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Abstract. We study the existence of gyrostatic equilibria of slowly rotating
liquid masses subject only to the force of surface tension. We give a rigorous
proof of the existence of non-axisymmetric equilibria. The shape of such an
equilibrium approximates a number of spherical lobes connected by thin necks
and symmetrically arranged around the axis of rotation.

1. Introduction

The study of the gyrostatic equilibria of rotating liquid masses and their stability is
an old problem in Mathematical Physics. The subject probably starts with
Newton's discussion of the shape of the Earth in 1687. He modeled the Earth as a
homogeneous gravitating liquid and he proposed the figure of an oblate spheroid
as a gyrostatic equilibrium. The subject was developed by Maclaurin (1740),
Jacobi (1843), and Poincare (1885) who studied more complicated equilibria and
their stability.

In this century Lyttleton [Ly] and Chandrasekhar [Ch] made further
contributions. Also models with more forces were allowed, for example surface
tension, electrostatic forces produced by uniformly distributed electric charge, and
others. This gave crude models for heavy nuclei [B-W]. The interested reader
is referred to [Sw, C-P-S, Ly, and Ch], where he can find further references.

We are interested in the case when the only non-negligible force involved
(besides friction) is the surface tension. This subject started with the experiments of
J. A. F. Plateau [PI] who, although blind, produced an impressive amount of work.
To our knowledge, the most interesting recent work in this field is a numerical
study of the shapes and stability of rotating drops by Brown and Scriven [B-S],
and to which we will often refer in this paper. Experimental work in the space
shuttle has been carried out [W-T-C-E]. Tsamopoulos and Brown [T-B]
have further studied stability questions. The case of planar drops has also been
studied, see [B, L-M-R], where further references can be found.

We limit ourselves in this paper to studying slowly rotating drops, that is
gyrostatic equilibria which would be plotted close to the origin in Figs. 3 or 4 of



140 N. Kapouleas

A first positive
a.s.r. P(τ2,τ3)

A second positive
a.s.r. P(τ 4 ,0)

Fig.l

A first negative
θ.s.r. N(τ1( τ2)

A region of transition
from sphere to Delaunay

The projection of an initial surface of type (3,2)
to the x1x2 plane

[B-S]. Such equilibria have been systematically studied before only in the
axisymmetric case. In [B-S] the authors expect that the two-lobed family should
be extendable to the origin in Fig. 4, and the shapes corresponding to points close
to the origin should look like two spherical lobes connected by a thin neck. In this
paper we give a rigorous proof of the existence of such and of much more
complicated equilibria also. These shapes are symmetric with respect to a plane
orthogonal to the axis of rotation and look like a central spherical lobe around
which m (2^m^6) strings of n (n^l) spherical lobes each, are symmetrically
arranged. Each lobe is attached to its neighbors by thin necks. All lobes are to 0th

order (in the angular velocity of rotation or in the angular momentum) of the same
size. We call such a shape of type (m, n). We also have shapes which have a central
thin neck to which two symmetric "strings" of n (n g: 1) lobes each are attached. We
call these shapes of type (l,n). So the two lobed examples anticipated by Brown
and Scriven are of type (1, 1). All these shapes have maximum possible symmetry.
More precisely we prove the following theorem which is a less technical
restatement of the main theorem of the paper, Theorem 4.7.

Theorem 1.1. Given l^m^ό, rc ̂  1, α volume 1f of homogeneous liquid of density &
and surface tension &~, and an angular momentum £? smaller than a constant
depending only on the above, there is a shape of type (m, n) which allows this liquid
mass to rotate with angular momentum 3? in unstable gyrostatic equilibrium.

A similar theorem could be proved for driven rotating drops (see [B-S]) with a
prescribed small angular velocity instead of momentum. The proof is almost
identical to that of Theorem 1.1 and so the interested reader should have no
difficulty in adapting the proof we present to the angular velocity case.

The instability of the drops in Theorem 1.1 is proved in the sense of [B-S] (see
also [Ly], p. 25). We expect these drops to be unstable in any reasonable sense but
we will not attempt to discuss such questions in this paper.
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It would be interesting to carry out a numerical study of these new drops and
follow the evolution of each family away from the origin of Fig. 4 of [B-S].

We give now an outline of the proof and we describe intuitively the main ideas
involved. The approach is similar to the one in [K 1] and [K2]. We will always
assume that we have an orthonormal coordinate system (xί9x2,x3), where the
x3-axis is the axis of rotation and the x1x2-plane is a plane of symmetry. Then (see
the proof of 4.7 or [B-S]) having a rotating drop amounts to having an embedded
surface on which the Young-Laplace equation of interface configuration is
satisfied

where H is the mean curvature of the surface, R is the distance from the x3-axis, JΓ
is a constant which physically is the pressure difference between the two sides of the
surface where the x3-axis intersects the surface, J — \ R2 is the moment of inertia of
the enclosed volume, and the remaining constants are as in Theorem 1.1.

Now if we homothetically expand by a suitable factor we can reduce this
equation to

H=\+τR2, (1.3)

where τ is a small constant proportional to J£?2. To construct a surface of type (w, n)
satisfying (1.3) we first construct a surface M which approximately satisfies (1.3)
and then perturb it to correct the error. The surface which approximately satisfies
the equation is constructed by using as "building blocks" pieces of the unit sphere
and necks which are pieces of Delaunay surfaces. (See Lemma 2.1 for a description
of the Delaunay surfaces.) The transition from one piece to another is done on
annuli which support δH = H — \. (We adopt the convention that H = 1 on the unit
sphere 52(1) and on the Delaunay surfaces.) Each Delaunay surface is character-
ized by a parameter τ (see 2.1 again) and choosing the correct τ for each neck is a
major part of the problem. So we would like to find u e C°°(M) so that if X : M->£3

is the immersion of M in E3 and v : M->S2(1) its Gauss map, then X + uv : M->£3

gives the immersion of a surface Mu which satisfies (1.3). This leads to an elliptic
PDE for u. The linearization jointly in τ and u of this PDE turns out to be

(1.4)

where g is the first fundamental form of M, and \A\2 is the square of the length of the
\A\2

second fundamental form of M. As in [K 1] we define a new metric h = — ̂ — g and
then (1.4) becomes

Let Kg be the Gauss curvature of M with respect to the induced metric g. The
zero set of {Kg = 0} is a union of circles separating the necks of M from the lobes of
M. In the Λ-metric these circles have neighborhoods which look like thin necks. If
we remove these /i-necks we get connected components on which the Gauss map
is close to being an isometry (with respect to the ft-metric). We call each
component of M\{Kg = Q] an almost spherical region of M, a.s.r. for short. So an
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a.s.r. in the g metric is a lobe or a neck. If we substitute each a.s.r. of M with an
S2(l) we get MS(1), a disjoint union of S2(l)'s. We carry over the symmetries of M
to MS(1) in the obvious way and functions of M to functions on MS(1) by using the
Gauss map.

It turns out that the spectrum and the eigenfunctions of Ah + 2 on M can be
approximated in a suitable way by those of A + 2 on MS(1). This means that we get
small eigenvalues for Δh + 2 on M. We call the span of the corresponding
eigenfunctions the approximate kernel. We need the right-hand side of (1.5) to be
nearly orthogonal to the approximate kernel. This determines the τ-parameters of
the Delaunay necks used (see Lemma 3.8 and the definition of ζ[M], we have been
discussing now the M with ([M] = 0). The proof of Eq. (2) in the proof of 3.8 was
suggested to us by Kusner ([Ku], [K-K-S]) and this replaced a less conceptual
explicit calculation we had initially. The reader familiar with [K1] will also notice
that we use the τR2 term to "balance" the approximate kernel created by attaching
a single neck to the outermost spherical pieces of M. This is the crucial difference
which allows one to do this construction while it is impossible to have topological
spheres of constant mean curvature which are not round [H].

Working orthogonally to the kernel and doing higher order estimates in a new
metric χ (Lemmas 3.9 and 4.1) we can succeed now to find u such that Mu satisfies
(1.3) modulo a small element of the approximate kernel. This step is somewhat
complicated, mainly due to the fact that we need better estimates on the necks than
what we can get on the lobes. This aside, to correct for the approximate kernel we
construct a family of initial surfaces by perturbing M suitably. Each of these
surfaces has the right-hand side of (1.5) arranged to have an approximately
predetermined (by ([M]) projection to the approximate kernel (see 3.8). A
topological argument (Schauder fixed point theorem) then allows us to prove that
one of the initial surfaces M in the family has to give an Mu on which (1.3) is
satisfied precisely.

Finally, one would notice that if i^ £&, and ^"are specified precisely, then the
above method cannot specify <& precisely. We remedy this by playing the above
game with a range of fs and then choosing the correct one by a topological
argument again. All these choices of M, M, and τ have been incorporated in a single
argument, namely the proof of Theorem 4.7.

The paper has three sections besides the introduction. In Sect. 2 we define the
families of initial surfaces, the various metrics used, and study their properties. In
Sect. 3 we study the linearized equation and produce the linear estimates we need.
In Sect. 4 we estimate the quadratic error and we prove the main theorem by using
the Schauder fixed point theorem.

2. The Initial Surfaces

In this section we construct the families of initial surfaces we need. We start by
recalling the properties of the embedded Delaunay surfaces [K 1, Appendix A].

Proposition 2.1. For each τe(0,^) there is a unique embedded surface DS(τ) in E3

which has the following properties:
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(i) DS(τ) has constant mean curvature H=\.
(ii) DS(τ) possesses rotational symmetry: We write r for the function whose graph
x2 = r(xι) rotated around the xraxis gives DS(τ) and r attains its minimum at
X!=0.
(iii) There is p(τ)>0 such that x1 =n(\ +p(τ)) is a plane of reβectional symmetry
of DS(τ) (any integer n) and r is increasing on (0,1 + p(τ)).
(iv) There is a map Jft:R

2->DS(τ) given by

(u, v) r—+1 xv(u\ r(u) cos —pr, r(u) sin -± .- I ,

2J/W

dx
where r(u) = ]/τew, —r^ = ]/τewcoshw, X ι ( — Aτ) = Q, and w = w(u) is determined byv du v

d2w, λ sinh2w ^ (dw\2

 Λ 9 1
TTW+ — ό — =0' hH +cosh2w=—.du2 2 \duj 4τ

w is an odd periodic function, even around Aτ, and hence periodic with period 4AΓ w is
increasing on (0, Aτ) and positive on (0, 2Aτ).
(v) The first and second fundamental form of DS(τ) (pulled back by XJ are:

We have \A\2 = 2 + 2e~4w and the Gauss map is

= 2l/τ(ww, —
V

coshwcos — — , — coshwsin —

(vi) DS(τ) depends continuously on τ in the smooth topology.

(vii) As τ-»0, x^O)-^, x^AJ-tί, ^-^->oo,

JL^^-i P(τ) ) 1

logτ dτ ' τlogτ

Proo/ All this is well known, a possible reference is [K1]. Π

We write DS+(τ) and DS~(τ) for

{X e DS(τ): Kg(X) ^ 0} and {X e DS(τ): Kg(X) ^ 0}

respectively, where Kg(X) is the Gauss curvature of DS(τ) at X with respect to g. All
the connected components of DS+(τ) are identical up to translation and we write
P(τ) for one of them. Similarly the components of DS~(τ) will be denoted N(τ). We

write N(τ) for N(τ) enlarged homothetically by a factor of-. Let rτ: [ — ατ,ατ]->R
τ

and f t : [ — i>τ,feτ]-»R be functions whose graphs rotated around the x^axis give

P(τ) and JV(τ) respectively. Notice that aτ = x1(Aτ) — xί(0) and bτ=—— in the

notation of 2.1. Also r0: [ — 1,1] ->R and r0: R->R are defined by r0(*i)= 1/1—x?
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and P0(x1) = coshx1. We define also

S2

δ(l) = {(xl,x2,x3):x2

l + x2

2 + xl = l and x2-fx2^<52},

a subset of the unit sphere. We define Pδ(τ\ Nδ(τ\ and Nδ(τ) to be the preimages of
Sf(l) by the Gauss map v on P(τ), N(τ)9 and N(τ) respectively. Notice also that all
the connected components DS(τ)\v~1(Sδ(l)) are identical up to translation. We
write Aδ(τ) for one of them. Aδ(τ) and Aδ(τ) are defined to be DS+(τ)nΛδ(τ) and
DS~(τ)nAδ(τ) respectively.

We define now some more complicated building blocks we need for our

surfaces. Define rτ : [|/1— 9<52, aj ->R by

where t/^ R-^R is a fixed smooth non-increasing function with ψι(xι) = ί on

(— oo, I/I— 461) and VΊ(XI) = O on (j/1 — δ\, oo); where δl is some fixed constant

such that 3(5 x <sin— = -. We write A(τ) for the surface obtained by rotating the
6 2

graph of rτ around the x^axis. We define P(τ1?τ2) to be the connected smooth
surface which is the union of S\δl(\\ A(τ±\ and A(τ2) In other words P(τl9τ2) is a
spherical piece with A(τ^ and A(τ2) attached to it. P(τ, 0) is defined as the union of
S^δl (1), A(τ) and a geodesic disc oϊS2(l\ so that P(τ, 0) has boundary a single circle.
So P(τ, 0) is a spherical piece with one A(τ) attached. If 2 ̂  m ̂  6, we write 5m(τ) for
the connected smooth surface which is the union of the following:

(i) A subset of S2(l) which is S2(l) minus m geodesic discs. The centers of these discs
lie on an equator and they form the vertices of a regular m-gon. The circles making
up the boundary have all radius (in £3) equal to 3(5^
(ii) m A(φ.

In other words Sm(τ) is a spherical piece with m A(τ)9s attached symmetrically
around its equator.

We define now fτ ι t2: — fetl, — fet2 -»R by
L τι J

where ιp:Rh^ [0, 1] is a smooth nonincreasing function such that ψ = l on
(—00, — £] and ψ = Q on [^,00).

We call the surface obtained by rotating the graph of rτι T2 around the q-axis
^(τι> τ2) N(τι> τ2) is defined to be N(τί9 τ2) reduced homothetically by a factor of
T!. Notice that JV(τ l5 τ2) has a neighborhood of one of its boundary circles identical
to a subset of DS(τι) and a neighborhood of the other boundary circle identical to a
.subset of DS(τ2). [So does P(τl5τ2).] We define Pδ(τl9τ2) and Nδ(τί9τ2) to be the
preimages of S|(l) by the Gauss map on P(τl5 τ2) and N(τl9 τ2) respectively. 5^(τ) is
defined to be the closure of Sm(τ)\Λ, where A is the neighborhood of the boundary
of S^τ) which consists of m Aδ(τ)9s. We have the following lemma:
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Lemma 2.2. Given b large enough there is T(b) > 0 such that if τ, τ' e (0, T(b)) then

(i) ||rτ - r0 ||cfc(|yι _ 9<52, t _ 1/ft]) ̂  C(k, fe)τ,

(ϋ) l|rτ.τ'-Γollc f c ( [-6.

Proo/ This follows by considering the ODE's satisfied by rτ and rτ to deduce the
smooth dependence of the various functions on their parameters. See the similar
proof of [K 1, A.2.1] for more details. Π

This lemma allows us to compare the fundamental forms of our building
blocks with those of S2(l) and the catenoid.

Given now 2 ̂  m ̂  6 and a sequence {τjf= i (w ̂  1, τ/s small enough), we define
a smooth connected surface M which we call an initial surface of type (m, n) and
defining sequence (τj. M has the symmetries which S1"^) has, and it contains one
Sm(τι) which if removed leaves m rotationally invariant identical connected
components each of which is the union of the following: N(τί9τ2) attached to
P(τ2,τ3) attached to JV(τ3,τ4) and so on up to P(τ2n,0). We call N(τl9τ2) the first
negative almost spherical region, JV(τ3, τ4) the second negative almost spherical
region and so on. (This name is justified by Lemma 2.4.)

We write a.s.r. for short for "almost spherical region" from now on. We call
P(τ2, τ3) first positive a.s.r., and so on.

Given m= 1 and {τjf"^ 1 we define as above a surface M which is rotationally
invariant around the x^axis and contains an NfrJ whose removal gives two
identical connected components each of which is the union of the following:
P(τl5 τ2) (first positive a.s.r.) to which ΛΓ(τ2, τ3) (first negative a.s.r.) is attached and
so on up to P(τ2π_1,0). The x2x3-plane is a plane of symmetry for M.

Now suppose M is as above with m = 1 or mφ 1. We call each of the P(τ,τ'),
N(τ9 τ') or Sm(τ) contained in M an a.s.r. of M. We define

M+ = {XeM:Kg(X)^0} and M~ = {XeM:Kg(X)^Q} ,

then M+ is the union of the positive a.s.r.'s [which are P(τ,τ')'s and Sm(τ)]. M~ is
the union of the negative a.s.r.'s of M which are N(τ9 τ')'s.

If S is an a.s.r. contained in M, we define SδcS to be S$(τ)9 Pδ(τ,τ'\ Nδ(τ,τ')
respectively if S is Sm(τ), or P(τ, τ') or N(τ9 τ'). Mδ stands for the union of all S/s
where S is any a.s.r. of M. M/ and M$ are MδnM+ and Mδr\M~ respectively. M^
is the closure oΐM\Mδ9 M/'0, and M5~'° are M^uM+ and M£uM~ respectively.
Notice that if δ<δl9 then Mδ is the union of Λ^\ where τ, belongs to the
defining sequence of M.

Let VmtΛ be the Banach space of sequences ({Ij, (AJ) which assign to an ίth

positive a.s.r. of some initial surface M of type (m, n) the number Jί5 and to an z'th

negative a.s.r. the number λf. The norm of Fm „ is the supremum norm. Clearly Vm^n

is just R2/ί(mφl) or R2 π~1(m=l) with a special interpretation. We define

S(q,q) = {({IJ, μ£}) : |Ij < §, |AJ < q} .

We proceed now to describe the families of initial surfaces we will need. We
define F to be a parametrized family of initial surfaces of type (m, n) and parameters
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(τ, Σ, Σ) if the following are true:

(ii) If M is an element of F, then it is a surface of type (m, n). To each M e F we
associate a τ[M] 6 (^τ, 2τ) and ί[M] e 1̂ .̂ We call τ[M] the τ parameter of M and
C[M] the configuration of M. If {τj is the defining sequence of M then C[M] is
defined as follows:

To an zth positive a.s.r. we associate ζt defined by:

Γ,τ = 2π(τ2ί+1-τ2i) + 2τ J
S

Γίτ = 2π(τ2ί-τ2i.1) + 2τ f
S2(l)

where τ stands for τ[M], S2(l) = {xf + x2 + xf = 1 }, and the integral is taken with
respect to the standard metric. (τ2n + 1 = 0 if m ̂  2 and τ2n = 0 if m = 1 of course). To
an zth negative a.s.r. we associate ζt defined by

ίίτ = 2π(τ2ί-τ2ί_1) (

Then we require that the map

M-+(τ[M],C[M])

is a bijection from F onto [̂ τ, 2τ] x 2(Γ, Σ). We write M[τ, C] for the surface
corresponding to (τ,Q under this correspondence. Notice that there are
Cl = C^m, ή) and C2 = C2(m, n) such that, if M e F contains in its defining sequence
some τi9 then

C 1 τ<τ ί <C 2 τ.

The existence question for such families is settled by the following lemma:

Lemma 2.3. Given integers m, n with 1 ̂  m ̂  6 and n^l there are T(m, n), Σ = Γ(m, n),
Σ = £(m, n) positive constants such that if ' τ e (0, T(w, n))? ί/zere is α family F of initial
surfaces of type (m, n) and parameters (τ, Σ, Σ).

Proof. This is a straightforward construction. To construct each M we calculate
τ2π(m^2) or τ2 l l_ι(w = l) first and then proceed inductively to τ 2 M _ 1 ? τ 2 M_ 2,
etc. Π

From now on we fix the type (m, n) of initial surfaces for the rest of the paper
unless otherwise stated. Suppose M is an initial surface in F with a family of
parameters (τ,Σ,Σ). Assuming that the parameters are small enough for the
definitions to make sense, we define two new metrices on M by

\A\2

/z=— g and χ = ρ2g = (ί-ιp)h + ιpχf,

where ψ and χ' are defined as follows:

Fix some absolute constant <52<yfr<5ι to guarantee that M%δ2 is a union of
^4<52(

τί )'s Consider one of them and assume without loss of generality that its axis
is the X-axis, ψ on this Λ4ό (τ£) is a smooth nonincreasing function of v' = J
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only, where v = (v1? v2, v3) is the Gauss map. Furthermore ψ(v') = 1 for v' < 3δ2 and
ψ(v') = Q for vf>4δ2. On M4δ2 define ψ = l. χ' is defined on DS(τ) [and hence on

^452(
τΐ)] to be ̂ e push-forward by Xτ oϊ-(du2 + dv2) in the notation of 2.1. So χ

transits smoothly from h on M402 to χ' on M£2.
We also define a metric g on Mδ by g = g on M/ and g = τ~2g on M^~.
We define two metrics gt and g2 on some domain Ω to be equivalent by a

sequence of constants {Ck}£°=1 if and only if

The following lemma describes the relation between the various metrics, and
their properties, we will need later:

Lemma 2.4. There is a positive absolute constant such that if the parameters (τ, Σ, Σ)
of a family are smaller than it, then the following are true:

(i) For each (τ, ζ) e [^τ, 2τ] x Ξ(Σ, Σ) there is a smooth diffeomorphism D-τ ^: M[τ, 0]
->M[τ, (] which depends continuously on (τ, ζ) and has the property that χ and £-*ζχ
on M[τ, 0] are equivalent by a sequence of universal constants.
(ii) If MeF, then the area of Mδ with respect to the h-metric is bounded by a
universal constant times δ2.
(iii) If Ω1CΩ2 are domains inMeF such that the h or χ-distance of Ω^ from dΩ2 is

( \A\2\
at least δ, then if ueC2*Λ(Ω2\ feCQ>\ΩΛ and Δy + —τ-]u=f9 then

V Q J

(This is a Schauder estimate for the particular case we will be interested in.)
(iv) If MeF and /eC^M), then we have a Sobolev estimate

Given δ>0 there is T(<5)>0 such that ifτ<T(δ\ then the following are true as
well:
(v) // M e F, then the metrics h, g, and χ on Mδ are all equivalent by a sequence of
constants depending only on δ.
(vi) If M^F then

where v*g is the pullback of the standard metric of S2(\) by the Gauss map.

Proof. We refer the reader to [K1]. Π

3. The Linearized Equation

Suppose X:M-^E3 is the smooth immersion of some initial surface M and
v: M->S2(1) its Gauss map. It turns out (see Sect. 4) that if X + uv is an immersion
for some u e C2(M\ then
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where H(u) is the mean curvature of X -f uv pulled back to M and Q(u) is the
linearization error involving quadratic and higher order terms in u and its
derivatives.

The linearized in u (and τ) equation for our problem (properly rescaled, see
Sect. 1) can be written in one of the following forms:

u = 2τR2-2δH, (3.1)

-*yg. (3-2)

\A\2 2τR2-2δH
V+^2-«= -2 (3-3)

where τ = τ[M], M is an initial surface.
The second of these forms turns out to be useful for C° estimates on u, while the

third one for C2'α estimates. Before we can estimate anything we need to
understand the spectrum of the linearized operator. We will need some definitions

\A\2

we provide now. We write Lh for Ah + 2 and Lχ for Δχ-\—T. We adopt the

convention that all the functions we consider on any initial surface M have to
respect the symmetries of M. In other words we can think of these functions as
defined on M/G rather than on M, where G is the finite subgroup of 0(3) which
preserves M and the x3-axis (the axis of rotation). We define the approximate
kernel E of Lh on M to be the span of those eigenfunctions for Lh on M which
correspond to eigenvalues in [ — 1,1]. We write P for the orthogonal projection of
L2(M,h) onto E. Remove now from M the circles where Kg = 0. Consider the
Dirichlet problem for Lh on the resulting (disconnected) domain. We define E to be
the span of the eigenfunctions for this Dirichlet problem whose eigenvalues lie in
[ — 1,1]. We write P for the orthogonal projection of L2(M, h) onto E.

Consider now a collection of unit spheres in one to one correspondence with
the a.s.r.'s of M, we call their union MS(1). We define v : M-»MS(1) by demanding
that if S is an a.s.r. of M, then the restriction of v to S is the Gauss map of S mapping
to the sphere of MS(1) corresponding to S. We let G act on MS(1) by isometries and
so that v is equivariant under the action of G on M and MS(1). Let E' be the kernel of
A +2 on MSΠ), or rather, according to our convention, on MS(1)/G. Let
E = {fo v:feE}. E has dimension 2n if m> 1 or 2n — 1 if m= 1. Define 77 to be the
orthogonal projection of L2(M, h) onto E.

We have now the following lemmas whose proofs we omit, the reader is referred
again to [K1] where similar statements are proved. In the following M is some
surface in F, and F is some family of initial surfaces of parameters (τ, Σ, Σ).

Lemma3.4. There is Σί>0 such that given ε>0 there is T1(ε)>0 such that if
τ< T^ε), Σ<Σί9 /eC°'α(M) orthogonal to the approximate kernel E, then there is
weC2'α(M) such that u is also orthogonal to E, Lhu=f, and

for any almost spherical region S of M.
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Lemma 3.5. There is Σ2>Q, and given ε>0, T2(ε)>0, such that if Σ<Σ2 and
τ<T2(ε\ then

(i) ||P-P||<β.
(ii) IIP+ — Π+II <ε, where P+ and Π+ are the restrictions of P, Π to the space of
functions supported on M+.
(iii) The approximate kernel of Lh on M has dimension 2n — \ (m = 1) or 2n (m ̂  2).

Lemma 3.6. Given ε > 0 there are Σ3(ε) > 0, T3(ε) > 0 such that if τ< Γ3(ε), Σ < Σ3(s),
then

(i) ||P-JI|| <ε.
(ii) Lh on M has no eigenvalues in [ — 1, — ε]u[ε, 1].

The above lemmas enable us to understand the spectrum of Lh well enough for our
purposes. Notice that Σ3 depends on ε while Σ2 does not. In the next lemma we
produce the estimates for the right-hand side of (3.2) and (3.3) we need. We adopt
some new notation: (δH)+ is =δH on M+ and =0 on M~, (δH)~ is =δH on M~
and =0 on M+. δH = δH+ + δH~. δH+ and δH~ are smooth functions because
δH = 0 on M£ for τ and δ small enough. We define also

-T.L^J.V -r ,̂ 2τ[M]£2-2((5J7)+

Λ ~ μϊp ' Jχ~ e '

f2= -4\A\~2(δHΓ , f2=-2ρ-2(δHΓ .

Notice that // +/h

2 and // +// are the right-hand sides of Eqs. (3.2) and (3.3)
respectively.

Lemma 3.7. There are fe1? Σ4, T4 > 0 such that if Σ < Σ4, τ < 7 ,̂ ί/ien the following are
true:

Proof. The required estimates for (δH)~ and (δH)+ follow from Lemmas 2.2 and
2.4 (v). (See [K1] for more details.) We produce now the required estimates for R2.
Recall the definition of ρ and χ. We subdivide M into the following pieces and we
estimate on each of them: On M £ it is clear from 2.2 (i), 2.4 (v), and (vi), that we can
assume

II Ml R \\L2(Mό+2,h)=C 9 \\Q ^ Hc1(M(5

+

2,χ) = C'? U)

where we used also that if (τj is the defining sequence of M, then Clτ<τi<C2τ.
Now let A02(τ) be one of the components of M£2. Then using the notation of 2.1 (iv)
we have

4 ρ ~ 2JR2 = τe2w ( x2 (u) + τe2w cos2 —Γ

where ρ~2R2 has been pulled back to a subset of R2 by X and A02(τ) is assumed
without loss of generality to be rotationally invariant around the xraxis: X is Xτ

up to a translation in the direction of the x^axis.
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The pullback of χ to R2 is τ " l(du2 + dv2) and so abusing slightly the notation
we have

2]/τl ω

where 2.1 was used. Similarly on A02(τ) we have \\τe2w\\cί(χ)^C while on
where w^O we have ||e2w||cι(χ)^C. Combining with (1) we get

(2)

By(l),2.1(v),and2.4(ii),

\\\AΓ2R2\\Lι(U.^C. (3)

On Λs2(τ) we similarly estimate by using 2.1 that

f ιΓ7dt? ^Cτ. (4)
i /

Now let Nδ2(τ, τ') be one of the components of M .̂ By homothetically enlarging
the picture by a factor of τ we will have R = Rτ ~ 1 to be the distance from the x3-axis
on the enlarged Nδ2(τ, τ'\ that is on a N02(τ, τ'). There we have

by 2.2 (ii), where g = τ~ 2g is the induced metric on Nδ2(τ,τ'). But then (2.4) (v) and
(vi) allow us to conclude that

(5)

Combining (2), (3), (4), and (5) we conclude the proof. Π

We define now on the unit sphere xl + x^ + x^l a smooth function η. η is
some fixed function of the x1 coordinate only, supported on\x1\<j$, and satisfies

/L2(s2(i» — ~~

Suppose now S is an /th positive a.s.r. of M, without loss of generality S is
rotationally symmetric around the x^axis. We define w* to be η o v on S and to be
supported on S and its images under G (where it is defined by our convention that
all functions are invariant under G). Similarly we define w1 to be η o v on an z'th

negative a.s.r. of M (whose axis is the q-axis) and to be supported on the z'th

negative a.s.r.'s of M. Notice that by 2.4 (v) and (vi) the C"(M, χ) and L2(M, h) norms
of the w"s and the wί9s are bounded uniformly. From now on we drop the indices
m,n from Vm „ and we write V instead. We define <9M: K->C°°(M) by ({Ij, {λt})
^ΣXW + ΣAV. If A = ({!,}, μ£})6 K we write λ+ and λ~ for ({Ij, {0}), ({0}, μj)
respectively. We also write C+[M] and C~[M] for (C[M])+ and (C[Af])~
respectively. The following lemma allows us to understand (implicitly) the
approximate kernel content of the right-hand side of 3.2.
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Lemma 3.8. (i) Given ε>0 there is T(Σ,ε) such that if τ< T(Σ9e), then

(ii) Given ε>0 there are Σ5(ε) and T5(Σ,ε) such that if Σ<Σ5 and τ< T5, then

Proof, (i) Assume m Φ 1, the other case being similar. Because of 3.7 (ii), 2.2 (i), and
2.4 (ii) and (vi), it is enough to prove that if S is an ith positive a.s.r., then

K/Λvi^/o + C^i^, (1)

where without loss of generality the axis of 5 is the x^axis and v = (v1? v2, v3) is the
Gauss map of S.

2.2 (i) and 2.4 (ii) and (vi) imply that

2 J &Στ. (2)

Now extend 5 to § by attaching to it subsets of DS(τ2ί+ i) and DS(τ2i) so that dS
consists of circles of minimum radius perpendicular to the axes. (We assume m ̂  2,
the case m= 1 differs only in notation.) By Lemma 2.1 (iv) one of the circles has
radius τ2i+1 + 0(£2) and the other one τ2ί + 0(£2). Now we have

where dg is the measure with respect to the induced metric g by the immersion
X = (Xi9X2, X3) of S into E3. Then an integration by parts gives

Also by extending suitably S to a closed surface and using the divergence theorem
we conclude that Λ 7 ^

<\εΣτ. (3)

Then we conclude

ί + 1-τ,)-4|^v

(2) and (3) imply (1).
(ii) This is similar to the proof of (3) in (i). Π

We fix now once and for all real numbers 0<α<α<l. We will write M for
M[τ,0]. We have the following lemma in which estimates are provided for the
solution of the linearized problem.

Lemma 3.9. There is b2 > 0 such that given ε > 0 there is Σ6(ε) > 0 such that if
Σ<Σ6(ε) and (5>0, there is T6(ε,δ,Σ,Σ)>0 such that if τ<Γ6, then there are
continuous maps:

λ: [|τ, 2τ] x Ξ(Σ, Σ)^Ξ(εΣ, εΣ), $: βτ, 2τ] x Ξ(Σ, 1
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such that the following are true:

(i) Lhu=ti+fh

2-τΘM(ζ + λ(τ,ζ)) for any ζeΞ(Σ,Σ)9 τe[iτ,2τ], where
u = (j)(τ,ζ)°D-τ ^ζ1, M stands for M[τ, (] and /,/, /h

2, and Lh are defined on M.

,

(iii) The C2'α norm on M5 with respect to χ satisfies \\u\\c2>Λ(Mftχ)^b2Στ.

Proof. Wefix some (τ, ζ) e βτ, 2τ] x Ξ(Σ, Σ) and we write M for M [τ, ζ]. We define
ΘM = P o <9M. We will specify 62, Γ6, and Γ6 as we carry out the proof. We claim
we can choose Σ6 and T6 small enough to ensure that ΘM is an invertible map onto
the approximate kernel of Lh on M. By Lemma 3. 5 (iii) it is enough to check that
ΘM has trivial kernel.

2.4 (vi) implies that ||<9M||<C and ||(jHo0M)~1 | |<C, where the inverse of
Π o ΘM (as a map onto its range) exists. But then by Lemma 3.6 (i) if μ e V9

\\ΘM(μ)\\ ^ \\ΠoΘM(μ)\\ - \\(Π-P)<> ΘM(μ)\\ ^ C\\μ\\ , (1)

provided we choose T6 and Σ6 small enough. This proves our claim.
We can define now the maps λί9 λ2, and λ from [τ,^τ] x Ξ(Σ9Σ) into V by:

τλΛτ, 0 = ̂ M1

Ϊλ2(ϊ, C) = 0M1

Then clearly Λ =/„> - τΘM(C+ + λ,(τ, Q) and /2 =// - τΘM(ζ ~ + λ2(τ, ζ)) are ortho-
gonal to the approximate kernel of Lh on M.

(1) shows that Hβ^ll-cC, so Lemma 3.7 and the definitions allow us to
conclude

H^IKC, \\λ2\\<CΣ, (2)

where we abuse the notation by writing Λ t and λ2 instead of λ^τ, ζ) and A2(f, ζ) (2)
implies then that

H/ιW.w<Cf, ll/2l|L,(M,Λ)<C2:τ. (3)

Since P/Ί =0 and Pf2 = Q, Lemma 3.5 (i) allows us to choose Γ6 and Σ6 so that to
guarantee

l|ίί/ill^(M.*)<βιί f, (4)
where ε^ = ε^Σ, Σ, δ, ε) > 0 is to be determined later. Let /i+ and /f" be defined by
fi+=fι on M+, /!~=/! on M~, and /ι=/ι++/Γ Lemmas 2.4 (vi) and 3.5 (ii),
allow us to assume that ||Pvvl ||L2(M,Λ)>C so together with 3.7 (ii) we conclude

Then (4) and 3.7 (ii) allow us to conclude

μΠI<Cε1 ? ll/ιllL^-,Λ )<Cβ1τ. (5)

(3), (4) and Lemma 3.5 (ii) allow us to conclude by choosing T6 and Σ6 suitably that
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where ε2 = ε2(ε)>0 is to be determined shortly. Referring to Lemma 3.8 (i) we can
conclude

(6)

(7)

which implies

\\λϊ\\<Cε2Σ.

Now (3) and Lemmas 3.6 (i) and 3.8 (ii) allow us to conclude that

μ2||<Cβ2Σ.

By choosing ε1 and ε2 suitably, (5), (6), and (7) allow us to conclude that λ = λί + λ2

maps into Ξ(εΣ9 εΣ).
There are ul and u2 is C2'α(M) which are orthogonal to the approximate kernel

and satisfy Lhu1 =fi9 Lhu2=f2. We define u = u1-\-u2, then the equation in (i) is
satisfied. (3) implies

(8)

Also (3), (5) and Lemma 3.4 allow us to conclude

(9)

Standard elliptic theory (Theorem 8.17 of [G-T] modified to a manifold setting
where use of the uniformity of the constant in 2.4 (iv) is made) allows us to conclude

τ, (10)

where we know that the ft-distance of M^2 from dM~ is larger than C(δ) by
\A\2

referring to Lemma2.4(vi). We have now L7Lui=—-^fi (ί = l,2), and by Lem-

mas 3.7 and 2.4 (v), and (5), (6), and (7), we can assume

Ml2
\A\2

\A\2

C° α(M-,χ)= ̂ fc'lτ

Then Lemma 2.4 (iii) allows us to conclude

By choosing εί small enough we conclude from these estimates parts (ii) and (iii) of
the lemma.

It remains only to prove the continuity of λ and <β. The continuity of λ follows
from the fact that P depends continuously on Lh and ft, and the continuity of the
various constructions. (We pull back everything to M by D-τ ζ.) This implies that
(/ι+/2)°^τ,ζ depends continuously on τ,£ as an element of C°'δ(M). We define
projections Pτ,ζ;o and ^τ,ζ;2 in C°'δ(M) and C2'δ(M) respectively by:
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These projections depend continuously on τ, ζ. Then define L-τ ζ from the range of
P-τ ζ;2 to the range of P-τ jζ;0 by

Notice that the ranges of J\ζ;2 and P-τ>ζ;0 correspond to the orthogonal [with
respect to the L2(M, h) inner product] complements of the approximate kernel of
Lh on M[τ,Q in C2'δ(M[τ,G) and C0'δ(M[τ,C]) respectively. So standard linear
theory implies that L-τ ζ has a bounded inverse. Since L-t}ζ depends continuously on
τ, ζ, and P-TjC;05 P-τ,ζ,2 are the identity on their ranges, we conclude that L~l o P-t)ζ;0

depends continuously on τ,ζ. Since $(τ,0 = L^ 0-P-τ,ζ, o(/ι+/2)0^τ,ζ? <? *s con"
tinuous and the proof is complete. Π

4. The Main Theorem

In this section, we first provide estimates for the linearization error (Lemma 4.1)
and then we prove the main theorem by combining all the estimates we have.

Suppose now F is a family of initial surfaces of parameters (τ, Σ, Σ) and M e F as
usual. Let v:M->S2(l) be the Gauss map of M. Let veC2(M) be such that
X 4- i v : M-»E3 is an immersion of M in E3 and vv : M-»S2(1) is its Gauss map. We
write Mv for the surface which is the image of X + vv. We define the following
functions on M:

, Fχ(v) = F%(v) + F*(v),

where Rv and Hv are the distance from the x3-axis and the mean curvature function
on X + vv respectively, both pulled back to M by X + vv.

Lemma4.1. There is ΣΊ>0 such that given ε>0, there is 63(ε)>0 such that given
a E (0, &3) and b > 0, there are <5(ε, α, b) > 0 and T7(ε, α, 6) > 0 such that ifΣ<ΣΊ,τ< T7,
φeC2(M),and

then the following are true:

(i) X + φv:M-+E3 is an embedding.

(ii) \\Fh(φ)\\L2(Mth}£εaτ, \\Fχ(φ)\\co,«(M,

Proof. Such a statement is proved in [K 1] for Ff and Ff instead of Fh and Fχ in (ii).
That proof is straightforward but long and we omit it here. We have still to prove:

We break the estimates into estimates on M/2, M £2, and M 2̂ (δ2 was defined in the
definition of χ). Lemmas 2.2 and 2.4 (v) allow us to ensure

2. (1)
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M°2 is a union of Λδ2(τ)9s. Consider one of them, without loss of generality it is

immersed into E3 by a map (xl9x29x3) = Xτ + (a9Q9Q)9 where a is a constant

[depending on the particular Λδ2(τJ] and Xτ:lR
2-^E3 is defined in 2.1. Recall the

notation of 2.1, we calculate

RΦ = (*ι(κ) + 2]Λ0W«)2 + τ(ew - 2φ cosh w)2 cos2 -^-=,
2]/τ

.1 2,

2

where all functions have been pulled back to R2, and

— FR(φ) = 4]/τφx1 WM + 4τφ2w2 — 4τφe™ cosh w cos2 —-=
21/τ

+ 4τφ2 cosh2 w(ι?) cos2 — .̂

Recall χ = τ~ί(du2 + dv2)9 by referring to 2.1 we conclude that

\\FR(Φ)\\cι(MS2,χ^C(b + b2)τ.

This implies [recall 2.4 (ii)]

\\Fΐ(Φ)\\v(M°d2,^C(b + b2)τ2, \\FR

χ(φ)\\co,«(Mg2,χ)ίC(b + b2)τ2, (2)

where we used |^4|~2<2 and ||^2wτ||cιω<C, which follow from 2.1. Now to treat

the case Mδ2 we homothetically expand everything by a factor τ. Then

Lemmas 2.4 (v) and 2.2 (ii) imply that

b3τ\ (3)

and by using also 2.4 (vi)

3P. (4)

By choosing T7 small enough we conclude the proof by combining (1), (2), (3), and

(4).

Theorem 4.7. Suppose we are given a certain volume i^ of a liquid of surface tension
ZΓ ana density @t. Then given an angular momentum j? smaller than a constant
JX^,^,^), the following is true:

There is a family F (of type (w, n)) and parameters (τ, Σ9 Σ), an initial surface
MeF, a (small) smooth function v on M, and a constant d, such that Mv

homothetically expanded by a factor d is an embedded surface enclosing volume i^
and satisfying Eq. (1.2) for a rotating in gyrostatic equilibrium liquid drop of
volume i^9 surface tension &~9 and density 3). This rotating drop is unstable in the
sense mentioned in the introduction.

Proof. We can formulate the problem of the rotating drop in terms of the total

energy known as the Routhian

&>2

R = 3Tjtf + — — - &(Ϋ - TT) and the constraint ̂  = TT , (1 )
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where si is the surface area of dΩ, $ — \ R2 is the moment of inertia of Ω around the
Ω

x3-axis (JR is the distance from the x3-axis), "Γ is the volume of ί2, and Ω is the
domain in E3 occupied by the liquid mass at some time.

Then it is easy to calculate the first and second variations of (1) to conclude
that:

1. Gyrostatic equilibrium amounts to having the Young-Laplace equation

satisfied on dΩ, where H is its mean curvature and Jf = — - is essentially a
Lagrange multiplier.
2. Stability amounts to

0VI2H~^ (3)

for all φeH\(dΩ) with \ 0 = 0, where X = (xi9x29x3):dΩ->E* and
dΩ

are the immersion of dΩ into E3 and its Gauss map respectively.
The reader is referred to [B-S] for a brief discussion of the physics of (1), (2), and

(3) while the calculation of the first and second variations of (1) is straightforward
and the reader would have no difficulty in checking. Suppose now M is an initial
surface and t>eC°°(M) and Mv is an embedded surface satisfying

(4)

and enclosing volume ir(M9v)9 whose moment of inertia is tf(M9v). Let

I ' \

d= I I . Then if we homothetically expand MΌ by a factor d, we

obtain a surface dΩ enclosing a domain Ω. This is a solution to our problem
provided that

Let now Ω0 be the union of unit balls in E3 characterized by:

(i) Ω0 has the symmetries which an initial surface of type (w, n) has.
(ii) It contains the unit balls with centers at the origin, (2, 0, 0), (4, 0, 0), . . ., (2n, 0, 0)

if m^2. If m=l, Ω0 consists of the unit balls with centers at (±1,0,0),

(iii) There are no other balls than the ones in (ii) modulo the symmetries of Ω0.
In other words Ω0 can be thought of as the limit of an initial surface M of type
(w, n\ as its τ parameter tends to 0. We write Ϋ"Q and ,/0 for the volume j 1 and the
moment of inertia J R2 of Ω0 respectively. β°
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Then given some 5£ small enough let

By choosing 3 small enough we can appeal to Lemma 2.3 to obtain a family of
initial surfaces [of type (w, n)] and parameters (τ, Σ, Σ) (Σ and Σ are uniform
constants).

Recall now Lemmas 3.9 and 4.1. By choosing 3 small enough we can assume
without loss of generality that τ < Γ6& 5, Z, Γ), where 5 = δ(ε, 2b2Σ, 2b2\

τ<TΊ(ε,2b2Σ,2b2),

where ε is a positive absolute constant to be determined shortly. Lemmas 3.9 and
4.1 allow us to define a continuous map

as follows: Suppose (τ, C, φ) in the domain is given. Let M stand for M[τ, £] and
u = $(ζ)°D-~ζ as in the statement of Lemma 3.9. Let v = u + φ°D-~ς. Then by
choosing ε2 > 0, a uniform constant, small enough, we have by Lemmas 2.4 (i) and
3.9

τ. (7)

This allows us to apply Lemma 4.1 to conclude that Mv is an imbedded surface and

II ffcfa) II L2(M, h) ̂  2εb2Στ , || Fχ(v) \\co, «(Mj χ) ̂  2εfe2Zτ .

Arguing as in the proof of Lemma 3.9 we conclude that there are

μ(τ,C,φ)eΞ(εCi;,εCZ) and weC2'α(M)

satisfying

||w||C2..(M.z)^εCΣτ (8)

and

(Δh + 2)w = Fh(v) + τθM(Mτ, ί, 0) . (9)

Then we define

Φ(τ, C, φ) = (Φtf, ζ, φ\ Φ2(τ, C, 0), Φ3(τ, f , Φ))

Arguing as in the proof of Lemma 3.9 it is easy to check that Φ is a continuous
map. We prove now that Φ preserves its domain:
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Equation (7) and Lemmas 2.1 and 2.2 allow us to conclude that by choosing S
small enough we can ensure that

for some ε1 >0 small enough to imply

IΦΛτ'C, </>)-τ| <iτ. (10)

Clearly Φ2(τ, (? Φ) £ Ξ(Σ9 Σ) if we choose ε small enough.
Also by (8) and 2.4 (i) we conclude

(11)

Hence we can ensure that Φ preserves its domain by choosing ε small enough.
The domain of Φ is clearly compact and convex. Since it is preserved we can

apply the Schauder fixed point theorem (Theorem 1 1.1 in [G-T]) to conclude that
there is a fixed point (τ, ζ, φ). Lemma 3.9 and the definition of Fh imply

4f/?2_ 4/5 ff
(Δh + 2)u = - —5 -- ί<9M(C + λ(τ, 0) ,

\Λ\

Combining these with (9) we conclude that

2H v = 4\A\~ 2 + ( Ah + 2) (φ o D~t + w) - τΘM(ζ + Λ(τ, ζ)
2τ^2. (12)

Then the fact that (τ, ζ, φ) is a fixed point of Φ implies that (4) and (5) are satisfied.
The smoothness of v and MΌ then follows from standard elliptic regularity theory.

It only remains to prove instability. Let S be a positive a.s.r. of M. Then
Lemmas 2.2 and 2.4 (v) and (7) imply by well-known facts (a possible reference is
[K 1] again) that the lower spectrum of SΛ3t „ for <53 and & small enough is close to
that of the sphere. (Sδ3tV stands for the image of M^nS under X + vv.) We can find
φeC$(Sδ3tV) such that

J
Mv

Combining two such φ's corresponding to two different positive a.s.r.'s we find a
φeHl(Mv) such that

Mv Mv Mv

By homothetically expanding by a factor d to get our drop, and choosing S
small enough, we contradict (3) and the proof is complete. Notice that the more
complicated the drop is, that is the larger the number of lobes is, the more linearly
independent functions violating the stability we can find. So in this sense the more
the lobes, the more unstable the drop is. Π
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