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Abstract. The algebraic structure of the antifield-antibracket formalism for
both reducible and irreducible gauge theories is clarified. This is done by using
the methods of Homological Perturbation Theory (HPT). A crucial ingredient
of the construction is the Koszul-Tate complex associated with the stationary
surface of the classical extremals. The Koszul-Tate differential acts on the
antifields and is graded by the antighost number. It provides a resolution of the
algebra s4 of functions defined on the stationary surface, namely, it is acyclic
except at degree zero where its homology group reduces to «a/. Acyclicity only
holds because of the introduction of the ghosts of ghosts and provides an
alternative criterion for what is meant by a proper solution of the master
equation. The existence of the BRST symmetry follows from the techniques of
HPT. The classical Lagrangian BRST cohomology is completely worked out
and shown to be isomorphic with the cohomology of the exterior derivative
along the gauge orbits on the stationary surface. The algebraic structure of the
formalism is identical with the structure of the Hamiltonian BRST construc-
tion. The role played there by the constraint surface is played here by the
stationary surface. Only elementary quantum questions (general properties of
the measure) are addressed.

1. Introduction

Over the past few years it has become clear that the BRST charge plays a key role
in field theory. Recently, the algebraic structure of the classical BRST symmetry
has been elucidated in the Hamiltonian formalism for the general case of reducible
theories [1]. The crucial point there was the construction of the "Koszul-Tate"
differential operator δ associated with the constraint surface. With this operator at
hand, the algebraic properties of the classical BRST charge in the Hamiltonian
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formalism are easily derived and illustrate the methods of Homological Pertur-
bation Theory (HPT) [2, 3]. In light of these methods, one can argue that the
algebraic properties of the BRST charge are completely subordinated to the
existence of the Koszul-Tate differential1.

In the Lagrangian framework, a BRST formalism has also been developed
[9,10]. This formalism has attracted a great deal of interest lately and has been
successfully applied to various models [11]. In this approach, the BRST symmetry
is defined in the space of histories of fields and antifields. This space is equipped
with a bracket structure (called anti bracket [9]) derived from an odd symplectic
2-form. The (off-shell) classical part of the total Lagrangian must satisfy the master
equation, which expresses its nilpotency with respect to the antibracket structure.
After a choice for the gauge-fixing fermion [9,10], the solution of the master
equation defines both the classical gauge fixed action and the Lagrangian BRST
transformation laws.

The symplectic geometries derived from an odd and an even 2-form present
some fundamental differences, for instance in the definition of an integration
measure. However, we explicitly show in this paper that the construction and the
classical properties of the off-shell BRST symmetry in the Lagrangian formalism
are algebraic features that can also be completely understood within the
framework of HPT. We will actually see that the Lagrangian developments are
almost identical in structure to those presented in [1] for the Hamiltonian
approach to the classical BRST charge. A crucial role is played again by an
auxiliary acyclic complex which determines order by order the solution of the
master equation. Once this similarity of structure is understood, the de-
monstration of the Lagrangian theorems goes without effort. Furthermore, when
the equations are written in terms of the appropriate acyclic auxiliary complex,
there is very little difference between the reducible and irreducible cases, which can
thus be treated simultaneously.

The great similarity between the antifield-antibracket formalism and the
Hamiltonian construction of the BRST charge has of course been noticed by many
people previously. What is new here is the use of the recent Hamiltonian results of
[1] to provide a complete existence proof of solutions to the master equation for
arbitrary gauge theories. The analysis of the relationship between gauge inva-
riance and Lagrangian BRST in variance, which falls within the subject of BRST
cohomology, appears also to be new.

The paper is organized as follows. In the next section, we first adjust the
Lagrangian notations to the one used in [1] so as to make the similarity with the
Hamiltonian formalism manifest. Then, in Sect. 3, we show that one can also
introduce in the Lagrangian framework an auxiliary nilpotent operator which is

1 The need for higher rank terms in the (Hamiltonian form of the) BRST symmetry of a generic
gauge theory was realized in [4, 5]. That these higher rank terms could only be constructed
because of the acyclicity of a certain complex was pointed out in [6] and a step by step proof of the
existence of the BRST symmetry was also given there. The fact that the differential complex which
appears in the construction had already been considered previously by mathematicians ("Koszul
resolution") was indicated in [7]. That these were the ingredients of Homological Perturbation
Theory was identified by Stasheff [8]. The point of view of Homological Perturbation Theory
turns out to be essential for a proper understanding of reducible theories [1, 8]
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the Koszul-Tate differential [12-14]. This operator acts on the antifϊelds.
Requiring it to be acyclic forces the minimal set of variables to be the one
introduced in the literature through the proper solution requirement. We then
prove in Sect. 4 the existence and uniqueness (modulo a canonical transformation)
of the off-shell classical BRST symmetry for reducible theories. This extends the
result known for irreducible theories [15,16] to the general case.

Using the nilpotency of the BRST symmetry, we then define in Sect. 5 a
classical (Lagrangian) BRST cohomology similar to the one introduced in the
canonical formalism [17, 18]. This cohomology is isomorphic with the cohomol-
ogy of the vertical exterior derivative along the gauge orbits. It plays a useful role
in understanding the ambiguity in the Lagrangian quantum measure.

The parallels between the Lagrangian and the Hamiltonian approach to the
classical BRST symmetry are so striking that, as we mentioned before, most of the
proofs of the theorems we will present are identical to those presented in the
Hamiltonian framework in [1]. This is due to the fact that both developments are
illustrations of the same algebraic structure (HPT). We therefore mostly refer to
that reference for the technical details of the proofs and just stress in this paper the
main ideas.

2. Off Shell Description of Reducible Gauge Theories

We will slightly alter the notations usually adopted in the literature in order to
establish the parallels with the Hamiltonian approach in a more explicit way.
Moreover, we present here the off-shell description of gauge theories.

Let us consider an action S(φa°) depending on m0 fields φa° of Grassmann
parity εαo. We denote the equations of motion derived from S by,

dS
Gao(Φbo)=^φΓo(Φbo) = 0, ao = ί,...,mo. (2.1)

This defines a surface in the space of histories which we will call the stationary
surface. This surface plays the role of the phase space constraint surface of the
Hamiltonian formalism.

The action S(φa°) possesses gauge invariances if there exist non-trivial re-
ducibility relations among the functions Gao which hold everywhere,

Gao(Φbo) Za

a°(φb°) = 0, α x = l m ± , (2.2a)

εao + εaί = ε(Za

a°). (2.2b)

We assume that this set of Z"°((/>bo) completely exhausts on shell the relations
among the "stationary constraints,"

Gao(Φbo) λao(Φbo) = 0 o λao(φb°)« Za

a°(φb°) λa>(φb°). (2.3)

The weak equality « means equality on the stationary surface.
The gauge invariances may be reducible. In that case, there exists some Za

a\(φho)
such that,

Z%{φb0)Z°a\(φb°)κ0, a2 = 1,...,m2, (2.4a)

εαi + εa2 = ε(Z^). (2.4b)



630 J. M. L. Fisch and M. Henneaux

Here also we assume that the reducibility of Z"° is completely contained in the Za

a\,

Z%{φbo) λai(φbo) πOo λaί(φbo)« Za

a\{φbo) λa\φho). (2.5)

The rank of reducibility may be greater than two, in which case one finds
reducibility equations among the reducibility functions Za

a\, etc It is essential
that at each stage a complete set of reducibility functions is taken, but this set may
be overcomplete. When this occurs, the procedure continues at least to the next
stage.

One thus sees that one gets the same basic formal features as for Lth stage
reducible Hamiltonian constraint systems [1, 4, 5]. Of course, the meaning of the
objects changes. While the Hamiltonian formalism deals with phase space, the
present Lagrangian formalism deals with the functional space of Lagrangian
histories which is infinite dimensional even in the case of a finite number of degrees
of freedom. In the first case, the equations Gao = 0 refer to the Hamiltonian
constraint surface, whereas in the second case, the equations Gao = 0 (where a0

includes the space time coordinates) refer to the Lagrangian stationary surface.
Note that this last surface is actually isomorphic to the Hamiltonian constraint
surface. Also, a "first-stage" reducible system as defined in [1] would be here an
irreducible gauge theory.

In spite of these slight differences, both formalisms possess the same formal
structure and necessitate almost identical techniques for deriving the algebraic
properties of the classical BRST charge.

We will make the further requirement that the equations of motion as well as
the reducibility functions can be locally separated into independent and dependent
ones. The independent and dependent equations of motion will be respectively
denoted by GAo = 0 and Gαo = 0, so that Gαo = 0 are consequences of GAo = 0. We
even assume that the rank of dGAo is maximal on the stationary surface. This
implies that any function(al) vanishing on GAo = 0 can be expressed as λΛ°GAo, i.e.
that the ideal generated by GAo coincides with the ideal of the function(al)s
vanishing on GAo = 0 [1,6,10,16]. This regularity assumption may not hold for all
actions, but appears to be essential for the present developments [1,16]. If it did
not hold, the considerations of this paper (ghost spectrum, BRST in variance versus
gauge invariance) would have to be adapted.

This regularity question is more than just of academic interest. For instance, it
is not obvious that the regularity property is satisfied by the Siegel model for chiral
bosons [19] since some of the field equations only vanish quadratically (and not
linearly) on the stationary surface.

With the regularity assumption, one can prove that there always exists locally
smooth coordinates such that the equations of motion and the reducibility
conditions take the simple form,

Gao = (GAo,Gao^0), (2.6a)

(2.6b)

£ l (2.6c)

with GΛo the first coordinates of the new coordinate system. We used here the
notations introduced in the Hamiltonian formalism [1].
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The regularity assumptions also enable one to replace the weak equations of
this section by off-shell statements valid throughout the 0flo-space by adding linear
combinations of the Gao to the right-hand side of (2.3), (2.4a) or (2.5). This is
permissible since any weakly vanishing function is a combination of the
constraints.

Finally, a word of precaution. Since the indices ao,au... range also over the
spacetime coordinates, there are many delicate functional aspects hidden behind
the formulas, [for instance what is the functional class to which the functions such
as λao in (2.3) should belong]. However, these aspects will not be discussed here, for
our only purpose is to focus on the algebraic features of the formalism.

3. The Koszul-Tate Differential Operator δ

It is well known that the observables of a non-degenerate second order dynamical
system are given by the phase space functions. Because a phase space point
determines a unique trajectory, one can describe more relativistically the
dynamical observables as the functions defined on the stationary surface (2.1)
where the equations of motion hold.

Equivalently, one can say that the observables are function(al)s F(φao) defined
in the space of all possible histories, provided one identifies two function(al)s
which coincide on shell,

F(φa°)~F'(φa°) iff F - ί " « 0 . (3.1)

In the case of gauge theories, one can still adopt the same description, but one
must impose in addition that the functions be (weakly) gauge invariant,

^ ( / ° ) Z : « ( ^ « ) « 0 . (3.2)

We analyse here how to implement the equivalence relation (3.1). The question
of gauge invariance (3.2) will be examined in Sect. 5.

The functions F(φa°) form an algebra R because they can be multiplied among
each other. The functions which vanish on shell form an ideal / of this algebra since
if Λ(φao)« 0 (i.e. A e /), then (AF) (φa°)« 0, even if F φ 0. As we have seen, this ideal is
the ideal generated by Gαo, i.e. its elements are of the form Gaoλ

a° (regularity
condition). The algebra si of functions on the stationary surface is isomorphic
with the quotient R/I.

Now, one can give a homological interpretation of R/I. This reformulation of
the equivalence relation (3.1) turns out to be a cornerstone of the BRST
construction and goes as follows.

Introduce one antifield φ*0 of opposite statistics for each field φa° and consider
the differential complex generated by φa° and </>*0, graded by the antighost number,

antigh((/>Λ0) - 0 , antigh((/>α*0) = 1. (3.3)

The differential is defined so that the functions Gao are exact, i.e.,

Wt = Gao, (3.4)
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and so that it annihilates the fields φa° (as well as all the extra fields φak introduced
later which also have antighost number zero). One extends δ to an arbitrary
element of the complex by means of the graded Leibnitz rule, with δ acting from the
left. Note that in the Hamiltonian formalism [1], δ was chosen to act as a right
derivative.

By construction, δ is nilpotent since δGao(φbo) = 0. Furthermore, its homology
at order zero is easily computed. Any function F(φa°) is closed, while the exact
functions are given by δ(φ*oλ

a°) = GαoA
α°, i.e., belong to the ideal /. This implies

(Ker δfimδ)0 = H0{δ) = R/I. (3.5)

Hence, the algebra si of functions defined on the stationary surface can be
described as the zeroth homological class of the differential δ.

What are the higher order homological classes? In the absence of gauge
invariance, the functions Gαo would be independent and one could then show that
the cohomological classes at antighost number p>0 all reduce to zero [6,12,14].
However, acyclicity at p>0 does not hold for a theory with gauge invariance, for
one can find non-trivial cycles already at antighost number one. Because the
reducibility functions Z£° exhaust all non-trivial relations among the Gfl0's, a basis
of these non-trivial cycles is given by

ΦIZZ δ(φlZW = GaoZ
a

a° = 0. (3.6)

Clearly </>*0Z£° Φ δ (something) for all al9 since in that case, the ZJJf s would all have
to vanish on shell.

As it will become explicit in the next sections, acyclicity of δ at antighost
number ΦO2 is a much desired property, which plays a key role in the BRST
construction. It is not clear that appropriate solutions of the master equation
would exist if that property were to be given up. So, it appears necessary to recover
acyclicity. This can be done following Tate [13], by adding extra variables, which
are just the extra antifields.

These extra antifields φ*x are introduced so as to kill the cycles (3.6), i.e.,
one defines

, (3.7a)

antigh((/>*) = 2, ε(φl) = sai + 1 . (3.7b)

One has clearly δ2φ*ί = 0 (since φ*0Z
a

a\ is closed), and φ?0Z2° has become exact by
construction. Hence, after the antifields φ*x have been added, the first homology
group H\δ) of δ is trivial, H\δ) = 0.

The procedure must be continued if there are further reducibility equations
among the Z's, for one would then find H2(δ) + 0, etc In order to recover
acyclicity at all orders, one must introduce further antifields </>*2, φ*3,... at each
reducibility stage, with antigh((/>*k) = fc+l, ε(</>?k) = £αk +1 a n d define

50i = 0 i . ι Z S - + Mβ k(0t,... f<_ 2), fc£l. (3.8)

The functions Mak are determined so that δ2φ*k = 0 and arise when Za^-_\^~ι o n lY
vanish on-shell.

2 From now on, "acyclicity" will always mean "acyclicity except at order zero"
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The precise determination of Mak and the explicit checking that the introduc-
tion of the extra antifields according to (3.8) removes all the non-trivial cycles
proceeds as in the Hamiltonian formalism. So, we refer to [1] for the proofs.

The complex generated by the antifields, with the differential δ defined by (3.4),
(3.7), (3.8) is called the Koszul-Tate complex. It provides a resolution of the
quotient algebra Λ? = R/I, in the sense that H°(δ) = jtf, H\δ) = 09 iΦO. The
differential δ turns out to be equivalent for irreducible gauge theories to the
operators W and Ω respectively introduced in [15] and [16].

The demand that the differential δ be acyclic automatically forces the antifield
spectrum to be just the correct minimal set of [10]. Consequently, it also correctly
determines the spectrum of the conjugate ghosts of ghosts.

This correct ghost spectrum was arrived at [10] in a different manner, by
requiring that S be a proper solution of the master equation. By this, it was meant
that the 2N x 2N Hessian matrix of the second derivatives of S with respect to both
the fields and the antifields, which is on-shell nilpotent, should be of maximal
possible rankiV.

That both requirements are equivalent is not surprising once it is realized (i)
that a nilpotent 2N x 2N matrix is of maximum rank AT if and only if it defines an
"acyclic" operator3; and (ii) that the Hessian matrix and δ are both built out of the
same reducibility functions ZJ£+1.

Although the two criteria are equivalent and yield the same minimal spectrum
of fields and antifields, it should be noted that the proper solution requirement can
only be formulated on shell where the Hessian matrix is nilpotent, while acyclicity
of δ is an off-shell statement.

4. Existence and Uniqueness of the Proper Solution to the Master Equation

As it has been extensively shown in [9,10], the classical part S of the total
Lagrangian plays also the role of BRST generator when acting through the
antibracket. It is an even element of the Grassmann algebra with zero ghost
number and is a proper solution of the master equation,

(S,S) = 0. (4.1)

We adopt here the ghost number convention given in [10], gh(</>*k) = — k — 1
= — antigh(φ*k) and gh(φak) = k, antigh(</>αk) = 0. The ghost number refers in these
equations to the total ghost number.

In order to investigate the master equation, one expands S with respect to the
grading of the Koszul-Tate differential δ, i.e. with respect to the antighost number,

(«) («)
S= Σ S, antigh(S) = n. (4.2)

3 Let R: V-> V be an endomorphism of a vector space V of dimension 2ΛΓ. Assume that R is
nilpotent, R2 = 0. If the equation Rv = 0 implies v = Ru, for some w, i.e., if Ker R/lmR = {0}, then R
is of rank N. This is the maximum rank for a nilpotent matrix in V. The proof of this statement can
be easily given in a Jordan canonical basis for R. The condition keri? = Imi? implies that R

/0 1\
contains only two-dimensional Jordan blocks I I, which are of rank one
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This significantly simplifies the structure of the equations derived from the master
equation. Note that this has been indirectly adopted in [15,16] for irreducible
gauge theories, since there the ghost sector is restricted to the single φai set.

In terms of this antighost number expansion, the master equation gives rise to
the infinite set of equations,

_(n+l) («) (0) («)

δ S + £>(S,...,S) = 0, rc^O, (4.3a)

(0) (n) (0) (n)

where D identically vanishes and D involves antibrackets of S,..., S up to order n.
Its explicit form will not be needed here. We will see below that Jin (4.3) coincides
with the Koszul-Tate differential of the precious section. So, (4.3) can be
investigated by means of homological techniques.

The fact that the master equation reduces to the set of equations (4.3a) with
δ = Koszul-Tate is a non-trivial result in the reducible case. This structure would
not be directly apparent in general if we had expanded S in powers of the fields or in
powers of the antifϊelds, with equal weight given to each field or antifield in the
expansion. The crucial step in the analysis of the master equation is to make
explicit the appearance of the Koszul-Tate differential, and this is manifestly
achieved if we expand S according to the antighost number.

Note that there are in (4.3) some slight differences with the Hamiltonian
(0)

approach. In the Lagrangian framework, D identically vanishes. This is of course
expected since the original classical action S(φa°) itself defines a solution to the
master equation (which is not proper if the action has a gauge invariance [9,10]).

(0)

In the Hamiltonian BRST formalism, the weak vanishing of D is a consistency
requirement for the BRST charge to exist. This requirement expresses nothing else
than the fact that, in the Hamiltonian formalism, the standard BRST charge can
only be directly defined when the constraints are first class, i.e. correspond to a
gauge invariance.

The proper boundary conditions to be imposed on S in order for S to be a
proper solution [10] take in our notation the form,

(0)

SS(φaη, (4.4a)

(4.4b)

These boundary conditions can be given a physical motivation a posteriori when
we investigate the BRST cohomology in the next section. Let us simply remark
here that it is only with (4.4b) that the operator J of equation (4.3b) reduces to the
acyclic Koszul-Tate differential of the previous section.

Given the boundary conditions (4.4) and the form (4.3) of the master equation,
one just needs to apply the algebraic techniques of HPT along the same lines as in
the Hamiltonian approach [1] to prove the following fundamental theorem.
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Theorem 4.1. There exists a classical solution S of the master equation obeying the
boundary conditions (4.4). Moreover, this solution is unique up to a canonical
transformation (in the antibracket sense).

This is the extansion to the general case of the theorem proven in [15] and [16]
for the particular case of irreducible gauge theories.

(0) (n)

Let us sketch the general proof which goes by induction. Assume that S,..., S

have been constructed up to order n, in accordance to the boundary conditions
(4.4). The first step then is to observe that J can indeed be identified with the
Koszul-Tate differential up to antighost number n + 1. This follows from the
boundary conditions (4.4b), which imply that δ and δ coincide to leading order,
and from the fact that S and δ are nilpotent.

Because δ = 5" is not only nilpotent but also acyclic, the existence of S amounts
(«)

to the proof of δ D = 0. Two proofs of this identity can be given and we outline them
both here (the exact relationship between these two proofs has not been entirely
worked out).

The first proof is purely algebraic and is based on the Jacobi identity

((Sn, Sn),Sn) = 0 for the part Sn= £ S of S that has already been constructed [16].
m<n , ,

~ (»)

Since Sn is nilpotent up to the order n, this identity just reduces to δD = 0 at leading
(«)

antighost order as required. Note that the identity δD = 0 on the Lagrangian
(«)

structure functions S has been first derived in the irreducible case by a different
method in [20]. Note also that the same algebraic proof can be adapted to the
Hamiltonian formalism (when developing in components, one then recovers the
lengthy expressions of the appendix of the second reference in [6]).

The second proof is more geometrical and extends the approach adopted in
(«)

[15] for irreducible gauge theories. Because δD = 0is an algebraic statement, it is
sufficient to check it locally. This can then most easily be done by going over to the

(0) («)

local coordinates in which the reducibility coefficients (and consequently S,..., S)
take a simple form. This second proof is the exact pendant of the existence proof of
the BRST charge in the Hamiltonian formalism given in [1].

The proof that S is unique up to a canonical transformation [15] then goes
along the same lines as in the Hamiltonian case [1].

5. Classical Lagrangian BRST Cohomology

In the previous sections, we arrived at the correct ghost spectrum by requiring
acyclicity of the Koszul-Tate differential. In this section, we are going to give a
more physical motivation for the introduction of the ghosts and the ghost of
ghosts.

A key feature in the BRST formalism is that global BRST invariance replaces
gauge invariance as the symmetry on which the gauge-fixed Lagrangian is built.
One therefore expects that BRST invariance guarantees gauge invariance. This is
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achieved by introducing the right ghost spectrum to exactly kill the unphysical
degrees of freedom.

On these grounds, BRST invariant functions (with zero ghost number) should
correspond to gauge invariant functions. Due to the Jacobi identity, BRST-exact
functions (S,X) with ε(X) = l and gh(X)=-l trivially define BRST-invariant
functions. However this special class of BRST-invariant functions does not play a
role at the quantum level. Indeed, their quantum average on the gauge fixing
surface can formally be shown to vanish. As a result, the quantum average of
physically relevant (BRST-invariant) functions is effectively defined on the
cohomology space (KerS/ImS)0. From this physical argument, the cohomology
space (KerS/ImS)0 should be isomorphic to the space of (physically inequiva-
lent) gauge invariant functions of the original φa° fields. The ghost spectrum
should therefore be chosen such that this physical requirement holds.

One can provide a more geometrical description of gauge invariant functions
in the ψαo-space. On the stationary surface, the gauge transformations are
integrable. The gauge orbits that they generate define vertical directions and one
can introduce an exterior derivative acting on the vertical forms. This exterior
derivative measures the variation of a vertical form along the gauge orbits (the
vertical directions). It does not provide any information on the change induced by
going from one gauge orbit to another.

In this description, physically inequivalent gauge invariant functions are just
the d-closed zero forms and are described by the cohomology space (Kerd/Imd)0.

Therefore, the physical requirement that the BRST cohomology class
(KerS/ImS)0 should be isomorphic to the physically inequivalent gauge invariant
functions can be summarized as (KerS/ImS)°~(Kerd/Imd)°.

This turns out to be the case. One can in fact prove more, namely that
(KerS/ImS)p~(Kerd/Imd)p, where p^O. For the BRST cohomology at negative
ghost number, the cohomology spaces are found to be trivial, (KerS/ImS)p = 0 for
p<0.

The proof of these results follows the same lines as in the Hamiltonian
approach [1,17,18], and we will not reproduce them here. Let us simply provide
here an example that these proofs crucially depend on the spectrum of ghosts
introduced in the previous sections.

Consider the following reducible set of gauge invariances διφ = εί,δ2φ = O ε2,
(0)

and δ3φ = 0 ε3 of the action S = 0. The space of physically inequivalent gauge
invariant functions is just given by the constant functions. Without introducing

(0) (0)

any ghosts, the BRST cohomology, given by (Ker S/lm S) is isomorphic with the
ring of φ-dependent functions and would not reproduce the physically desired
result. Moreover, introducing the ghosts rf (i = 1,2, 3) without the ghosts for ghosts
is also not enough. In this case, S reads as S = φ*ηί and the BRST cohomology
space (KerS/ImS)0 contains, besides the constants, ghost-dependent elements, for
instance η*η2η3' The reader can check on this example that one recovers the
isomorphism between (KerS/ImS)0 and (Kerd/Imd)0 only after one has intro-
duced the whole generation of ghosts which makes the Koszul-Tate differential
acyclic.
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So far, we only considered the BRST cohomology associated with minimal
proper solutions of the master equation. In the path integral based on the antifield-
antibracket formalism, however, non-minimal solutions are also of interest4. These
non-minimal solutions possess the same BRST cohomology as the one derived
from the underlying minimal solution. Indeed, as a consequence of the Kϋnneth
formula, the cohomology of the non-minimal solution is the tensor product of the
cohomology of the minimal one by the cohomology carried by the additional non-
minimal terms. This last cohomology being trivial, it is therefore sufficient for
cohomological purposes to consider minimal solutions.

An application of the BRST cohomology concerns the problem of the quantum
measure, which must obey the equations [9],

(Wl9S) = iAS, (5.2a)

(Wn+l9S) = iAWn-± Σ (Wm,Wn+ί-m), n^ί. (5.2b)
m=ί

These are formal equations and need prescriptions for dealing with the hidden (5(0)
factors. These prescription questions fall outside the scope of the present paper.
However, once Wl9 W29 . ,Wn are given, Wn+x is determined by an inhomogeneous
linear equation (5.2b). The general solution to this equation is given by a particular
solution plus the general solution to the homogeneous equation (Wn+1,S) = 0.
From the discussion of this section, the general solution to this homogeneous
equation is given by the gauge invariant functions modulo an arbitrary S-exact
term (S, Xn+1). This last arbitrary term can be eliminated from the path integral by
performing an ft-dependent change of variables [21].

The conclusion is that the quantum measure is determined by (5.2) up to an
arbitrary function of the gauge invariant variables. To present it differently, BRST
invariance fixes the measure in the gauge sector, but further requirements seem to
be needed for fixing the measure in the gauge invariant (i.e. BRST invariant) sector.

6. Remarks and Conclusions

In this paper, we have shown that the solution of the master equation in the anti-
fϊeld-antibracket formalism can be constructed following the methods of Homo-
logical Perturbation Theory. The construction is based on the Koszul-Tate
complex, which provides a resolution of the quotient algebra of functions on the
stationary surface. We have also indicated how BRST invariance in the
Lagrangian formalism incorporates gauge invariance.

The algebraic similarities between the Lagrangian and Hamiltonian ap-
proaches are striking and point to the fact that a further analysis of the detailed
correspondence between the two descriptions is likely to be interesting. The

4 The reason to this lies in the wish to define the gauge fixing surface for the path integral through a
gauge fermion ψ. However, the gauge fermion should be constructed out of the fields and at the
same time be of ghost number minus one. This forces one to introduce auxiliary fields (and
antifields) with negative ghost number. The precise prescriptions associated with these develop-
ments can be found in [10]
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comparison, however, has only been carried through for specific systems and
further work is clearly needed (for a recent string example, see [22]). This
question is presently under investigation [23].

Finally, we note that the theorems on the existence of the nilpotent action S and
on the BRST cohomology still hold in the case of infinitely reducible gauge
systems.

This is because the formalism is expanded according to the antighost number p.
For any definite value of p, only a finite number of generations of ghosts are
involved in the calculation, so that one never has to deal with infinite series.

It is possible to exhibit, however, ill-defined expressions for well-defined
quantities. To display a simple example, let us go over to the Hamiltonian formal-
ism where the same features hold. The number of degrees of freedom can be written
in that formalism as n — mo + mί—m2+..., an expression which diverges in
the infinitely reducible case. How the series should be interpreted is indicated by
the BRST cohomology, which groups the variables into mutually cancelling pairs
and which thus tells one where the parentheses should be placed in the sum.

To give concrete models in which this feature is displayed, consider the
following three systems with two canonically conjugate pairs (x\/?i) and (x2,p2).
The constraints are

(I) (G1,G2) = (0,0)«0 (6.1a)

in the first case,

(II) (Gl9G2) = (pup2)tt0 (6.1b)

in the second case, and

(III) (GuG2) = (pu0)*0 (6.1c)

in the last case. These systems can be viewed as infinitely reducible if one takes as
reducibility matrices the following 2x2 matrices

(!) z « S + 1 = ( o °X z S : i = ( J o ) ' /c-0? (6 2a)

A ϋ)> Zΐ£+Λ = ( ! ?)> fc = °> (6 2 b )
0 0/ 2k+2 \0 1/

(III) Z*+ 1 = ( J ° ) , kZO. (6.2c)

The number of degrees of freedom can be formally written in each case as
2-2 + 2 = 2+ .... In the system (I), this sum stands for 2 - ( 2 - 2 ) - ( 2 - 2 ) - . . . =2
since this is how the variables cancel in pairs. In the second case, one finds (2 — 2)
+ (2 — 2) + ... = 0. Finally, in the third case, one has a mixture of (I) and (II), i.e., the
sum equals [1 -(1 -1)-(1 - 1 ) - ...] + [(1 -1) + (1 - 1 ) + ...] = 1. Another way to
arrive at this last result is to observe that the reducibility matrices are identical at
each generation, and thus the sum should be rewritable as s = 2 — (2 — (2 — (2 — ...,
i.e. 5 = 2—5 and so 5=1.
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These values, of course, correspond to the true number of degrees of freedom of
the respective models.
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Note added in proof. Strictly speaking, one can distinguish between two BRST cohomologies,
the antibracket BRST cohomology which has been investigated here and the effective BRST
cohomology. The latter is based on the BRST symmetry of the gauge fixed action. It is defined
as the set of operators which are BRST invariant on shell but which are not equal to the BRST
variation of some operator modulo equations of motion of SΨ. One can prove that these two
cohomologies are isomorphic if the action SΨ is gauge fixed [24, 25].




