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Dynamics of Fluctuations for Quantum Lattice Systems
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Instituut voor Theoretische Fysica, Universiteit Leuven, B-3O3O Leuven, Belgium

Abstract. For short range interactions and for L1-space clustering states it is
proved that there exists a bonafϊde time evolution on the set of normal
fluctuations. This dynamics is applied to derive the notion of equilibrium state
of the algebra of fluctuations.

1. Introduction

The aim of statistical mechanics is the explanation of the macrophenomena on
the basis of the microstructure. For this it is important to make a clear distinction
between microscopic observables, states, etc. and macroscopic ones.

In the algebraic approach to quantum statistical mechanics the microscopic
system is currently described by a (C*- or von Neumann-) algebra $$ of observables.
A physical state is a positive linear normalized functional ω of $ and a dynamics
of the system (β, ω) is a one-parameter group αf of *-automorphisms of @.

Analogously any macroscopic system should be described by an analogous
triplet of observables, states and dynamics.

The problem is to construct by precise procedures the macroscopic triplets out
of the microscopic ones.

A well known [1] algebra of macroscopic observables is the one given by the
observables at infinity and consisting of the space means of local micro-observables:
i.e. for A any local observable, one considers the corresponding observable at
infinity,

A% li

where V is any finite volume and τx the translation over the space variable x. In
probability this limit is known as the law of large numbers. The algebra generated
by the limits {A%\Ae@} is an abelian algebra of macroscopic observables.
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Here we are concerned with another algebra of macro-observables, namely
this which is generated by the limit points under the central limit, i.e. one
considers:

1
Bω(A) = lim —= \ dx(τxA -

jV

In physics, these limits are called (normal) fluctuations. For quantum systems the
existence of these limits is studied in [2,3] for mean fields, respectively mixing
systems. In Sect. 3 we give a new version of the main theorem of [3] about the
existence of normal fluctuations under a slightly more stringent, but more
transparent cluster condition. We prove that the set of central limits from the
microscopic algebra generates a representation of a CCR-algebra induced by a
quasi-free state. Under the central limit the algebra 0& of micro-observables is
mapped into a CCR-algebra $ of macroscopic fluctuations (for the precise
formulations see below). This map is clearly not injective. This is the phenomenon
of coarse graining. A mathematically rigorous description of this property is given
in Theorem 3.4. Also under the central limit, the microstate ω is mapped into a
quasi-free state ώ.

In this paper we concentrate on the study of the dynamics of the fluctuations
U for interacting systems. For some mean field models this time evolution has
been computed before [4,5] and for general mean field systems [2,6]. Here we
perform this program for quantum lattice systems with a quasi-local time evolution,
induced by short range interactions and for states satisfying a L1-cluster condition
for space translations.

Free particles and mean field systems have the particular property that strictly
local observables are mapped into strictly local observables. This means that if
the fluctuations exist for local observables, then they also exist for their time evolved
ones. This is not true anymore for interacting systems, the time evolution is
destroying the strict locality. The main technical problem is to control this time
evolution and to show that one can pass it through the central limit, in order to
get a basis for a consistent dynamics of fluctuations. This is proved in Sect. 4 and
we end up with the existence and explicit construction of a nontrivial, reversible
dynamics α, on the CCR-algebra U of fluctuations. This dynamics is fully
determined by the microscopic one and is of the so-called quasi-free type, i.e. it
does not show any new interaction between the macroscopic fluctuations. This
result yields, for sufficiently short range interactions and for states which are
sufficiently clustering, a rigorous proof of the physicist's common belief about the
asymptotic simplification that may occur for macroscopic observables.

Finally, having established the macrodynamics αt, we apply it to study the case
of an equilibrium state, in particular we assume that the microstate ω is an αt-KMS
state at inverse temperature β. We prove that the quasi-free macrostate ώ is then
necessarily a αΓKMS state at the same temperature. This statement constitutes a
proof of one of the basic assumptions of the phenomenological theory of Onsager
[7,8] about small oscillations around equilibrium.
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2. The Model

We develop the theory for systems which are defined on a v-dimensional lattice Zv

and which have a quasi-local structure [9]. Let £ (̂ZV) be the directed set of finite
subsets of Zv, where the direction is the inclusion. With each xeZ v we associate
the algebra J/X, a copy of a matrix algebra MN of N x N matrices. For all /le£^(Zv),
consider the tensor product s/Λ = (X)<s/X. The family AΛ, Λe@(Έx) has the usual
properties of locality and isotony: xeΛ

K ^ Λ J = 0 if AxnA2 = %

^ , i ^ 2 if A^A2.

Denote by stfL all local observables

^L= U *Ά. (2.1)
Λe9(Iv)

The norm closure £ft of stfL is again a C*-algebra:

0 = s/L = U **Λ> (2.2)
ΛeS>(Zv)

and considered as the algebra of quasi-local observables of our system.
The group Zv of space-translations of the lattice acts as a group of •-auto-

morphisms on & by:

τx:Ae^Λ^τx(A)e^Λ+x; xeZ\ (2.3)

The dynamics of our system is determined in the usual way by the local
Hamiltonians

HΛ= Σ </>(*); Λe®(Zη (2.4)

with

for all XeS>{Zv),

φ(X + x); xeZ\

and such that, there exists λ > 0:

oo, (2.5)

where d(Jί) = sup \x — y\, is the diameter of the set X and \X\ is the number of

elements in X.
For Λe^(Zv), the local dynamics αf

Λ is given by

(2.6)

From (2.5) it follows that the global dynamics αt of 0$ exists as the following norm
limit:

αf = lim α/\
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and one has the following estimate [9, Theorem 6.2.11]:

\\oit(A)-at

Λ(A)\\ ^ Mil \Λ0\(e2mφ^- 1) £ e~λ^\ (2.7)
xeλc

where

yeλ0

By (2.4) one also has [α,, τ x ] = 0 for ίeR, xeZ v . Finally we consider the C*-system
{β,ut,ω\ where ω is a state of έ% which is space and time translation invariant,
i.e. ω°τx = ω for all xeZv and ω°at = ω for ίe(R. Furthermore we assume that the
state has the following space-clustering property: let

sup
Λ,λ Aes*Λ

we suppose that

X α ω ( | x | )<oo. (2.8)
xeZv

Remark that this space-factorization or clustering condition is of the same type
as in [10], where the asymptotic orbits of non-interacting Fermi particles are
studied. They assume that the cluster function αω is a bit stronger than of the
logarithmic type, we assume the iMype in (2.8). We can derive the results of this
paper under the weaker condition, namely: there exists δ > 0 such that

where

lim JNa%(Nil/2v)-d) = 0, (2.9)
JV-oo

aN

ω(d) = sup S—l-—\ω(AB)- ω(A)ω(B)\ \dί^U),max(|/l|,\Λ\) ^
Λ,Λ l\\A\\\\B\\

Aε*?Λ

One readily checks that (2.8) implies (2.9). However for technical convenience we
stick to the condition (2.8).

Remark that the function αω has the following immediate properties:

and monotonically decreasing

αω(d)^αω(d') for d'ίd.

3. Systems with Normal Fluctuations

Denote by Λn the cube centered around the origin with edges of length 2n+ 1.
For any As09, the local fluctuation An of A is given by

* = ΓTΊϊ72 Σ τx(A-ω(A)). (3.1)
I A i l xeΛn
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In this section we characterize a subset J*o of ^ such that for all Ae&0 the central
limit

lim An = Bω(A) (3.2)
n-*oo

exists. The limits (3.2) are called the fluctuations of the observables of &0. The
time evolution of fluctuations will be the subject of Sect. 4. Here we restrict ourselves
to the study of the central limit and of the mathematical structure of the algebra
of fluctuations.

Definition 3.1. Let &0 be any * subspace of @, the system ($9$θ9ω) is said to have
normal fluctuations for &0 if

(i) VΛ5J

]Γ \ω(AτxB) - ω(A)ω(B)\ < oo.

(ii) V/t = .

where sω(A,B)= lim Re ω((A")* B") for all A,B elements of' 8&0. The limit in (ii) is
n-* oo

called the central limit.
Remark that, by (i):

sω(A9 B) = Re £ (ω(Λ*τxJ3) - ω(Λ*)ω(£)).
xeZv

Theorem 3.2. (Central limit theorem). If the state ω of ^ satisfies the L1 -space-
factorization condition (2.8) then for all A,Be<$/Lsa (self-adjoint elements ofjrfL).

lim (ea"eiSn)= lim ω(e

i^B^)e-
{l/2)ω{ί^sni)

= exp { — \sω(A + B,A + B) — (i/2)σω(A, B)},

where σω(A9B) = lim 2lmω(ΆnBn). In particular the system has normal fluctuations

Proof. Basically this theorem is proved already in [3] and [11] under a slightly
different formulation of the conditions. This theorem will be proved if we check
that the conditions of Theorem 4.1 of [11] follow from condition (2.8).

We have to prove

(i) that for all A9Be^LtSa:

X \ω(AτxB) - ω(A)ω(B)\ < oo

(ii) that for all

Remark that in [3,11] a slightly stronger condition is assumed. However from the
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proof of Theorem 4.1 of [3] it readily follows that the above condition is sufficient,
(iii) Condition (2.8) implies condition (2.9). But this is trivial.

It remains to prove (i) and (ii).
(i) Follows from the observation that if A9Be<srfL, then 3deN such that

A9BesfΛd and

Σ \ω(AτxB)-ω(A)ω(B)\
xeZv

g X \ω(AτxB)-ω(A)ω(B)\ + \\A\\\\B\\ £ a ( | x | ) < o o .

(ii) Without loss of generality take ω(A) = 0 and for simplicity we work out
the proof only in the case Aestf{0). Then by translation in variance

— - 3 Σ \ω(Aτy-χAτk-χAτι-χA)\^τ-Γ72 Σ \ω(AτxAτyAτzA)\.
\/ln\ x,y,k,leΛn \Λn\ x,y,z€Λ2n

Take q(n) = n1/2~\ then

Σ ^ ( Σ +3 Σ +3 Σ + Σ )•r ^ ( Σ Σ Σ
\/ιn\ x,y,zeΛ2n \/ιn\ \χ,y,zeΛq(n) x>yeΛq(n) *e/lq ( n ) x,y,zeλc

q(n
z

Now we bound each of these terms. Clearly

q
zeΛq(n)

X \ω(AτxAτyAτzA)\ί\\A\\*\Λm)\
3

Σ \ω{AτxAxyAτzA)\ ^ \\A\\4\Λm\2\Λ2n\.

Furthermore

Σ \ω(AτxAτyAτzA)\ g £ \ω(AτxAτyAτzA) - ω(AτxA)ω(τyAτ2A)\

+ \ω(AτxA)\\ω{Aτ2.y(A))\

+ |/Cίl^2-lΣ«»(l3Ί)ll^ll4.

where ly^dί^.^l,). Hence, this term is bounded by

3|Λ,11̂ 2.1 Σ««(lyl) Mil4-

Finally

Σ «<»(|x|)^6M||4 |/l2 π |2 Σ ocω(\x\)
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Using these bounds

I2 Σ « » ( l χ | ) | .

Using condition (2.8) and the choice of q(n) above, one checks

Now we are able to introduce the algebra of normal fluctuations of the system
(β,$4L,ω). Consider the symplectic space {^Lsa,σω) where σω is defined in
Theorem 3.2. Denote by W(jtfLtSa9σω) the CCR-C*-algebra generated by the Weyl
operators {W(A)\Ae&t LtSa) and satisfying the product rule

W(A) W(B) = W(A •+ B) exp - l- σω(A, B). (3.3)

The central limit theorem fixes a representation of this CCR-algebra. This is
proved in the following theorem which follows from Theorems 3.2 and 3.3 of [3].

Theorem 3.3. For each Ae$0Usa the limits lim ω(eiA") define a quasifree state ωs of

the CCR-C*-algebra by

Moreover if γ is a*-automorphism of $ leaving stfL invariant, commuting with the
space translations and leaving the state ω invariant, then y given by

γ{W(A))=W{γ(A))

defines a quasifree*-automorphism of W(s/Usa, σω). •

The quasifree state ωs of Theorem 3.3 induces a GNS-triplet (πs, J f s, Ωs) and
yields a von Neumann algebra

Jt^nAWis/^ajy. (3.4)

This algebra will be called the algebra of normal (macroscopic) fluctuations.

By the above theorems and by the fact that the representation π s is regular we

are able to identify

l im ω(ea") = ωs(eiB<°{A)),
n-*oo

where Bω(A\Aes0Lsa is a Boson field satisfying the Bose commutation relations

Remark also that we can identify the macroscopic fluctuations in ω with the Bose
field β ω ( ), i.e.

lim An = Bω(A).
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The limit n -• oo is the central limit.
The rest of this section is devoted to the study of the von Neumann algebra

Jts{4\ First we describe the property of coarse graining. Mathematically, coarse
graining is the property that the map

is not injective, i.e. many micro observables yield the same fluctuation. This follows
immediately from the central limit theorem. As a matter of example, it is clear that
each observable Aes/LtSa and its space translate τxAej/LtSa yield the same
fluctuation: Bω(A) = Bω(τxA), xeZ\

Let (πω, Jfω,f2ω) be the GNS-triplet induced by the state ω and consider the
sesquilinear form < v > s on 2tfω with domain πω(s/L)Ωω which we simply denote

= X {ω(A*τxB)-ω(A*)ω{B)). (3.5)
xeZv

This form is directly related to the structure of the CCR-C*-algebra of fluctuations
and its quasifree representation (see Theorem 3.2).

This form defines a topology on s/L9 which is not comparable with the operator
topologies on stfL induced by the state ω. In fact this form is not closable in the
(weak, strong, ultra weak, ultrastrong) operator topologies. Indeed take Ae^L, by
(2.8) the state ω is τx-ergodic and

weak-lim A Λ = weak-lim —— £ τxA = ω(A)ί.
Λ \Λ\ x e Λ

On the other hand the space translation invariance of ω implies:

(AΛ-A,AΛ-A)s = 0 for all Λe@(Zv).

We call A and B in stfL equivalent, denoted by A ~ B if

<A-B,A-B>s = 0. (3.6)

Clearly this defines an equivalence relation on s/L. In particular, remark that
A ~ τxA for all xeZ v . The property of coarse graining is mathematically charac-
terized in the following theorem.

Theorem 3.4. Let A,Bes/Lsa9 then the following is equivalent:

(i) A~B,
(ii) π,(

Proof. Suppose first (ii) is satisfied, then

[πs{W{A)\ πa(W(B))Ji = 0 and hence σω(A, B) = 0.

Further



Quantum Lattice Systems 541

1 = ωs(W(A)W(B)*) = ωs(W(A)W(- B))

= ωs(W(A - B)) = exp - \sω(A -B,A-B)

or (A — B,A — B}s = 0, proving (i). Conversely, suppose A~B then

i |σ ω μ -B9X)\2£<A-B,A- B)S(X, X)s

implies that σω(A -B,X) = 0 for all X G J ^ L , i.e. πs(W(A - B))eJt's. Also

||(πs(W(A - B)) - l)Ω, \\2 = ω s((^(Λ - B) - \)*{W{A -B)- 1))

= 2 - ωs(W(Λ - β)) - ωs(W(B - A))

= 0.

As Ωs is cyclic for ^ s , it is separating for Ji's. Hence

πs(W(A-B))=l
or

Denote by [ J / L ] the equivalence classes $0L for the equivalence relation ~ .
The form < , >s is a scalar product on [>/ L ] . Denote by Xω the Hubert space
obtained as the completion of | > / L ] . Clearly sω and σω extend continuously to
Xω. Denote by jΓ^e the real subspace of Jfω generated by \_s^Lsa]. Now one
considers the CCR-C*-algebra W(jf*e,σω) in the same representation πs induced
by the state ωs.

Corollary 3.5. With the notations of above one has the following equality:

Proof Clearly by Theorem 3.4 one has

πs(W(^LiSa, σ j ) = πa(W&s/Ltaa], σω)%

and the corollary follows immediately Proposition 5 from [12]. •

Remark that we were able to identify a set Xω of microscopic not necessarily
strictly local observables which is closed for the < , >s-topology and determined
by the quasifree state ωs. By the corollary all elements of Jf^e do have macroscopic
fluctuations in Jts. This fact will turn out to be of importance in the construction
of the dynamics.

Finally by Theorem 3.3 there exists a quasifree automorphism τx of the
CCR-C*-algebra W(s/LtSa,σω) given by

τxW(A)=W(τxA);

But as A ~ τxA, by Theorem 3.4:

and by Corollary 3.5, τx acts trivially on Jίs. In particular τxBω(A) = Bω(A) for all

In the next section we study the announced but less trivial problem, namely
the action of the time evolution group on the fluctuation algebra Jίs.
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4. Reversible Dynamics of Fluctuations

Contrary to the space translations, Theorem 3.3 is not directly applicable with
γ = αf, because with this choice, it is not clear and generally not true that <xt<stfL £ s/L.
The other conditions,

[τx, α j = 0 and ω°(xt = ω

such that octA
n = (oct A)n, are satisfied, and one is tempted to define the dynamics αf

of the fluctuations by the formula

6LtBω(A) = Bω(<xtA).

The difficulty with this formula is that it is unclear whether the central limit of
the nonlocal observable cttA exists or not, i.e. can one give a meaning to BJμtA).
Furthermore if Bω(cctA) exists it remains to prove that (άt)t defines a weakly
continuous group of *-automorphisms on the fluctuation algebra Jίs.

First we prove the existence of this central limits under the cluster conditions
(2.8) and for a dynamics satisfying the condition (2.5) on the potential. We prove
this in an indirect way. Using Corollary 3.5, we show that octAeJfω for all local
observables A.

Lemma 4.1. // (2.5) and (2.8) are satisfied then

(i) £ \ω(ottAτxB) - ω(A)ω(B)\ < oo; A,

(ii) Ίf oζ(A) = eitH^Ae~itH^ (see (2.6)), Λn = [ - n, n] v , then

lim (octA - (xn

tA, atA - α?X>s = 0
H-+CO

uniformly for t in any compact.

Proof. Denote for n, ke N:

First we prove that for k0 ^ 1, there exists a constant C(v):

α>. (4.1)Σ K*
k = k0

This follows from the straightforward bounds

\Λn

ktk+ί I S 2v(k + l ) v " x ( 2 n ) v ^ 2v4v(kn)v

and from (2.7), the convergence of α* to α ί5 exponentially. Remark also:

Σ I^U+il««((*-i)»)^c(v) £ fev-1«(fe)<« (4.2)
k = ko + 2 k = kon

This is clear from

fc+1^4(fc-2) as fe^3,
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the monotonicity of the function αω:

*Σ

by the consecutive bounds:

Σ |ΛJU+i|αω((fc-l)n)g f 2v8vnv(fe-2)v"1αω((/c-l)n)

oo n— 1

k = ko 1 = 0

and by (2.8) the boundedness.
Now we proceed to the proof of (i) and (ii). Take A, Bestf Aά and ω(A) = ω(B) = 0,

then

Σv\ω(atAτxB)\=Σo Σ MMτ x £) |

oo

^ Σ Σ
— Lu La

00

^ Σ \Ku
£^ I ft,ft

+ 1^1 Mil II5II+Σ Σ α«((fc-i)d)MIII|B||

and (i) follows from (4.1) and (4.2).
Now we show (ii). Remark first that for all finite n, the expression is meaningful,

because of (i)

is well defined, and

which follows from [α, ,^] = 0 and ω°α, = ω. Now:

^ ( Σ + Σ
\xeΛβn xeΛc

6n

The first sum Σ ί s bounded by

and tends to zero for n -> oo by (2.7) uniformly for ί in compacts. The second sum
Σ is bounded by the sum S* + S% + 2S^, where
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Sl= Σ \ω(at(A)τxa,A)\,

S2

n= Σ \ω{{an

tA-ω{a1A))τx0L"tA)\,

S3

tt= Σ |ω(α,M)τ,αM)|.
χeΛc

6n

Clearly lim S* = 0 because of the time invariance of ω and of the cluster condition
n-*oo

(2.5). Also using the cluster function αω one gets the time independent bound.

S2

n=Σ Σ I - I ^ Σ \Λlk+ι\«ω(2n(k-l))\\A\\2,

tending to zero by (4.2). Further

( K

Σ+ Σ
k 3 k K+

Now we prove that one can choose the integer K such that the second sum becomes
arbitrary small independent of n. Then the first finite sum will be shown to become
small for n large.

Using (4.1) and (4.2) the second sum yields

£ | . | ^ £ Σ \ω«octA-(oi1rA-ω(oc1rA)))τxoc';A)\

( )χ

^ f {2C(v)/cv||αίA-αMll Mil + C{v)k"-ιoiω{k)\\A\\2}.
k = (K+l)n

For all ε > 0, one can choose K such that for all n ̂  1 this bound is smaller than
ε/2. The first sum, using again the triangle inequality:

Σ Σ 1-1^21^+^1 MB ||M-αr^ll+Sw

2

k = 3 xeΛkJι+ί

which tends to zero for large n.
Remark that by (2.7) and the time independent bounds obtained from (2.8) the

convergence is uniform for t in compacts. •

As an immediate consequence of the lemma we have that for all local observables
Ae[>/ L ], octAe3fω and if Ae\_^LtSa] then octAeJf^. In view of Corollary 3.5,
W(oct A) is a well defined element of Ms and as

W(octA) = exp iBω(octA\ A e [ j / L i M ]

the fluctuation BJμtA) of ontA exists for all ίeR; in other words the time evolved
local observables have normal fluctuations if the local observables themselves have.

Before we show the existence of a dynamics on the algebra of fluctuations Jί»
we define the dynamics on the test function space Jfω.
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Lemma 4.2. The map U t:[stf ^\-> tf ω, UtA = octA is a well defined linear operator
on the Hubert space p Γ ω , < , >s) extending to a unitary operator for all teU. The
map t -> Ut is a strongly continuous one-parameter group.

Proof. Remark first that Ut is well defined because if A ~ B then by time invariance
of the state ω:

Also by the time invarianee for all

yielding that Ut is a densely defined isometric operator. The unitarity follows from
U'1 = l/_f. Again using the time invariance and the unitarity of Ut for all ίeR,
one has for t9t'eU:

proving the group property: UtUt. = Ut+t..
Finally the continuity of the map follows from the following argument. Take

any AesfΛd with ω(A) = 0 and denote

then

\Fn(t)-Fn(s)\^( Σ + Σ
\xeΛn + d xeΛc

n + d

+ d l + Σ «
v

and the continuity of t^Fn(t) follows from the normcontinuity of the α". But by
Lemma 4.1

<α, A, A)s = lim <α? X, A)s = lim Fn{t)
n n

uniformly for t in compacts. Hence the continuity of t -> (octA, A}s is guaranteed and

lim <JJtA - A, UtA - A}s = 0. •

Now we are able to formulate our main result about the existence of the
dynamics of fluctuations.

Theorem 4.3. For all elements AeJf*c

9 define &tW(A)= W(UtA). Then &t extends
to a weakly continuous one-parameter group of *-automorphisms of Jίs.

Proof From Lemma 4.2 the set (Ut)teU is a group of symplectic maps of p f £e> O
The theorem follows from Corollary 3.5 and Theorem 3.3 adapted to this
situation. •

It is instructive to realize that this theorem is a non-trivial extension of the
time evolution of the fluctuations in case the microdynamics is of the mean field
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type [2,4,5,6]. The essential property of mean field theories is that

i.e. local observables remain strictly local under the time evolution. Typically
for really interacting systems octjtfL φ jtfL for all finite times t. All this means that
for mean fields Theorem 3.3 is directly applicable, while for real interacting systems
one has to control the time evolution all the way through the central limit. This
is done in the preceding lemmas.

The theorem above yields also a rigorous proof of the fact that on the level of
fluctuations the time evolution is a linear process. This is expressed essentially by
the formula

with Bω a representation of a Boson field, which is a linear map. The Bose field
Bω is induced by a quasi-free state, which is a noncommutative version of a gaussian
distribution. Hence the gaussian character of the fluctuation observables is
expressed by the quasi-free character of the dynamics. Here we studied the reversible
dynamics, which is the basis of the linear response theory and the Kubo formula.
We come back to this application on another occasion. The above linearity of the
dynamics is not only expected for the reversible but also for the irreversible
dynamics. This has already been worked out for mean field theories [7], where
we derived the Onsager reciprocal relations.

In this paper we considered the time evolution of one type of macroscopic
observables, namely the fluctuations. There exists another important type of
macroscopic observables, namely the observables at infinity. The algebra of
observables at infinity however is commutative and very well known and
understood [1]. The typical, and for statistical mechanics may be the most
important, example is the algebra 2£™ of intensive observables of the system
consisting of the space means of the local observables; for any AejtfL one considers

A% = lim - L Σ τxA,
n-oo I/I,, I xeAn

where the limit is taken in the weak operator topology induced on the GNS-
representation of the state ω (operator form of the weak law of large numbers).
Now one can ask for the time evolution or the dynamics of this algebra 21™.

If the state ω satisfies the cluster condition (2.8) or more generally if the state
is ergodic for the space translations, then the algebra JΓ* of observables at infinity
is trivial, i.e. for all Ass/L or even for

and if furthermore the state ω is time invariant, the time evolution is also trivial: i.e.

Even if one relaxes the condition (2.5) on the dynamics to allow long range
interactions, but such that the α, are still weakly continuous, the dynamics of the
observables at infinity remains trivial.
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Tentatives to study the dynamics of the observables at infinity have been done
before [13,14]. The least that one can say is that it is unclear how one gets a
nontrivial dynamics without relaxing the condition of time invariance of the state
ω. But the latter is another story. For mean field models this has been worked out
in [15].

In this work we proved that the time invariance of the state does not imply
the time invariance of the fluctuations. However the time invariance of the
microstate: ω°oct = ω does imply the time invariance of the macro state: ωs°όίt = ωs.
Now we go one step further. We suppose that ω is a α Γ KMS state of $ at inverse
temperature β>0; i.e. for any pair A,Be& there exists a complex function FAB

which is analytic on the strip Dβ = {z|zeC,0 < Imz < /?}, bounded and continuous
on the closure Dβ and such that

FAtB(t) = ω{A<xtB\ FA,B(t + iβ) = ω(at(B)A)

for all teU.
Using the notations of above, we denote by J Γ ω α the subspace of JΓ ω generated

by the set

$ t A ; neN0, Ae^L, fu

n(t) = fn(t-u);
t\ ueM}(*).

Using the property that {/„}„ is a ^-convergent sequence, a standard argument
implies that JΓω>α is dense in Xω. It is well known [9] that the elements of X ω > α

are analytic vectors for (I/ t) t e R, i.e. V^eJfω>α, 3F^:C->Jfω such that Fψ(i)= Utφ
and for all φeJfω:z-+(φ9Fψ(z)}s is analytic. Denote Fψ(z)= Uzφ. In particular

UzA(fn) = $dtfn(t-z)UtA;

and

Lemma 4.4. Let ω be a α Γ KMS state at β > 0, then for all A(fn), B(fm)EJfω, the
map z-><>!*(/„), UsB(fn)}s is entirely analytic, bounded on Dβ and

<A*(/W), Ut+iβB(fn)}s = (UtB*(fnlA(fn)}s.

Proof. For A9Bes/L with ω(A) = ω(B) = 0,

<Λ*(/W), UzB(fm)>s = \dtdt'fn{t)fjtf - z)(UtA\ Ut,B)s.

For zeDβ one has the bound:

I ( A * ( f n ) , UzB{fm)X\ S II / „ II i II fm II i II A * II, || B\\se-l>2.

It remains to prove the boundary condition. By Lemma 4.1:

(A*(fn), UzB(fJ\ = \dtdt'fn(t)fjt' - z) Σ φ,(A)τxθi,B).
xeZ v

Denote
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then from the proof of Lemma 4.1 (i) one reads off:

t,f)l ^ Σ WMW'Bll ^ Cx
V

where C l 5 C 2 and M are constants. As this exponential behaviour is dominated
by the Gaussians fn9fm9 one applies the Lebesgue dominated convergence theorem
to conclude that

<A*(fn\Uz(fm)>s = Σ ω(A(fn)τx0LzB(fm))
xeZv

Now using [ τ x , α j = 0, and the α r KMS condition for ω and ω°τx = ω:

ω(Λ(fn)τΛ + iβB(fm)) = ω(«tB(fm)τ_xA(fn)).

Hence

= Σ ω(*tB(fm)τxA(fn)%
xeZ v

and again by the above argument

<Λ*(/M), Ut + iβB(fm))s = <UtB*(fm), A{fn)}s. M

Now we prove our main application of Theorem 4.3. We prove that if the
microsystem is in an equilibrium state, then also the macrosystem of fluctuations
is in an equilibrium state for the dynamics constructed above, i.e. the notion of
equilibrium is preserved under the operation of coarse graining induced by the
central limit.

Theorem 4.5. // ω is a α r KMS state of ^ at β > 0, then ωs is a αr-KMS state of
the von Neumann algebra Jis at the same temperature.

Proof. Denote by JίsΆ the subalgebra of Ms generated by the set
Clearly JίsSi is *-invariant, αΓinvariant and weakly dense in Jίs. For A,B
observables of the type (*) define the function

By Theorems 3.2 and 4.3

^ . * W = exp { - HA + Uft, A + UtB}s + iiσω(A, UtB)}.

By Lemma 4.4 this function is analytic on Dβ, bounded and continuous on Dβ and

Using the canonical commutation relations (3.3) one extends trivially these
properties to the function

for all ψ,φe3f%a. By linearity the result extends to the function

t^ωs(XδίtY); X9ΎeMsA.

Finally, as MsΛ is dense in Jίs and ω s°α ί = ω s for all ίeR a standard procedure
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([9] proof of Proposition 5.3.7) yields the extension to the function

t-+ωs(XάtY) for X, YeJίs.

This finishes the proof of the theorem. •
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