables, we introduce new
space-time variables z, t by

zn = τ(*n + * - »), tn = i(xn - x _ „), n = 1 , 2, . . . .
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Then (1.2) is represented as

L+ w( , L_
with

withn n = Bn-B_n.

For example, Q± and X± are of the well known form as follows: (cf. [M-O-P])

<Λ

e(u(l)-u(0»/2

0

The 1-dimensional TL hierarchy is defined as the TL hierarchy with the
additional gauge invariant constraint

or equivalently

or

2 nK = 0, for all n = l,2,...,

τ' can be chosen so that d, τ' = 0 for all n.

(cf. [U-T]; note the arbitrariness of the τ function mentioned in Sect. 1.1.)
Hence if we set

ξ(z,Λ)-ξ(z,Λ-1)), (1.13)

we get the following proposition by the same method as Proposition 1.17 of [U-T].

Proposition 1.4.

(i) //L± , Qn and Xn solve the 1 -dimensional TL hierarchy, then they depend on only t.
(ii) Under the same assumption as above, V(t) solves the linear problem

(1.14)

The compatibility condition of this system amounts to the Lax representation

(1.15)
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Especially dtίQ1 = [X^Q^] is the first Lax representation for the Toda lattice
obtained by Flaschka.

Hereafter we fix the gauge α = 0. Then, using (1.8) and (1.9) with V and τ', the
following symmetry is easily seen.

Proposition 1.5.

For the 1 -dimensional TL hierarchy

fj/(oo) _ /J/(0)\-1

Moreover the bilinear relations characterizing the 1 -dimensional TL hierarchy
are expressed in terms of only V.

Theorem 1.6.

(i) For the 1 -dimensional TL hierarchy,

holds for all t and t'.
(ii) Conversely, for an invertible lower triangular matrix V(t\ suppose

ί/(-)(t):= V(t) exp (ξ(t, A) - ξ(t, A'1))
and

satisfy

1 (1.16)

for all t and t'. Then V^\t) are wave matrices of the 1 -dimensional TL hierarchy.

Proof.
(i) According to Proposition 1.2 and (1.13),

F(00)(ί) exp (ξ(z, A) + ξ(z, Λ'1)- ξ(z\Λ) - ξ(z', A ~ ^}V^\t'Γl

= V^\t)Qχp(ξ(zyA) + ξ(z,A-ί)-ξ(z\A)-ξ(zf

ίA-1))V(Q\tT^ (1.17)

Equation (1.13) and dZnW = QnW imply

Since ξ ( z 9 Λ ) 4- ξ(z,A ~ l ) = zn(An + A ""), applying the above formula to (1.17),
n = l

we obtain

Σ ^β-ω^^^^^o ' e x p - Σ ^δn(

Σ z eΛO
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Hence

(ii) First we set

Q(t):= V(c°\t)(Λ + Λ

Then

Λ ~ x)

follow from the second equation of (1.16). It is also shown by induction that there
exists the polynomial qn of degree n such that

qn(Q(t))V(OJ(t) = V<»\t)(Λ* + Λ -"). (1.18)

Now we show that

«*«>:= V(t) exp ξ(y, Λ ~ x), W(0):= 'K(ί)~ 1 exp <J(x, Λ)

satisfy the condition in Proposition 1.2. Since

we have

^^^
(=6) exp (X znqn(Q(t))}V^(t)V^(t'Γ 1 exp ( - X

1-

Remark 1.7. We can formally write

Hence the 1 -dimensional TL hierarchy corresponds to the Riemann-Hilbert
decomposition of a symmetric matrix.

2. The 1 -Dimensional System and the Conservation Laws

1. Classical r Matrix and Lax Pairs. Here we recall about the relationship between
Hamiltonian system and Lax pairs, making use of the classical r matrix [O-TI],
[Ko].

Suppose for a dynamical system the time evolution of the observable / is
determined in terms of the Poisson bracket {,} and the Hamiltonian H as
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We assume that there exists an n x n matrix valued function A = (a^j such that

(i) {A ® A} := ( {ay, akl})ίkjl = [r, A ® 1 + 1 ® A],
(ii) H=l/NΎτAN.

Here r is an π2 x n2 constant matrix called the classical r matrix, which satisfies
the classical Yang-Baxter equation:

= 0,

where η/s are defined as follows: if r = £ rα® rα, then

(i) yields

= [mTΓl (2.1)

where Trx indicates trace on the indices of the first entry and Poisson bracket of
the left-hand side is taken element wise. Directly from (2.1) we obtain for all fc,/,

= 0. (2.2)

(2.3)

Consequently time evolution of A is expressed by the Lax representation

A A

— = [β,
at

with 5 = Tr1((AN-1®l)r),

because of (ii), and Hm = ΎΐAm + 1/(m+ 1) are shown to be constants of motion
commuting with each other. This allows us to consider commuting time flows with
respect to Hamiltonian Hm and corresponding time variable ίm, and we get a system
of evolution equations

8A
^Γ=LBm9A^ with Bm = Ίr1((Am®l)r). (2.4)

For the Toda molecule (i.e. the finite Toda lattice with free boundary) we can set

0 \

as stated in Sect. 1 and

For the infinite Toda lattice the trace diverges, as A is an infinite matrix. (As
the system has infinite size, total energy, for example, diverges inevitably.) Neverthe-
less, applying the above argument formally, we can obtain a system of evolution
equations of type (2.4). That is to say, (2.4) (m= 1,2,...) can be regarded as a
system with infinitely many time variables tm and corresponding Hamiltonians Hm.
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We take (2.4) as the starting point of the following discussion.

2. The 1 -Dimensional TL Hierarchy of r Matrix Type. Let Q be the following
Z x Z "tri-ogonal" symmetric matrix valued function of t = (t^ , t29 . . )

:

Q = diag [α(s)]Λ + diag [fc(s)] + A ~ l diag [φ)],

with a(s) = α(s; ί) 7^ 0, fc(s) = ί?(s; ί). (2.5)

Set

Yn:=(Qn)+-(Qn)-, n = l , 2 , . . . . (2.6)

The 1 -dimensional TL hierarchy ofr matrix type is, by definition, the system

(2.7)

This corresponds to the system in Sect. 2.1 under the identification

• A = Q with a(s) = e(u(s+ D- W)/2, b(s) = dtίu(s)/2,

•Bn=Yn,

The equation (2.7) n = 1 is the original Toda lattice equation.
Now we discuss the Zakharov-Shabat representation, the linearization and

the bilinear relations of this system, following the same strategy as that in [U-T].

Proposition 2.1. The 1-dimensίonal TL hierarchy ofr matrix type (2.7) is equivalent
to the Zakharov-Shabat representation

o. (2.8)
m n

Proof. Set

ω:= X Q"dtn,
n=l

Ω±:=(ω)±,

Ω0:=(ω)0,

ξ:= f Yndtn = Ω+-Ω_.
n=ί

Since Q is symmetric, ί2_ = *Ω+. Equation (2.7) is rewritten as

dtω = K,ω] + (= { Λ ω + ω Λ ft (2.7')

hence (2.7) is equivalent to

ί/2+ = 2ί2+ Λ ί2+ + Ω+ Λ ί20 + Ω0 Λ β+ . (2.9)
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The second equation of (2.9) is equivalent to

1r ~ IT=2[δτ' β"+]+Cβ>ϊ' δ"o]+Cδ°'βn+ ]'
- ̂  + ~ = 2[β1ί, β"_] + [β™, β"0] + [β£, 6"-]. (2.10)

Here we abbreviated (β")+ as β"±. The identity

0 = [βm, β"] = [βl, β"+ ] + [βΐ, β"0]

+ [βΐ, β"-] + [βo» β"+] + [βo. β-]

+ [β™, β"+] + [β™, 60] + [β -, β-]

yields

[^m. Yn] = Ά.Q1. β + 3 + 2[β_, β"_]

Adding the two equations of (2.10), we obtain, using the above identity,

^-^ + [y.,rj = o. (2.8)
dtm dtn

Next we assume (2.8). Comparing the upper and lower triangular parts of both

sides of (2.8), equivalence of (2.8) and (2.10) can be shown by the same argument
as above. Using Qm

+ = Qm - Q™ - Qζ, from (2.10) we see

= dtmQ»+ + dtmQn_ + dtnQ% + [β", - Qm- - QS] + IQ1 , ρ-].

Since all the matrices in the right-hand side are of order less than n, the order of
the left-hand side should be bounded for fixed n\

.̂ (2.11)

If dtnQ
m - [yn, ρ

m] Φ 0, then it is easy to see that

which contradicts (2.11). Thus we have proved

^ρm=[y*>ρm] (2.7)
for all m.

In the above proof "order" of a matrix Λ = £ diag [_aj(s)']Λj means
ez

ord ^:= max {jerL\(aj(s))seZ Φ 0}.

Proposition 2.2.

(i) Suppose Q is a solution of the 1 -dimensional TL hierarchy of r matrix type. The
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linear problem for a Z x Z matrix valued function V(t)

n = l , 2 , . . . , (2.12)
t/i-ji

has a solution V(t) = F(00)(ί) of the form

7(f)=Jdiag[0,(s;t)]/i--', with v0(s)*Q, (2.13)

vv/zere

-')"_= Σ sgn(2/c-n)

(ii) Then K(0)(ί) - f(F(00)(ί))" 1 = f F(ί)~ J exp

Proof.
(i) First we rewrite (2.12) into the linear problem of F(ί);

^V(t)=ΎnV(t)-V(t)φn(A\ "=1,2,. . . . (2.12')
dtn

It is also written as

~ V(t) = (Yn- Q»)V(t) + V(t)((A + /I - 1)- - φπ(/l)). (2.12")

By the assumption a(s) Φ 0 in (2.5), we can prove by induction that there exists a
invertible lower triangular matrix F0 satisfying

Let us consider the Cauchy problem

n = o = ^ o U o (2.14)

The first equation of (2.14) is nothing but the second equation of (2.12"). Thanks
to (2.7) and (2.8),

Γ— "- — m- ΊL^+ β ~yπ)>^+ δ ~ym)J
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hence (2.14) is a compatible system. Since all coefficients of V(t) in (2.14) are lower
triangular, (2.14) has a unique solution of a lower triangular matrix. That solution
satisfies

i.e. (QV - V(A +Λ ~1)) is a solution of the Cauchy problem (2.14) with the initial
value

From the uniqueness of the solution we see

QV(t)=V(t)(Λ+Λ-1)

for all ί. It is clear from (2.14) that

— v0(s; t) — some function x #0(s; t).
dtn

Hence

v0(s; t) = #0(s; 0) x exp(some function).

Since v0(s;0) ^0 by the initial condition of V(t\

for all t. So we have obtained the desired solution of (2.12"), i.e. (2.12).
(ii) By the symmetry of Q and A +/1"1 and the anti-symmetry of Yn and φn(A\
transposing (2.12'), we get

This shows that K(0) is also a solution of (2.12).

As in the case of 1 -dimensional TL hierarchy of Ueno and Takasaki, that of
r matrix type can be characterized by the bilinear relations of these wave matrices
V(«\

Theorem 2.3.

(i) V^\t] in Proposition 2.2 satisfy the following condition',

dΛ

tV
(ζX3\t)V(co\tΓl = dΛ

tV
(Q\t)V(Q\tΓ\ (2.15)

for all multi-indices α = (α1?oc2, •••)• OT-> equivalently,

V*™\ί)V(«>\t'Γl = V(Q\t)V(0\t'Γ\ (2.16)

for all t and t'.
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(ii) Conversely, if K(00)(ί) of the form (2.13) and

satisfy (2.15) or (2.76), and if
l(=:Q) (2.17)

holds, then Q is a solution of the 1 -dimensional TLH of r matrix type and J^°°'(£)
are wave matrices corresponding to it.

Proof.
(i) This statement can be easily deduced from

dtnV
(ΰ°\t)V(c°\t)- l = dtnV

(0\t)V(0\t)- 1

= yΛ, n = l , 2 , . . . (2.18)

by induction (cf. [U-T] (1.2.17), (1.2.18)).
(ii) The assumption (2.15) and (2.16) are equivalent to (2.18) as shown in the proof
of (i). We set Yn as in (2.18). From (2.13) we obtain for all w,

dtV
(^V(^-l=dtVV-1 + Vφn(Λ)V~\

Hence

(2.19)

which shows

ΎΛ=-Yn. (2.20)

Noting that V is lower triangular, we get

(Yn)+ =(dtnVV~l)+ +(Vφn(Λ)V-i)+

This formula and

Q=V(Λ+Λ-ί)V~1 (2.21)

imply

(Yn)+=(Q")+. (2.22)

Since assumption (2.17) means that Q is symmetric, from (2.20) and (2.22) we obtain
γn = (Q»)+ - (Q»)_ . It is easily seen from (2.19) that
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Finally, (2.21) and the symmetry of Q assures that Q is expressed as

ρ - diag [φ)]Λ + diag [fc(s)] + A ~ 1 diag [φ)],

where α(s) Φ 0 for all s.

3. Comparison with the Result of Sect. 1. In Sect. 1.2 we have seen that the solution
of the 1 -dimensional TL hierarchy of [U-T] is determined by wave matrices which
satisfy the bilinear relations; i.e.

(I) An invertible lower triangular matrix V(t).
/ 00 \

(II) K(00)(ί)=K(ί)exp £ tn(An-A~n) ,
\«=ι /

(III) K(QO)(ί)K(QO)(ί/)"1 = K(0)(ί)K(0)(t/)~1.
(IV) K^ίOίΛ + Λ"1)^00^)'1 = K^ίOί

On the other hand, in Sect. 2.2 it was shown that the solution of the 1 -dimensional
TL hierarchy of r matrix type is also determined by the following data (in order
to avoid confusion with the above hierarchy, time variables are denoted by

s = (s1,s2,...));

(Γ) An invertible lower triangular matrix V(s).

(IΓ) K«*»(s)= K(s)exp snφn(Λ)
\»=ι

(IIΓ) F(

(IV) K(

Now it is obvious that the two 1 -dimensional TL hierarchy are identical to each
other under the identification of time variables

fn\
where φn(λ)= ]Γ sgn(2/c — n){ }λ2k n. In other words, ί and s are written as a

k=ι \kj
linear combination of each other and setting t = ί(ί1,ί2? ) and s = ί(s1,s2,...)» tne

relation can be written explicitly as

t = Cs,

where

I, if n ̂  m and « = m (mod 2),

0, otherwise.

Hence if we set

then
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As for the r matrix type there is a correspondence dSn = {Hn, }. By the above
equation we obtain (formal) Hamiltonian Hn corresponding to time tn as follows;

So far the result concerns the 1 -dimensional TL hierarchy.

3. Hamiltonian Structure of TL Hierarchy

/. Review of the Toda Lattice Field Theories of Olive and Turok (I). Here and
in the subsequent section we recall the theory originated from the quantum inverse
scattering method and applied to the Toda lattice by Olive and Turok [O-T2, 3].
In this section the generalized 2-dimensional Toda lattice of Mikhailov, Olshanetsky
and Perelomov [M-O-P] associated to an affine algebra g is transformed into
an equation in the principal subalgebra s of g by a special gauge transformation.
The transformed gauge potential makes it easy to write down the transition matrix
of the space direction and gives the conserved current, because of the abelian
property of 5. We generalize the theory to all affine Kac-Moody algebras, while
Olive and Turok worked only on the non-twisted case.

For terms of the theory of Kac-Moody algebras we refer to the standard
textbook [Ka], but to fix the notations we briefly recall what is needed. Let g = Xff
be an affine Lie algebra. We mainly use the following principal realization:

where g = XN9 a finite dimensional simple Lie algebra and g = ©g,- is its
/ι(κ)(κ>Coxeter number) gradation. The Cartan subalgebra of g is ϊ) = g0 0 Cc 0 Cd.

The Lie algebra, on which the whole theory lives, is

9 := [9, 9]/Cc ̂  0 QJ, QJ = λjβj,
ez

and decomposed as follows:

g = ϊ j ® n + © n _ ,

5:= g0 = Cartan subalgebra of g,

_
Λ+= £ et and A _ = £ fί are called cyclic elements of g, where ei and

i = 0 i = 0

fi (i = 0, . . . , / = rank of g) are Chevalley generators of g and x is the image of xeg
in g. The subalgebra of g,

is abelian and called the principal subalgebra of g (cf. [Ka] Chap. 14). § is graded:
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and the integers of the set which contains j with multiplicity dim δ7 are called
exponents, dim s,- ̂  1 in all cases but one: dim §7 = 2 when 9 = D^ and j = 2m — 1
(mod 2m - 2).

Hereafter we restrict ourselves to the cases dim gj ̂  1 for all j and denote the
set of positive (respectively negative) exponents as E+ (respectively £_). Fix the
basis of $j = CΛj(jeE±) so that (Aj\Ak) = δj+ko. ( | ) denotes the canonical
invariant bilinear form of g, which is non-degenerate on g. (Excluding the case
9 = D(2m ιs not essential at all, but only for the sake of simplicity of notations.)

The generalized Toda lattice equation in the sense of [M-O-P] is

of the unknown function M(Z, ί)eϊ), where

The class of functions considered is a suitable subring j/ = j/z of functions (or
formal power series) of ζ = (π/L)z and ί, closed under differentiation and exponentia-
tion. Here L is a (formal) parameter designating the period of the system, i.e. we
impose on u the periodic condition in z:

u is also regarded as a function on a cylinder S1 x R.
The solution Ύ(zl,z2, t) of the following Cauchy problem is called the transition

matrix from z1 to z2:

^T(z1,z2)=-T(z1,z2)β(z2),

T(z,z)=l. (3.1)

The monodromy matrix TL is defined as

which plays a central role in the quantum inverse scattering method.
The main goal of this section is to give the explicit form for the transition and

monodromy matrices, making use of "abelianization," a special kind of gauge
transformation.

Remark 3.1. TΓfz1, z2, ί) is considered as an element of siz\ ® <$#Z2 ® £/(g), where
is formal completion of the universal enveloping algebra of g. But we can use any
Z graded associative algebra containing g and its appropriate completion instead
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Now we define several gauge groups acting on (§) = (formal completion of g):

//:= (exp//! • • exp#JneN#i€c}} cCCrJ)]],

ATiHexp*!-

Let G = H or N± and A(z, t) be a function with values in (g). When A(z, t) is regarded
as a gauge potential with respect to z (e.g. β in the Toda lattice), gauge transformation
of A by g(z, t)eG is defined as follows:

A'(z, ί):= Ad to' Jμfe 0 + 3z0~ I(z9 t)g(z, ί)e(g).

Λ f f is algebraically well defined if:

• A: arbitrary gεH,
• Ae (+) λj§j for some N0; geN _,

j^No

• Ae (Φ) Λ/g for some ΛΓ0; geN + .
No^j

Example. The gauge potential Q is transformed by h + = /z ± 1 := exp ( + u(z, ί)/2) into

- dt)u + eadM + . (3.2)

Definition 3.2. fe<$/ is called /oca/ if / is a differential polynomial of coordinate
component of u(z, t).

Theorem 3.3. (Abelianization [O-T2]) There exist local functions g+(z,t)eN_,
g_(z,t)eN+ such that

a±(z,t):=(Qh+-r-e*. (3.3)

Proof. As g-eN+ is determined in the same way, we only show how g+eN_ is
determined. For simplicity of notations, we drop the sign +:h = h + ,g = g + ,a = a + .

First let Qk(z, ί), αk(z, ί) be elements of §Λ such that

e*= Σ e*. "= Σ«*
k g l f c ^ l

By (3.2) 6!=^=^ + ; Qh = Λ+ + β0 + ρ_! + . - - , α = Λ + +α0 + «-ι + •••- Take
g(z,t)eN_ of the form:

X Xk(z9t) Xk(z9t)e$k.
*i-ι /

Now we determine Xk recursively, so that (3.3) holds. By definition

= e x p a d - Σ ^ β Λ + Σ n-
V \ fcg-1 // k^-1

Here Yfc is a differential polynomial of X _ 1 5 . . . , AΓk. Taking the gk component of
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where T± is the solution of the following Cauchy problem:

T±(z,z)=l. (3.6)

Thanks to the abelian property of α+, i.e. a±es, (3.6) is explicitly solved:

- f α±(z)dz el/(i). (3.7)
z1 /

Therefore we obtain the transition matrix explicitly from (3.5) and (3.7),

Remark 3.5. T± is algebraically well defined by "rescaling" of z,

ι # = L/π, (3.8)

as a power series of JK.
The importance of α+ does not consist only in solving (3.1). In the next section

we regard α± as the generating function of mutually commuting Hamiltonians.
Here, before ending this section, we show that this gives conserved currents.

Next lemma is a consequence of Lemma 3.4 and used also in the following
section.

Lemma 3.6. ([O-T2]). Let C be such a gauge potential associated to an independent
variable y (e.g. t) that

C(y)e 0 g*, (respectively cMe

fcθ 9-k )>

/or JV » 0 0m/

(respectively [dz - a _, dy - C] - 0). (3.9)

Tften Ces.

Proo/. Lemma 3.4 yields the decomposition

where

cn= Σ
Π Z_J> _

Then, from (3.9),
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both hand sides, we see that

Bk:=ak-lXk_^Λ + ̂  (fc^O) (3.4)

is expressed as a differential polynomial of β0, ...9Qk9X-ί9...9 Xk.
We need several facts about the principal subalgebra of g. (This was not

mentioned by Olive and Turok, but (iii) seems essential.)

Lemma 3.4.

(i) In the principal realization of g = X(£\

*j = λJSf\ Λj = λjλp

where S(κ)= 0 S}κ) is κ-principal subalgebra of & Sj-κ) = S(κ) n$j and /ί7 eS}κ).
7eZ//j(κ)Z

(ii) S(κ) is a Carton subalgebra of g. Let Δs is the set of roots of g with respect to
S(κ) and eΛ(aεΔs) is root vectors. Then g is decomposed as

g = S(κ)Θns, n s=0Ceα
αe/4s

(this is obvious), and adA^ acts non-degenerately on ns.
(iii)

ns = 0 nsj, nsj:= ns n g,-, and g7= S}κ) ® ns>?

Admitting this lemma, we can set

Bk = λk(Bk)s + λk(Bk)s± (Bk)sεS(f\ (Bk)s±εns-k.

Being non-degenerate on ns, aάλ^ induces a linear isomorphism ns s -> nsjππ~»

are the desired solutions of (3.4).

Proof of Lemma 3.4.
(i),(ii) See [Ka] Sect. 14.2.
(iii) There exists an /ι(κ)-th order automorphism σ such that g = 0g- is its
eigenspace decomposition (cf. [Ka] Ch.8). Since Aί belongs to g1 ? the centralizer
of Aί9S

(κ\ is invariant under the action of σ.
Hence σ(eα)(αe/ls) is also a root vector with respect to S(κ). This means ns is

invariant under the action of σ. The eigenspace decomposition of σ\ns is

Using the above gauge transformation, the solution of (3.1), the transition
matrix, is written as:

with

g ( z 9 t ) = h±(z9t)g±(z,t)9 (3.5)
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The first term belongs to s, while the second belongs to ®λkns^k. Hence

[δI-α+,CJ = 0. (3.10)

Suppose Cn Φ 0 and fix N so that CnN Φ 0. Since α+ = Λ + + •••, the highest degree
term of (3. 10) is

[Λ + ,CnJV] = 0.

By definition of i, this means C^es, which is contradiction, i.e. Cn = 0, Ces.

For the solution of the Toda lattice equation

let Ad^ϊ1) act on the both hand sides to obtain,

[3 ϊ-fl±,3 ί-ft±]=0,
1)Jf + a r f l f ϊ 1 f l f ± . (3.11)

Lemma 3.6 says fc+es, and therefore (3.11) means

dta±=dzb±.

This shows that α± (or α± > f c) is the conserved current of the system.

2. Reviews of the Toda Lattice Field Theories of Olive and Turok (II). In this
section a+ (z, t) obtained in the previous section is shown to be a generating function
of mutually commuting Hamiltonians, provided that w(z, ί) is a (classical) free boson
field. The equation of motion with Hamiltonian density a±tk is written in the form
of 0-curvature condition between Q and a certain gauge potential Bk. We will
also see that Bfc's satisfy 0-curvature conditions mutually, and this 0-curvature
conditions = integrability condition allows us to introduce a non-local element
c± , ω+ of gauge groups, which simplify (3.7) and (3.5), as well as connect this theory
to the TL hierarchy. Again we closely follow the argument of Olive and Turok
[O-T2, 3], but avoid using Tr, so that representation independence is obvious.

Suppose there is the local simultaneous canonical commutation relation
between M(Z, t) and υ(z, t) — du/dt:

where subscripts α,6 specify orthogonal components of ϊ) with respect to ( | ).
(For exact meaning of the Poisson bracket {,} we refer to [G-Ch], [G-D].)

Then the fundamental Poisson relation:

{Q(z,t'9λ)®Q(z'9t ,μ)}

jeZ / jeZ

(3.12)

holds with the classical r matrix r = r±:

t oo / i i \ /
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Here tj is g-® g=y- component of I = (canonical tensor corresponding to ( | •) of g).
Belavin and DrinfeΓd [B-D] proved that these matrices satisfy the classical
Yang-Baxter equation:

I>ι2, r13] + [r12,r23] + [r13,r23] =0.

In order to give the equations of motion in the form of 0-curvature condition,
we proceed in two steps. First we prove

Proposition 3.7. ([O-T2]). Set

)ΛΛ9 Bn:=(l®Ln\-r+)29

)/!_„, £_„:=(! ®L_Jr_) 2 , (3 14)

for neE+.( | )2 indicates taking ( | ) of the second entries. Then Bn is such a local
gauge potential that

Q, _ α _ , , ( z ) d z = -p+[e,β-J. (3.15)

Proof. Again, for the moment, we are concerned with only ne£+ and a+.
Encapsulating the left side of (3.15) into

L -)
® J -a+(z)dz\,
' -L }

we calculate this, making use of the transition matrix obtained in Sect. 3.1.
According to the abelian property of α+,

' -L

= (l®T + (L,z)-1){ρ®T+iL}(l®T+(z,-LΓ1). (3.16)

As Q and g+ are local,

{ρ(z,ί)®0+(±M} = 0.

This with the explicit form of T (3.7) yields

{ρ®T + i L }=(l®ff + (^ίΓ1){ρβ)TL}(l®flf + (-L,ί)). (3.17)

The following important lemma is a consequence of (3.1), and due to the
Leningrad school.

Lemma 3.8. (Continuous Leibniz rule', [Fa], [Sk])

{ρ(*)®TL}= f (l®T(L,w)){ρ(z)®ρ(w)}(l®T(w,-L))dw.

Thanks to the fundamental Poisson relation (3.12) and (3.1), the right-hand
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side of this lemma is rewritten as follows:

= (1 ®T(L,z))[β(z)® 1 -f 1 <8>β(z),r](l ®T(z, - L))

= [β(*)Φ Ml ®T(L,z))r(l ® T(z, - L))]

--H1 ®T(L,z))r(l ® T(z, - L)). (3.18)
oz

From (3.5), (3.16), (3.17), Lemma 3.8 and (3.18), we get

' -L

where

As g + eHN_,K+ is well defined for r = r+.
( L ϊ

In order to extract <β, f — α+ _M(z)dz >, i.e. g(χ}/l_n component of (3.19)
I -L ' J

(ne£ + ), one only needs to take ( |1 ®An)2 = (-\An) of the second entry of both
hand sides. Since $ is abelian,

([fl + (z),x]|Λll) = (jc|[ΛII,fl + (z)]) = 0. (3.20)

Hence the last term of (3.19) does not contribute to the final result. The invariant
property also yields

and substituting this into (3.19), we obtain (3.15).

As the second step, so as to interpret (3.15) as 0-curvature condition, we check
the compatibility;

Proposition 3.9.

L

#±.:= P

are mutually commuting with respect to {,}.

Proof. Similar to that of the previous proposition.
{Hk,Hn} =0 (keE + ,neE±) is Λ-k®Λ_n component of

f e + (z)dz,#n = 0. (3.21)

Now we prove (3.21). Just like we get (3.17), the left-hand side of (3.21) is

f L )
I ] a + (z)dz,Hn[ = -g + (LjΓ1{SΛ^t\Hn} + Ύ + ,Lg + (L,tΓ1{gΛ^t),Hn}Ύ^L

[-L )
(3.22)
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By Lemma 3.8, (3.15) and (3.1), it is easy to see

(3.23)

Replacing (3.23) into (3.22), we obtain

J a + (z)dz, Hn } = - C + Ad (T+ ,L)C, (3.24)
— L

where

As T+>L£exp(i), the same argument as (3.20) shows that (3.24) implies (3.21).

Taking this proposition into account, we introduce new independent variables
xn (nεE±) conjugate to the Hamiltonian Hn. Thus (3.15) becomes the 0-curvature
condition

[3,-βΛn-*J = 0, (3.25)

as was expected.

Example. Honestly following the proof of Theorem 3.3, we obtain

that is,

*1+B-1

Hence we may identify z and t as

(3.26)

Now we study the gauge potentials Bn (ne£+ u £_ ) in detail, following [O-T3].
Because of the fact g+eHN+ and the explicit form of r = r + (3.13),

k^n k=Q

L_ π e 0 fc, B_ n e 0g_ t , (3.27)
k^-n k = 0

for neE+, and

|

(Ln)k, k > 0 (respectively k < 0),

i(Lπ)0, fc = 0 (respectively fe = 0), (3.28)

0, fc < 0 (respectively fe > 0),

for neE+ (respectively neE_). Here (x)k is the gfc component of x.
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Theorem 3.10. For all n, we£+ u£_,£n and Lm satisfy the Lax equation:

[dXn-£π,LJ = 0. (3.29)

Proof. Fix ne£+. Then

and, applying Ad^+Γ1 to (3.25), we obtain

ldz-a±,dXn-(Bny^ = Q.

So the assumption of Lemma 3.6 are satisfied. Hence (£wf ±es and

for any exponent m. Applying Ad(#±), (3.29) is proved. The case neE. is
similar.

Olive and Turok [O-T3] derive the 0-curvature condition:

(3.30)

from Lax equations (3.29) by making use of the classical Yang-Baxter equation.
But, noting that Bn is the "upper (or lower) half" of Ln (3.28), exactly the same
argument as the proof of Proposition 1.1 stands to prove (3.30) more easily. This
fact may suggest some interpretation of the role of the classical r matrix and the
classical Yang-Baxter equation in the theory of integrable systems.

Remark 3.11. Under the identification (3.26) the original Toda equation is recovered
as (3.30) n = l , m= - 1.

We now introduce non-local elements ω+ of gauge groups, which behave just

like wave matrices W& Of the TL hierarchy. As shown in the proof of Theorem 3.10,

Along with (3.28), it implies

(3.31)
ι^n :={nn) — /ιπes + ,

where

i+ = © 8,,
7'e£ +

δ- = Φ V
je£-

(3.30) is equivalent to
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therefore also equivalent to

ίdxn - c;,dxm - C] = dxmc; - dxnc+ = o,
L8Xn - C- , dxm - C-] = dXmC~ - dXnC~ = 0. (3.32)

They describe the integrability condition of the linear problems for C + es_ and

d C+ — C+

" n . (3.33)

Gauge transformation by c± :=expC±eN+ yields from (3.31),

Setting ω+:=g±c± =h±g + c±9 we obtain

Theorem 3.12.

dx±nω±=B±nω±-ω±Λ±n,

d*±n

ω+ =B±nω+,
L±n = Ad(ω±)Λ±n,

for neE+.

Remark 3.13. C* is determined up to an additive constant which is the initial value
of the system (3.33). Hence ω+ is unique up to a constant multiplier in exps.

Corollary 3.14.

T(z1,z2) = ω±(z1)exp(z1-z2)/l±ω±(z2)-1,

T±(z1,z2) = c±(z1)exp(z1-z2)/l±c±(z2)-1.

Proof. It suffices to check the defining equations of T,T±, i.e. (3.1) and (3.6), using
the identifications (3.26) and Theorem 3.12.

3. Generalized TL Hierarchy. The analogy of the TL hierarchy (Sect. 1) and the
system studied in Sects. 3.1, 2 is now obvious. Observing (1.1) α = 0 and (3.28), (1.3L)
and (3.29), (1.3ZS) and (3.30), (1.2) and Theorem 3.12, we present here a candidate
for the generalized TL hierarchy attached to the affme Lie algebra which includes
the system of Olive and Turok (Sect. 3.2 (3.29) and (3.30)) as a special case.

Let h0(x)εH, W(£\x)£N + 9W
(

0

co)(x)eN _ be unknown functions depending on
_), and set

. (3.34)

Here ()±t0 means

(*)+:= X xk, (*)-:= Σ xk, (x)0:=x0,
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for x = £x f c,Xfc e9fc We call the following system the generalized TL hierarchy
associated to the affine Lie algebra g:

<3X(Lm = [Bn,LJ, (3-35L)

for the exponents n, w, or equivalently

LdXn-Bn,dXm-Bm-] = 0. (3.35ZS)

Equivalence of (3.35L) and (3.35ZS) is proved similarly to Proposition 1.1 of Sect.
1, and parallel to Theorem 3.12 there exist wave matrices of the form

exp £β(*-), (3.36)

where

and £9(x±) = X *WΛΠ, which are the solution of the linear problem:
neE±

3XnW
(S>\x) = BnW

(~\X)9 (3.37)

for the exponent n. The characterization of the solution by the bilinear relation

T:= W(CG\x)W(™\x'Γ l = W(Q)(x)W(0)(x'Γ \ (3.38)

is also the same as the TL hierarchy of Ueno and Takasaki [U-T].
An important ingredient of Sato-type theory for integrable systems still lacking

here is the theory of generalized τ functions. This will be treated in the forthcoming
paper. A promising suggestion is found in [Ch2], and it must be closely related
to (and probably included in) the theory of generalized hierarchy [K-W]. The
intimate relations between the TL hierarchy and the KP hierarchy must inherit
in the above system, and should also be further studied (cf. Sect. 4)

4. The Case g = A\l\. In this section, apart from the general theory, we restrict
ourselves to the case g = ^ίL\ and investigate the relation of the TL hierarchy
and Hamiltonians in detail. When g is represented as infinite matrices, the
generalized TL hierarchy presented in the previous section is shown to be the
/-reduced TL hierarchy of [U-T], and the Hamiltonian obtained in Sect. 3.2 is
expressed in terms of the τ function. We keep the notations of the previous section.

It is well known [Ka] [K-R] that g = Aγ\ has a faithful representation as
Z x Z matrices, such that A eg is represented as

', Ate»ί(l,Q,

l-i Λ

where Ai = 0 for all but finite i. Exponents of g are integers φ 0 (mod h(κ} = /).
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The principal subalgebra is s= (J) CΛn,Λ± =Λ±l. (A is the shift matrix as
in Sect. 1.) ^o(mod/)

Theorem 3.15. The solution of the generalized TL hierarchy associated to A(*\ in
this representation gives the solution of the l-r educed TL hierarchy (α = 0 gauge) and
vice versa in natural way. That is, they are considered identical with each other.

In particular, ω + of Theorem 3.12 are wave matrices of the TL hierarchy W^™'.

Proof. Suppose the solution of the generalized TL hierarchy is given. Then in the
above representation Ln = (LJ" and L_ w = (L_l)

n for we£ + , and Bn's are identical
with those determined by (1.1) α = 0. We consider them as dependent on xn

(rc = 0(mod/)) trivially. Since they satisfy (3.35), they are solutions of the TL
hierarchy. Moreover, as h0 and W^^ are /-periodic matrices, (L±1)

l = Λ±l.
Therefore we obtain the solution of the /-periodic reduced TL hierarchy.

Conversely, suppose the solution of the /-reduced TL hierarchy is given. Using
the loop algebra representation of periodic matrix algebra, it is easy to see that

(L±)n and B±n are in A\l\ (cf. [U-T] Proposition 1.15 (2)). Let W(*\x) be wave
matrices and set

where u = diag [w(s)]. W(co} (respectively W(0}) is an /-periodic and lower (respect-
ively upper) triangular matrix with the diagonal part 1. Hence

( respectively X(0) = £ X(

k

0) ®Λk:= log W(0)}
V k>o J

is also /-periodic and strictly lower (respectively upper) triangular, though, in
~* ( 0 \ <^> i 0 \

general, ^°°JegI(/, C) and Xu; may not belong to g. But subtracting the trace part
which commute with /1±, we get JΓ^eg:

- Tr Jίjp Id,)® Λ\

and W\?)'.= expX^) gives the same L+ as W^*}:

L+ = M(h0W
(co))Λ+, L_=Ad(hό1

Clearly, (L±)π and B±n of the TL hierarchy satisfy the algebraic constraints for Ln

and B±n (3.34), and (1.3) says that they satisfy (3.35).
The last statement is obvious from Theorem 3.12.

Especially, the Hamiltonian system constructed in Sect. 3.2 is one of solutions
of the TL hierarchy.

As the TL hierarchy is entirely described by the τ function, Hamiltonian densities
of the system of Sect. 3.2 should also be expressed in terms of the τ function.

Theorem 3.16. In the notations of Sect. 3.2,

L

-L
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L

H-B= J pn(-dx_)dz\ogτdz.

For the definition of pj9 see Sect. 1.1.

Proof. Set in the matrix representation

7 = 0

and with an indeterminant A

7 = 0

ΣC±JΛ*\ c^f
7=0 J=0

(3.39)

7 = 0

7=0 j=0

ω±(s;l)= £ diag[ω+,.(s);μτ'.
7 = 0

(A is identical with that in principal realization of Q.) Then, as ω±=g + c+ and
c±=exp(C±),

ω±(s;λ) = g±(s;λ)c±(λ), c±(λ) =

Hence

Equations (3.33) and (3.26) imply dzC
±

j = a±^j9 i.e.

τ f// + μ^ '= ] d C^λfr. (3.41)
7 = 0 -L

Substituting (3.40) into (3.41), we obtain

T H±jλ*J= θzlogω + (s;A)dz- dz\ogg + (s;λ)dz. (3.42)
7=0 -L -L

As £ is local, the last term vanishes because of the periodicity in z. On the other
hand, being wave matrices of the TL hierarchy, ω± is described by the τ function
(cf. Theorem 1.7 [U-T]):

00 ^

log ω+ (5; /) = - iφ; x) + X pj( - dx + ) log τ(s; x)/t-J,
7 = 1

logω_(5;A) = iφ;x)+ f Pj(~dx_)logτ(s;x)λ^ (3.43)
7 = 1

Equations (3.42) and (3.43) prove the theorem.
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The fact that logω±(s;A) = logw^(s;>l) is generating functions of conserved
quantities, will be derived from completely different point of view in Sect. 4.

4. Conservation Laws for the Multi-Component KP Hierarchy

In this section, we extend the theory of conservation laws for the KP hierarchy
([Chi, W, Fl; Sa]) to the multi-component KP hierarchy. In particular conservation
laws for the 2-component KP hierarchy include the Hamiltonian densities of the
TL hierarchy embedded in it.

1. Reviews of the Multi-Component KP Hierarchy. First we recall the multi-
component KP hierarchy briefly, following the Appendix 1.3 [U-T].

The independent variables of the r component theory are x = (x(1 >,.. ., x(Γ)),
x(α) = (xiα),x(2α),...), and functions concerned belong to j/, a suitable differential
algebra of r x r matrix valued functions of x with the derivation

(4.1)

Let L, UΛ (α = 1, . . . , r) be the following micro-differential operators:

L = Σ ujSJ> with uj£<^> HI = Idr, MO = 0>
j*ι

u*=Σuj,*dJ> with Uj9Λes/9u0 = EΛ. (4.2)

£α is the matrix element (δ^δj^^j^. We assume that L and l/β's satisfy the
following algebraic conditions:

[L,UJ=0, [l/β,l/,]=0,

Σ t/α = Idr, UaUβ = δΛβUΛ, (4.3)
α = l

for α,/?=l,. . . ,r . Set

B<«>:=(L"l/α)+,

where P+ means the differential operator part of a micro-differential operator P.
The r component KP hierarchy is, by definition, the compatibility condition of
the linear problem,

LW = λW, UΛW=WEΛ,
djfW-ϊfW, «=1>"^»=U,..., (4.4)

where λ is a formal parameter, on which W depends. Explicitly, the KP hierarchy
is the following system of unknown functions M, , uj α for all α = 1, . . . , r, n = 1, 2, . . . :

d#L = [£),'>, L], dpUβ = [Biβ>, Uβ], (4.5L)

or equivalently

[3X?) - B%\ dw - B<f>] = 0. (4.5ZS)
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Suppose L and l/α's are a solution of the r component KP hierarchy. Then the
linear problem (4.4) has a solution of the form:

W(x;λ)= £ w7.(xμ-;exp( £ «x(«U)£β\ (4.6)
7=0 \ α = l /

with WjGjtf and w0 = Idr. Setting

ϊ^(x;3):= f W;(x)δ-' , (4.7)
j = o

we can rewrite (4.4) into

dxM W = Biβ) ί̂  - ^£αa
π. (4.8)

Matrix elements of W(x\λ) are written in terms of τ functions, τ and τΛβ:

where εβ(A) = (0, . . . , 0, &(λ\ 0, . . . , 0), ε(λ) = (λ, λ2/2, A3/3, . . .)• One of important results
of [U-T] is the embedding theorem of the TL hierarchy.

Theorem 4.1. ([U-T]). The τ function of the TL hierarchy τ(s;x±) coincides with
that of the 2-component KP hierarchy up to a signature factor under the
identification of the independent variables x(1) = x + ,x(2) = x _ ;

τ(x(1),x(2)) = τ(0;x±), τ12(x(1),x(2)) = τ(l;x±). (4.10)

For the correspondence between τ(s;x±), s^O, 1 and τ functions of the KP
hierarchy, see [U-T]. The statement cited above is the minimum of what .we need
(cf. also [T]).

2. Conservation Laws for the Multi-Component KP Hierarchy. Here we show that
the diagonal part (or exactly speaking, logarithm of the diagonal part) of the wave
operator W gives the conservation laws. The τ function is shown to be its generating
function, and the relation to the Hamiltonian densities of the TL hierarchy is
discussed.

As in Sect. 3 we call those functions local, which can be expressed as differential
polynomials of coefficients of L and C/β, i.e. u 3 and w j<α. Suppose there exists a
"good" boundary condition for a variable z = (a linear combination of xί,α)), under
which a local quantity is constant on the boundary; for example

• Periodic condition for L and ί/α,

L(z + Lz) = L(z - L,), UΛ(z + LΓ) = UΛ(z - Lz).

• Rapidly decreasing condition at z = ± oo for L and UΛ.

Then

$ dz (local quantity )dz = 0,
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where <f is the integration over the whole period I i.e. Periodic case: J Rapidly
V ~L*

00 \

decreasing case: J 1. The following proposition is trivial but fundamental.
-co/

Proposition 4.2. Let H(x) be a (possibly non-local) function, and suppose dxωH(x) is
local. Then

This means that §dΣH(x)dz is conserved with respect to xj,α).
We define

and

»/.(x, λ)=fH. J(xμ- '. (4.12)
7=1

Note that W is obtained by integrating L and UΛ9 and hence f/ and HΛj are not local.

Theorem 4.3. For α = 1, . . . , r, n = 1, 2, . . . ,

dxωη(x; λ) or, equivalently dxwHΛj is local.

By Proposition 4.2 this means §dzHaJ(x)dz is conserved with respect to any x^α).

Proo/. First we prove a lemma:

Lemma 4.4. WΛβ(x\ λ)/Wββ(x', λ) (α Φ β) is local.

Proof. From (4.9),

So, we need only to prove that ($ι(x))Λβ is local.
On the other hand, yltΓ the coefficient of λ~l in Uy(x;λ)=WEyW~\ is

Thus (w^x))^ is local, if α ̂  j8.
Set

W(x\ λ):= W(x; λ)e-η(x>λ). (4.120

By Lemma 4.4 this is local and as

it is an invertible matrix. Using these facts, the rest of the proof is the same as the
arguments of [Chi, Fl, Sa and Fu-T].
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Equation (4.8) implies

dxγW(x;d) = -(LnUΛ).(x;d)W(x',d), (4.13)

where P_:=P — P+. Using the Leibniz rule for micro-differential operators, we
can expand the total symbol of (4.13) as follows:

dxωW(x;λ)= £ £ (~J}v%(x)(arW(x',λ))λ-J-'. (4.14)
7 = l r = 0 \ Γ /

00

Here local functions ι;βt/s are defined by -(LnL/α)_ = £ v(βλ~j. Substituting (4.12)
7=1

into (4.14), we obtain

£ £ Y (~7 H ' Ji^U
; = l r = o f c = o \ r J\kJ 'J J

(4.15)

Note that (dkeη)e~η is a differential polynomial of dη and not off; itself. Therefore,
if dη is local, (4.15) proves the theorem, for the rest of the right-hand side of (4.15)
is local as already mentioned.

Now we prove that dη is local. Summing up (4.15) n = 1 for all α, we get

Bη(x',λ)

Γ ^ 00 00 Γ / / \ / V \

I ^—^ -̂̂  ^—^ 1 t 7 \ lr I J( j = i r = o f c = o \ r /\/cy
(4.16)

where ty = v(^] + + i;^1/. It is an easy induction to show the locality of SHΛj (and
hence the locality of dη\ comparing the coefficients of A~ J 's in (4.16). .

Equation (4.9) yields
ηΛ(x; λ) = log τ(x - εα(/l)) - log τ(x),

The conserved quantity obtained above is, by this formula,

In particular, when r = 2 and z = ̂ (x(

1

1) + x(

1

2)), and provided that the solution
considered is that of the TL hierarchy (cf. Theorem 4.1), then this is nothing but
the Hamiltonian obtained in Sect. 3, Theorem 3.16. These conserved quantities
and the coincidence of them play an important role in 2 dimensional field theory
(cf. [Fu-T]).

Finally we make some remarks on this point.

Remark 4.5. Applying the method adopted in Sect. 4 to the TL hierarchy seems
difficult, because the KP hierarchy is a system of differential equations while the
TL hierarchy is a differential-difference system. Exactly speaking, the last argument
in the proof of Theorem 4.3 does not work for the TL hierarchy.
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Remark 4.6. Conversely, applying the machinery in Sect. 3.2 to the KP hierarchy
is, at least for the present, impossible, since the fundamental Poisson relation for
the KP equation (or some reduced system of the KP hierarchy) has not yet been
found.

So, it remains still mysterious that the conserved quantities of 2 component
KP hierarchy and those of the TL hierarchy obtained through these methods
coincide. Satisfactory explanation should be found in future studies.
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