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Abstract. For short range interactions and for L!-space clustering states it is
proved that there exists a bonafide time evolution on the set of normal
fluctuations. This dynamics is applied to derive the notion of equilibrium state
of the algebra of fluctuations.

1. Introduction

The aim of statistical mechanics is the explanation of the macrophenomena on
the basis of the microstructure. For this it is important to make a clear distinction
between microscopic observables, states, etc. and macroscopic ones.

In the algebraic approach to quantum statistical mechanics the microscopic
system is currently described by a (C*- or von Neumann-) algebra & of observables.
A physical state is a positive linear normalized functional o of # and a dynamics
of the system (%, w) is a one-parameter group o, of *-automorphisms of 4.

Analogously any macroscopic system should be described by an analogous
triplet of observables, states and dynamics.

The problem is to construct by precise procedures the macroscopic triplets out
of the microscopic ones.

A well known [1] algebra of macroscopic observables is the one given by the
observables at infinity and consisting of the space means of local micro-observables:
ie. for A any local observable, one considers the corresponding observable at
infinity,

AZ = lim %jdxtxA,
V- | 4
where V is any finite volume and 7, the translation over the space variable x. In
probability this limit is known as the law of large numbers. The algebra generated
by the limits {47 | A%} is an abelian algebra of macroscopic observables.
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Here we are concerned with another algebra of macro-observables, namely
this which is generated by the limit points under the central limit, ie. one
considers:

B(A) = ng:o fjdx(r A — w(A)).

In physics, these limits are called (normal) fluctuations. For quantum systems the
existence of these limits is studied in [2,3] for mean fields, respectively mixing
systems. In Sect. 3 we give a new version of the main theorem of [3] about the
existence of normal fluctuations under a slightly more stringent, but more
transparent cluster condition. We prove that the set of central limits from the
microscopic algebra generates a representation of a CCR-algebra induced by a
quasi-free state. Under the central limit the algebra # of micro-observables is
mapped into a CCR-algebra # of macroscopic fluctuations (for the precise
formulations see below). This map is clearly not injective. This is the phenomenon
of coarse graining. A mathematically rigorous description of this property is given
in Theorem 3.4. Also under the central limit, the microstate w is mapped into a
quasi-free state @.

In this paper we concentrate on the study of the dynamics of the fluctuations
2 for interacting systems. For some mean field models this time evolution has
been computed before [4,5] and for general mean field systems [2,6]. Here we
perform this program for quantum lattice systems with a quasi-local time evolution,
induced by short range interactions and for states satisfying a L'-cluster condition
for space translations.

Free particles and mean field systems have the particular property that strictly
local observables are mapped into strictly local observables. This means that if
the fluctuations exist for local observables, then they also exist for their time evolved
ones. This is not true anymore for interacting systems, the time evolution is
destroying the strict locality. The main technical problem is to control this time
evolution and to show that one can pass it through the central limit, in order to
get a basis for a consistent dynamics of fluctuations. This is proved in Sect. 4 and
we end up with the existence and explicit construction of a nontrivial, reversible
dynamics & on the CCR-algebra # of fluctuations. This dynamics is fully
determined by the microscopic one and is of the so-called quasi-free type, i.e. it
does not show any new interaction between the macroscopic fluctuations. This
result yields, for sufficiently short range interactions and for states which are
sufficiently clustering, a rigorous proof of the physicist’s common belief about the
asymptotic simplification that may occur for macroscopic observables.

Finally, having established the macrodynamics &,, we apply it to study the case
of an equilibrium state, in particular we assume that the microstate  is an «,-KMS
state at inverse temperature f. We prove that the quasi-free macrostate @ is then
necessarily a &-KMS state at the same temperature. This statement constitutes a
proof of one of the basic assumptions of the phenomenological theory of Onsager
[7,8] about small oscillations around equilibrium.
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2. The Medel

We develop the theory for systems which are defined on a v-dimensional lattice Z”
and which have a quasi-local structure [9]. Let 2(Z") be the directed set of finite
subsets of Z*, where the direction is the inclusion. With each xeZ" we associate
the algebra </, a copy of a matrix algebra My of N x N matrices. For all Ae2(Z"),
consider the tensor product o/, = (X),. The family A,, A€2(Z") has the usual
properties of locality and isotony: xe4

[y, ,4,]=0 if A;nA,=0,
Ay Sy, f A SA,.
Denote by &, all local observables

o= ) La 2.1)
Ae(Z”)
The norm closure # of </, is again a C*-algebra:
B=sl = ) o, 2.2)
Ae2(Z")

and considered as the algebra of quasi-local observables of our system.
The group Z¥ of space-translations of the lattice acts as a group of *-auto-
morphisms on £ by:

1 Aed o1 (A)ed 4 s XxEZ'. 2.3)

The dynamics of our system is determined in the usual way by the local
Hamiltonians

Hy= Y ¢(X);, Ae2(Z’) 24

XcA
with
d(X)edy forall Xep(Z2),
T P(X) =X +x); xeZ’
and such that, there exists A > 0:
II¢II15(;(|X|N2'X'9“‘X’II H(X) | < oo, (2.5)

where d(X) = sup |x — y|, is the diameter of the set X and | X| is the number of
x,yeX
elements in X.

For Ae2(Z"), the local dynamics o is given by
oA oy A,
aA(A)=e"rde s Aeod , (2.6)
From (2.5) it follows that the global dynamics «, of 4 exists as the following norm
limit:
o, = lim o,
A
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and one has the following estimate [9, Theorem 6.2.117:
leu(4) — e (A) | S [ Al [Agl(@"114— 1) 3 e~ HIxle, @7

xeA®
where

|xlp=min|x —y|; Aesl,,.
yeAo
By (2.4) one also has [«,,7,] =0 for teR, xeZ". Finally we consider the C*-system
(%, q,, ), where w is a state of # which is space and time translation invariant,
i.e. wet, = w for all xeZ® and weoa, = w for teR. Furthermore we assume that the
state has the following space-clustering property: let

1 -
%,(d) = sup sup {m |(AB) — w(A)w(B)||d = d(4, A)},

AA Aesd,
Bes/

we suppose that
Y (lx]) < co. (2.8)

xez®
Remark that this space-factorization or clustering condition is of the same type
as in [10], where the asymptotic orbits of non-interacting Fermi particles are
studied. They assume that the cluster function «, is a bit stronger than of the
logarithmic type, we assume the L'-type in (2.8). We can derive the results of this
paper under the weaker condition, namely: there exists § > 0 such that

lim \/Nal(N1/21-%) =, (2.9)
N-
where
1 - -
oy(d) = sup {——— |w(AB) — w(A)w(B)| |d £ d(A, A), max (|A[,|A]) S N }
i LIAIBI
Aesd 4

Best;

One readily checks that (2.8) implies (2.9). However for technical convenience we
stick to the condition (2.8).
Remark that the function «, has the following immediate properties:

220,20
and monotonically decreasing
o0, d)Za,d) for d=d

3. Systems with Normal Fluctuations

Denote by A, the cube centered aro~und‘the origin with edges of length 2n + 1.
For any Ae4, the local fluctuation A" of A4 is given by

A L Y 14 — w(A)). (3.1)

TTA 2
1A,
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In this section we characterize a subset %, of & such that for all A4, the central
limit

lim A" = B, (A) (3.2)
exists. The limits (3.2) are called the fluctuations of the observables of #,. The
time evolution of fluctuations will be the subject of Sect. 4. Here we restrict ourselves
to the study of the central limit and of the mathematical structure of the algebra
of fluctuations.

Definition 3.1. Let &, be any * subspace of &, the system (B, By, w) is said to have
normal fluctuations for %, if

(i) VA, Be,
Y |o(At,B) — w(A)w(B)| < .

xeZ"
(i) VA = A*edyiteR
lim a)(e"'z") — e*(tz/Z)sw(A,A),

n—oo

where s, (A, B)= lim Re w((A"*B") for all A, B elements of B,. The limit in (ii) is
called the central limit.

Remark that, by (i):

So(4,B)=Re Y, (w(A*1,B) — w(A*)w(B)).
xeZ"
Theorem 3.2. (Central limit theorem). If the state w of # satisfies the L'-space-
factorization condition (2.8) then for all A,Be s, ., (self-adjoint elements of o).
lim (7" %) = lim w7 2")e= A" F)
=exp{—35.(4 + B, A+ B)—(i/2)0,(4, B)},

where 6,,(A, B) = lim 2Im w(A"B"). In particular the system has normal fluctuations
fOr «@0 = dL’ n=o
Proof. Basically this theorem is proved already in [3] and [11] under a slightly
different formulation of the conditions. This theorem will be proved if we check

that the conditions of Theorem 4.1 of [11] follow from condition (2.8).
We have to prove

(i) that for all A, Be | ,,:
Y |w(At,B) — w(A)w(B)| < o

xeZ’
(ii) that for all Aef| g,:
1 ~
lim w((AM*)=0.
o Al

Remark that in [3, 11] a slightly stronger condition is assumed. However from the
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proof of Theorem 4.1 of [3] it readily follows that the above condition is sufficient.
(iii) Condition (2.8) implies condition (2.9). But this is trivial.

It remains to prove (i) and (ii).
(i) Follows from the observation that if A,Be</,, then 3deN such that
A,Bes 4, and
Y. |o(A7,B) — w(A)w(B)|

xeZ®

< Y lo(At.B)— o(AwB)| + | 4] | BIl Y «lx])< .

xeAyy xeZ®

(i) Without loss of generality take w(A4) =0 and for simplicity we work out
the proof only in the case Ae.«/,;,. Then by translation invariance
1 1

At,_ At _ A1, _ A)| < —
A 2, AT AT AT A S G

Y |o(At Aty AT A)|.

x,y,2€A,,

Take g(n) =n'/27¢, then

1 §|A1"|2<Z+3Z+3Z+Z>.

2
|Anl X,9,2€A3, x,y,zeAq(,,) x,yeAq(,,, xeAq(,,) x,y,zeA;(,,)

c
2€Aqm) $.2€ Agimy

Now we bound each of these terms. Clearly

Y lo(Ar At At A)| S | A]* Ay

X,9,2€ Ag(n)
Z Iw(ATxATyATzA)l é ” A ”4|Aq(n),2|A2n|'
xy€Aqm
2€Aq4(n)
Furthermore
Y |w(At,At, AT, A)| Y |w(At, AT, AT, A) — (AT, A)o(t, AT, A)|
x€Aqm)
y,zeAf,(,,,

+|w(At,4)| |o(4t, -, (4))]
<2 Y oyl Al

IylgSlzly

x€Ag(m)

+1A Azl Y ao(IyDI AN,

yez®

where |y|, = d(y, A,). Hence, this term is bounded by
31 Agl 1 Azal Y (I AN%.
yez®
Finally
Y I=614l1* Y an(Ix)S61AN4A,1* Y au(lx]).

%,y,2€ Ay IxIslylSlzl xeAqm)
X, y,zeAq(,,)
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Using these bounds
(A _lIAI*
1AL T 1A

(lAq(n)|3 + 3|Aq(n)|2|A2n|

+ 91 Ayl 1420l 2 an(1¥D) + 6147 ¥ %((XI))-

yez® x€A
Using condition (2.8) and the choice of g(n) above, one checks
. o((AY)
lim
now Al
Now we are able to introduce the algebra of normal fluctuations of the system
(8, ,,w). Consider the symplectic space (#, ,,0,) where o, is defined in

Theorem 3.2. Denote by W(#,, 4, 0,,) the CCR-C*-algebra generated by the Weyl
operators {W(A)|Aes/, ,} and satisfying the product rule

=0. N

W(A)W(B) = W(A + B)exp — %aw(A, B). (3.3)
The central limit theorem fixes a representation of this CCR-algebra. This is
proved in the following theorem which follows from Theorems 3.2 and 3.3 of [3].

Theorem 3.3. For each Ae o/ g, the limits lim a)(e"’?') define a quasifree state w, of
the CCR-C*-algebra by rmo

a)s( W(A)) =CXp— %Sw(A’ A)

Moreover if y is a*-automorphism of # leaving </ invariant, commuting with the
space translations and leaving the state o invariant, then 7 given by

F(W(A)) = W(y(A4))
defines a quasifree*-automorphism of W(; ,,0,,). B

The quasifree state w, of Theorem 3.3 induces a GNS-triplet (n,, #,, £2,) and
yields a von Neumann algebra
"”s = ns(W(ﬂL,sa’ aw))"~ (34)

This algebra will be called the algebra of normal (macroscopic) fluctuations.
By the above theorems and by the fact that the representation =, is regular we
are able to identify

lim o(e”) = w,(e®"),
where B, (4), Ae /| o, is a Boson field satisfying the Bose commutation relations
[B,(4), B,(B)] =ic (A, B)1.

Remark also that we can identify the macroscopic fluctuations in w with the Bose
field B,("), i.e.
lim 4" = B,(A).

n—o
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The limit n — oo is the central limit.

The rest of this section is devoted to the study of the von Neumann algebra
M (4). First we describe the property of coarse graining. Mathematically, coarse
graining is the property that the map

/le‘glea'_*l;w(/q)

is not injective, i.e. many micro observables yield the same fluctuation. This follows
immediately from the central limit theorem. As a matter of example, it is clear that
each observable Aes/;,, and its space translate 7,Aes/; , yield the same
fluctuation: B,,(4) = B, (. A4), xeZ".

Let (n,,, # ,,2,) be the GNS-triplet induced by the state w and consider the
sesquilinear form {-,*»; on #, with domain =,(</ ), which we simply denote
by &, :

(A,BY;=5s,(4,B)+ %GQ(A, B)

= ) (0(A*1,B) — w(4*)w(B)). (3.5)

xeZ"

This form is directly related to the structure of the CCR-C*-algebra of fluctuations
and its quasifree representation (see Theorem 3.2).

This form defines a topology on &7, , which is not comparable with the operator
topologies on .o/, induced by the state w. In fact this form is not closable in the
(weak, strong, ultraweak, ultrastrong) operator topologies. Indeed take Ae.«/;, by
(2.8) the state w is 1,-ergodic and

1

weak-lim 4 , = weak-lim Al Y 1,A=w(A)l.
A xeA

On the other hand the space translation invariance of w implies:
CA,—A,A,—A),=0 forall Ae2(2").
We call 4 and B in &/, equivalent, denoted by A ~ B if
(A—B,A—B),=0. (3.6)

Clearly this defines an equivalence relation on «/,. In particular, remark that
A ~1,A for all xeZ". The property of coarse graining is mathematically charac-
terized in the following theorem.

Theorem 3.4. Let A,Best, ,, then the following is equivalent:

()) A~ B,
(i) ny(W(4)) == (W(B)).

Proof. Suppose first (ii) is satisfied, then
[n,(W(A)),n(W(B))]=0 and hence o,(4,B)=0.
Further
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1 = o (W(A)W(B)*) = o (W(4)W(— B))
= CO.S(W(A - B)) =¢exXp — %sw(A —B,A— B)
or (A — B,A— B),=0, proving (i). Conversely, suppose 4 ~ B then
%iaw(A - B’X)iz é <A - B,A - B>s<X’X>s
implies that ¢,(4 — B, X) =0 for all Xe«/,, ie. n(W(A — B))e . Also
l(n(W(A — B)) — D€|? = o ((W(A — B) — 1)*(W(A — B) - 1))
=2 —w(W(4 — B)) — o,(W(B — A))
=0.
As Q. is cyclic for 4, it is separating for .#;. Hence
n(W(A4—B))=1
or
n(W(A)) =n(W(B)). B

Denote by [/, ] the equivalence classes .«Z; for the equivalence relation ~.
The form (-, ), is a scalar product on [.«/;]. Denote by 2, the Hilbert space
obtained as the completion of [/, ]. Clearly s, and o, extend continuously to
A ,. Denote by Ak the real subspace of &, generated by [/, ,,]. Now one
considers the CCR-C*-algebra W(#'R¢,a,,) in the same representation r, induced
by the state w,.

Corollary 3.5. With the notations of above one has the following equality:
My=n(W(AR,5,)).
Proof. Clearly by Theorem 3.4 one has
(WA L0y 00)) = T(W([H 150, 0,));
and the corollary follows immediately Proposition 5 from [12]. B

Remark that we were able to identify a set ", of microscopic not necessarily
strictly local observables which is closed for the <-,->,-topology and determined
by the quasifree state w,. By the corollary all elements of #'*¢ do have macroscopic
fluctuations in .. This fact will turn out to be of importance in the construction

of the dynamics.
Finally by Theorem 3.3 there exists a quasifree automorphism %, of the
CCR-C*-algebra W(«/, ,,,0,) given by

T, W(A)=W(t,A);, xeZ'; Ae| g,
But as A ~ 1,4, by Theorem 3.4:
(T, W(A)) = n(W(A4)),
and by Corollary 3.5, £, acts trivially on .#. In particular %,B,(4) = B,,(A) for all
Re
Aei{;wtfle next section we study the announced but less trivial problem, namely
the action of the time evolution group on the fluctuation algebra /.
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4. Reversible Dynamics of Fluctuations

Contrary to the space translations, Theorem 3.3 is not directly applicable with
y = a,, because with this choice, it is not clear and generally not true that oo/, < o/, .
The other conditions,
[t.,2,]=0 and wea,=w
such that o, A" = (6?,‘1)", are satisfied, and one is tempted to define the dynamics &,
of the fluctuations by the formula
& B, (A) = B,(x,A).

The difficulty with this formula is that it is unclear whether the central limit of
the nonlocal observable o, A4 exists or not, i.e. can one give a meaning to B, (o, A).
Furthermore if B,(x,A) exists it remains to prove that (&), defines a weakly
continuous group of *-automorphisms on the fluctuation algebra #.

First we prove the existence of this central limits under the cluster conditions
(2.8) and for a dynamics satisfying the condition (2.5) on the potential. We prove
this in an indirect way. Using Corollary 3.5, we show that o,Ae ", for all local
observables A.

Lemma 4.1. If (2.5) and (2.8) are satisfied then
() Y |o(A1,B)— w(4)w(B)| < 00; A, Best,,
xez®

(i) If o?(A) = "1~ Ae™""ax (see (2.6)), A, = [ —n,n]", then
lim {a,A —afA,a0,A —af A>;=0

n— o
uniformly for t in any compact.
Proof. Denote for n,keN:
Aig+1= A2(k+ l)n\Aan'

First we prove that for k, = 1, there exists a constant C(v):
ka | Afksil lloA—a™ 4] < C(V)k Xkl k||, A—afA| < co. 4.1)
=ko =Kon
This follows from the straightforward bounds
| Af 1] S 2v(k + 1) 1(2n)” < 2v4" (kn)"

and from (2.7), the convergence of ¥ to a,, exponentially. Remark also:

S AL slag((e— D) CO) Y ko~ ta(k) < oo. (42)
k=ko+2 k=kon

This is clear from
k+1<L4k—-2) as k=3,
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the monotonicity of the function «,,:

n—1

no, (k' + ) < Y o, (k'n+1),
1=0
by the consecutive bounds:
Y 1 Afksilag(k=1m) < 3 298'n(k—2)"" 'a,((k — 1)n)
k=ko+2 k=ko+2

© n—1 0
S8 Y N (kn+1P oy kn+D)=2"8" Y ko, k),
k5o 150 k5Ton

and by (2.8) the boundedness.
Now we proceed to the proof of (i) and (ii). Take A, Be #/ , ,and w(4) = w(B) =0,
then

Y oAt B)| Y. lo(eA,B)

)
xez’ k=0 XEA:_k+1
<Y Y lo((—o)(A)B)| + |l AT, B)|
k=0 ceaf i1
< Z,OIAﬁ,knl 1Bl oA —o?All
+ | Agal 1 411 | Bl +k23 ; a,((k—1d) Al | B
T xeMik+

and (i) follows from (4.1) and (4.2).
Now we show (ii). Remark first that for all finite n, the expression is meaningful,

because of (i)
oA, o7 ADs
is well defined, and
(oA, 0,4 = <A, Ay,
which follows from [a,,7,] =0 and wea, = w. Now:
oy A—ofA, A —afA),
= ( X+ X )Iw((a:A — (A — o(7 4)))7(0, A — o7 A)).

x€Agn xeA%,,

The first sum ) is bounded by

xeAgn
2| Agal llyA — a7 A2

and tends to zero for n— oo by (2.7) uniformly for ¢ in compacts. The second sum
Y. is bounded by the sum S} + S? + 257, where

xeAg,
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Sp= Y lol(A)r,0A),

xeAgy

Si= Y lo((ga— o)),
xeAg,

Si= Y lo@(A)r.arA)l.
xeAg,,

Clearly lim S} = 0 because of the time invariance of w and of the cluster condition

(2.5). Also using the cluster function «,, one gets the time independent bound.

00

YIS Y A lanntk — 1) [ A1,

k=3

2 _
Sy =
K

M

3 n
xeAy+1

tending to zero by (4.2). Further

K 0
S3=<Z + Z )I...l.
k=3 k=K+1

Now we prove that one can choose the integer K such that the second sum becomes
arbitrary small independent of n. Then the first finite sum will be shown to become
small for n large.

Using (4.1) and (4.2) the second sum yields

00 0

Yol Y Y oA — (" A — ol A))t.op A)l

k=K+1 k=K+1 eqm

+o((" A — oo A))T.0f A)l

= Y {2C0R (e A—afAll | All+ COIK* ™ o, (k)| 4117}
k=(K+1)n
For all ¢ > 0, one can choose K such that for all n > 1 this bound is smaller than
&/2. The first sum, using again the triangle inequality:

K
Y 2 I I=21Aksl 14N e A — o7 Al + S7

which tends to zero for large n.
Remark that by (2.7) and the time independent bounds obtained from (2.8) the
convergence is uniform for ¢ in compacts. W

As an immediate consequence of the lemma we have that for all local observables
A€l ], o, AeX, and if Ae[f, ] then o, Ae X% In view of Corollary 3.5,
W(x, A) is a well defined element of .#, and as

W(atA) = exp iBw(atA)a Ae['ﬂL,sa]

the fluctuation B, (x,A) of a,A4 exists for all teR; in other words the time evolved
local observables have normal fluctuations if the local observables themselves have.

Before we show the existence of a dynamics on the algebra of fluctuations ./,
we define the dynamics on the test function space %",
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Lemma 4.2. The map U,:[ /> A ,, U,A=a,A is a well defined linear operator
on the Hilbert space (A ,,<","),) extending to a unitary operator for all teR. The
map t— U, is a strongly continuous one-parameter group.

Proof. Remark first that U, is well defined because if 4 ~ B then by time invariance
of the state w:

{o,A—o,B,o,A—a,By;=(A—B,A—B);=0.
Also by the time invariance for all Ae[.«/,]:
UA, U AH =<4, A),

yielding that U, is a densely defined isometric operator. The unitarity follows from
U, !=U_,. Again using the time invariance and the unitarity of U, for all teR,
one has for t,t'eR:

Ui A, By =010 A, B)s=apA,a_ By =< U A, U_B);=<UU A4,B),,

proving the group property: U, U, = U, ,,..
Finally the continuity of the map follows from the following argument. Take
any Aes/,, with w(4) =0 and denote

F,(t)=<ofA,A>;; nzd,
then

IF,.(t)~Fn(S)I§< DIEE DY )Iw((af—aé')(A)TxA)I

x€An+a  xeAG4q4
< {lAn+d| + ) aw(IXI)}IIA [ oA —ogAl,
xez"
and the continuity of ¢ — F,(t) follows from the normcontinuity of the of. But by
Lemma 4.1

(A, AY, =lim (a4, A, = lim F,(z)

uniformly for ¢t in compacts. Hence the continuity of t — {a,4, A), is guaranteed and
lim(U,A— A, UA—A),=0. R
t—=0

Now we are able to formulate our main result about the existence of the
dynamics of fluctuations.

Theorem 4.3. For all elements Ac AR, define &, W(A) = W(U,A). Then &, extends
to a weakly continuous one-parameter group of *-automorphisms of M .

Proof. From Lemma 4.2 the set (U,),.q is a group of symplectic maps of (A%, s,,).
The theorem follows from Corollary 3.5 and Theorem 3.3 adapted to this
situation. H

It is instructive to realize that this theorem is a non-trivial extension of the
time evolution of the fluctuations in case the microdynamics is of the mean field
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type [2,4,5,6]. The essential property of mean field theories is that
o S A,

i.e. local observables remain strictly local under the time evolution. Typically
for really interacting systems a,.«/; & o7, for all finite times t. All this means that
for mean fields Theorem 3.3 is directly applicable, while for real interacting systems
one has to control the time evolution all the way through the central limit. This
is done in the preceding lemmas.

The theorem above yields also a rigorous proof of the fact that on the level of
fluctuations the time evolution is a linear process. This is expressed essentially by
the formula

&B(4)=B,(U,4), AeX,

with B, a representation of a Boson field, which is a linear map. The Bose field
B, is induced by a quasi-free state, which is a noncommutative version of a gaussian
distribution. Hence the gaussian character of the fluctuation observables is
expressed by the quasi-free character of the dynamics. Here we studied the reversible
dynamics, which is the basis of the linear response theory and the Kubo formula.
We come back to this application on another occasion. The above linearity of the
dynamics is not only expected for the reversible but also for the irreversible
dynamics. This has already been worked out for mean field theories [7], where
we derived the Onsager reciprocal relations.

In this paper we considered the time evolution of one type of macroscopic
observables, namely the fluctuations. There exists another important type of
macroscopic observables, namely the observables at infinity. The algebra of
observables at infinity however is commutative and very well known and
understood [1]. The typical, and for statistical mechanics may be the most
important, example is the algebra Z2 of intensive observables of the system
consisting of the space means of the local observables; for any A€/, one considers

[ o] 1 1
AS= i AT 2

where the limit is taken in the weak operator topology induced on the GNS-
representation of the state w (operator form of the weak law of large numbers).
Now one can ask for the time evolution or the dynamics of this algebra .

If the state w satisfies the cluster condition (2.8) or more generally if the state
is ergodic for the space translations, then the algebra Z'% of observables at infinity
is trivial, i.e. for all Ae</; or even for Ae%:

A2 = w(A)1,
and if furthermore the state w is time invariant, the time evolution is also trivial: i.e.
(0, A)e = (o, A = w(A) T =A47.

Even if one relaxes the condition (2.5) on the dynamics to allow long range
interactions, but such that the «, are still weakly continuous, the dynamics of the
observables at infinity remains trivial.
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Tentatives to study the dynamics of the observables at infinity have been done
before [13,14]. The least that one can say is that it is unclear how one gets a
nontrivial dynamics without relaxing the condition of time invariance of the state
. But the latter is another story. For mean field models this has been worked out
in [15].

In this work we proved that the time invariance of the state does not imply
the time invariance of the fluctuations. However the time invariance of the
microstate: woa, = @ does imply the time invariance of the macro state: w o &, = w;.
Now we go one step further. We suppose that w is a o,-KMS state of # at inverse
temperature > 0; i.e. for any pair A, Be# there exists a complex function F, 5
which is analytic on the strip D; = {z|zeC,0 < Im z < $}, bounded and continuous
on the closure D; and such that

F 4 5(t) = ©(Aa,B), F 4 4(t +if) = o(a(B)A)

for all teR.
Using the notations of above, we denote by £, , the subspace of ", generated
by the set

{A(fDA(f)=[dtfa(t)U,A; neNy, Aesd,, fu(t)=f,(t—u);
fi)=/(n/n)e™ ™, ueR}(x).

Using the property that {f,}, is a d-convergent sequence, a standard argument
implies that £, , is dense in ", It is well known [9] that the elements of ), ,
are analytic vectors for (U,),.g, i.€. V€X', ., AF,:C— A, such that F (t)= Uy
and for all peA",:z— (P, Fy(2)), is analytic. Denote F,(z) = U, y. In particular

U A(f,)=fdtf,(t —2)U,A; Aesd,
and ‘
UA(f.) = A(f0)

Lemma 4.4. Let o be a ,-KMS state at >0, then for all A(f,), B(fm)€X o, the
map z — {A*(f,), UB(f,)); is entirely analytic, bounded on D, and

CA*(f ), UrrigB(f) s = CUB*(f ), A(f0) )s-
Proof. For A,Bes/; with w(A4)=w(B)=0,
CAX(f,), U.B(f) > = [ dtdt' () fult — 2)<U,A*, U,B),.
For zeD, one has the bound:

[KA*(f b UB(fw) sl S U Sulli | fmlls 1A% 11| Bl €™

It remains to prove the boundary condition. By Lemma 4.1:

CAM(f), U.B(f ) s = [ dtdt f,(8) fult —2) 3 o(e(A)r0:B).

xeZ'®

Denote
gN(ta tl)= Z w(at(A)Txat’B)a

xeAy



548 D. Goderis, A. Verbeure and P. Vets

then from the proof of Lemma 4.1 (i) one reads off:

1Mt 1) < Y |o(a AT B)| < €y + CoeMitIeh,

xeZ”

where C,,C, and M are constants. As this exponential behaviour is dominated
by the Gaussians f,, f,,, one applies the Lebesgue dominated convergence theorem
to conclude that

A ULSm)ds= X (A(f)rB(f ).

xeZ"

Now using [7,,a,] =0, and the o,-KMS condition for w and w1, = w:

w(A(fn)Txat +iﬂB(fm)) = w(atB(fm)T—xA(fn))'
Hence

CA*(f ), UrrigB(f)ds = Y, o B(fn)t-A(f,),

xeZ’
and again by the above argument
<A*(fn)’ Ut + iBB(fm))s = <UrB*(fm), A(fn)>s n

Now we prove our main application of Theorem 4.3. We prove that if the
microsystem is in an equilibrium state, then also the macrosystem of fluctuations
is in an equilibrium state for the dynamics constructed above, i.e. the notion of
equilibrium is preserved under the operation of coarse graining induced by the
central limit.

Theorem 4.5. If w is a a,-KMS state of # at >0, then w, is a 4-KMS state of
the von Neumann algebra ./ at the same temperature.

Proof. Denote by .#,; the subalgebra of ./, generated by the set {W(Y)|yeX 55, }
Clearly .#; is *-invariant, &-invariant and weakly dense in .#,. For A,B
observables of the type (*) define the function

9 4.8(0) = 0 (W(A)%,W(B)).
By Theorems 3.2 and 4.3
4, 5(t)=exp{—3(A+U,B, A+ U,B), +3io,(4,U,B)}.
By Lemma 4.4 this function is analytic on D, bounded and continuous on D, and
Y 4,8t + iB) = 0 (@(W(B))W(A)).

Using the canonical commutation relations (3.3) one extends trivially these
properties to the function

Yy.6() = o(W(Y)a,W(9))
for all y, pe ' Ee,. By linearity the result extends to the function
tow(XaY), X,Yed,.

Finally, as .#_; is dense in .#, and w,°& = w, for all teR a standard procedure
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([9] proof of Proposition 5.3.7) yields the extension to the function

tow(XaY) for X,Yed,.

This finishes the proof of the theorem. M
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