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Abstract. We study the problem of complete parametrization of the moduli
space of SU(2) Yang-Mills-Higgs monopoles in terms of a nonlinear integrable
system. It is shown that the moduli space is homeomorphic to the solution
space of a new generalization of finite nonperiodic Toda equation called the
complex cyclic-Toda hierarchy.

1. Introduction

All SU(2) Yang-Mills-Higgs monopoles, namely, finite energy static solutions of
the SU(2) Yang-Mills-Higgs equations, are given as solutions of Bogomolny's
first-order equations over IR3 satisfying appropriate boundary conditions.
Monopole solutions of (magnetic) charge k are parametrized by the moduli space
Jf(/c), where fcef^u{0}. The integer k is called the monopole number. It is also
known that by the ADHM-Nahm construction [8,9,14] all fc-monopoles can be
produced from solutions of k x k matrix ODEs called the Nahm equations
satisfying certain boundary and symmetry conditions. Such a solution is converted
into the Nahm complex [4], {α, /?, v}, i.e. k x k matrix valued functions α(s) and
β(s), for se(0,2), and vector υeCk satisfying

(i)
(ii) α(2-s) = αΓ(s), β(2-s) = βτ(s\
(iii) α and β are analytic over (0,2), with simple poles at 0, 2, and residues a and
b at 5 = 0,
(iv) Tr (a) = 0, and v is an eigenvector of norm 1 associated with the eigenvalue
- (k - l)/4 of a such that rank {v bv b2v-- bk~ιυ) = k.

Donaldson [4] succeeded in giving a description of the space of SU(2) fc-monopoles
by the space ratc(/c) of rational functions of the form

ψr *-Sk

+

ι

 + Po , (i)
q(z) zk + qk_iZ

k ι + - +q0

where p(z) and q(z) are coprime polynomials over C. He proved that there is a
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one-to-one correspondence between the equivalence classes under GL(k,C) of
Nahm complexes and the rational functions (1) of degree k such that /(oo) = 0.
Combining this result with those of [8,9,14] it is concluded that a circle bundle
jΓ(fc) over the moduli space Jf(fc) of SU(2) monopoles can be identified with the
space rat c (k). Moreover, the correspondence is a homeomorphism under the natural
topologies on X(k) and ratc (/c), namely, X(k) s ratc (k) (Nahm-Hitchin-Donaldson
theorem). See [3, Sect. 7] and [23, p. 476]. Note that the moduli space itself can
be regarded as the quotient space ratc(k)/ ~ under the relation f(z) ~ eiθf(z), θeU,
i = y/^ϊ. Set

Ratc(/c) = ratc(/c)/~. (2)

The Nahm-Hitchin-Donaldson theorem asserts that Jf(/c) is homeomorphic to
Ratc(fc), namely

cfc). (3)

It should be remarked that SU(2) monopoles can be associated with linear
flows on the Jacobian of a spectral curve in TCP1 through the Nahm equations.
This interesting fact was observed by Hitchin [9] and Griffiths [7], From an
alternative point of view, in [16], the author and Duncan show how the linearized
Toda flow acts on the space of Taubes' generic SU(2) monopoles [21] through
the Nahm-Hitchin-Donaldson theorem. Here the generic /c-monopoles

u
correspond to the rational functions f(z) = ]Γ exp (y/)/(z — ζj) of rat c (k), where

j=i

the points ζj in C are sufficiently far from each other. It is shown [16] that
k

one-parameter group action /(z)-> ]Γ expίy,- + tζj)/(z — ζj), teU, is congruent to

the complex version of linearized finite nonperiodic Toda flow by Moser [13].
This will be related to the previous results concerning a reduction of the
Bogomolny's equations to the real Toda equation under the spherical symmetry
[5,11] and generalizes a reduction of the Nahm equations for the generic and
axially symmetric configurations to the Toda equation [14].

Let us recall the well-known fact that the infinite Toda hierarchy [25] is viewed
as a discrete form of the KP hierarchy from which every nonlinear integrable
system of infinite dimensions (soliton equation) can be derived by a periodic
reduction [17]. For example, the periodic Toda equation having a Kac-Moody
symmetry is derived from the infinite Toda hierarchy. Thus systems of Toda type
seem to hold the key of the problem of generalization and classification of nonlinear
integrable systems. Note that the infinite Toda hierarchy induces a linear flow on
an infinite dimensional Grassmann manifold. However, not so much is known
about the totality of finite dimensional systems, such as the Nahm equations and
the finite nonperiodic Toda equation. In [16], it is shown that the complex finite
nonperiodic Toda equation induces a flow on the moduli space of generic SU(2)
monopoles, which is the first step in the existence of integrable flows on the moduli
space. But it has not yet been known how to completely parametrize the whole
moduli space JΓ(/C) of SU(2) fc-monopoles in terms of an integrable system of
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Toda-Lax type. The existence of such completely integrable flow will make it
possible to investigate the topology of the moduli space in terms of the
invariant-tori theorem in classical mechanics. Moreover, the Toda flow will have
much information about various cell decompositions of the moduli space.

Let rat^(fe) be the space of rational functions of ratc(fc) having the fixed
denominator q(z) = zk + qk _ x z

k"1 H h q0, where q = (q0,..., qk _ 1) e Ck. The
space ratc(fe) is decomposed into ratc(fe)= (J rat^c(fe). By identifying/(z) with

eiθf(z\ θeU, we obtain a decomposition of the moduli space

where Jfq(k) ^ Rat̂ c(/c) = rat?

c (k)/ ~ . The main purpose of this paper is to present
a new generalization of the finite nonperiodic Toda equation whose solution space
can be identified with jf(fc) via the decomposition (4). The nonlinear system we
use will be called the complex cyclic-Toda hierarchy. Such g = (<Zo> >4k-i) *s

determined according to the choice of equivalence classes of initial values. The
original Toda equation and the cyclic-Toda hierarchy can be viewed as isospectral
deformation equations of Jacobi (real tridiagonal) matrices and general cyclic
matrices, respectively. The result is then:

Theorem. The moduli space Jf(k) of SU(2) k-monopoles is homeomorphic to the
solution space of the complex cyclic-Toda hierarchy.

This implies that the integrable cyclic-Toda flow fills up the whole moduli space
Jf(k). Thus we shall obtain a new and complete parametrization of JΓ(/C). This
theorem hints that the cyclic-Toda hierarchy is more natural than the Nahm
complexes (i)-(iv), in the sense in which the Nahm complexes parametrize the
circle bundle Jf(k) over Jf(fc).

We now turn to the organization of this paper. In Sect. 2, we introduce the
complex cyclic-Toda hierarchy which is a finite set of compatible nonlinear PDEs
of Lax type depending on a finite number of time variables. It is shown that the
hierarchy can be solved by the QR decomposition of the exponential of matrices.
In Sect. 3, we show how the complex cyclic-Toda hierarchy completely
parametrizes the space Rat^c (k) of rational functions and consequently the moduli
space JΓ(/c) of SU(2) monopoles (Theorem). This result is also of interest in
connection with Segal's homeomorphism [18] from rat€(fc) to a space of rational
functions over IR of degree 2fc and in Sect. 4 we discuss this aspect. It is also shown
that the cyclic-Toda hierarchy can be linearized on a space of cyclic vectors.

2. Preliminaries

Let f(z) = (p(z)/q(z)) be an element of rat^fc) of the form (1). It is worth noting
that f(z) can be written uniquely as

f(z) = C*(zI-A0Γ
ιB09 (5-a)
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where * denotes the Hermitian conjugate. We note that det(z/ — A0) = q(z) and
r a n k ( C 0 ^ J C 0 (/4*)Λ"1C0) = /c. The factorization (5) of ratc(fc) is called the
observable canonical form in linear systems theory [10]. Since the denominator
and the numerator of/(z)eratc(/c) have no common factor,

τank(B0A0B0-Ak

0-
iB0) = l (6)

This condition guarantees the controllability of the linear dynamical system
(dx(t)/dt) = Aox(t) + Bou(t), y(t) = C*x(t) realized by the factorization (5-a), where
x(ί)eCfc, u(t% y(t)eC and teU. The vectors Bo and C o are cyclic vectors of Ao. We
call {Aθ9Bo,Co} a cyclic triplet. Let us introduce an equivalence relation on the
space of cyclic triplets by

{AO9BO9CO} θeU. (7)

It is easy to see there is a one-to-one correspondence between the space of
equivalence classes [{Λ0,B0, Co}] under (7) and the space Ratc(fc) through the
unique factorization (5-a).

Next we give a description of the cyclic-Toda hierarchy. Let

τ = ( τ o , τ 1 , . . . , τ k _ 1 ) e C k (8)

be a set of k complex parameters. The complex cyclic-Toda hierarchy is given by
the system (0 g ; g k - 1) of nonlinear PDEs of Lax type

dA(τ)

δτj '

with the supplementary linear PDEs

(9)

dC(τ)

dτ,
= {A\τ)i-A\τ)L)C(τ), (10)

where ML denotes the strictly lower triangular part of M and M* = (ML)*. Though
the matrix A(τ) and the vector C(τ) do not depend on τ0, the parameter τ0 is
important in our parametrization of rational functions. In this paper we consider
the initial value problem of (9) and (10) for the initial cyclic triplet

where 0 = (0,...,0)eCk. Note that if A(τ) is similar to a Jacobi matrix, then the
system (9) for τ̂ elR, 1 ̂  j ^ k - 1, is the system of usual finite nonperiodic Toda
equations given by Moser [13]. Let us remark that
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Proposition 1. The cyclic-Toda hierarchy (9) and (10) is compatible.

Proof. We shall prove that (9) is integrable if and only if (10) is integrable. Set for

Fj = A\τ)*-AJ(τ)L. (12)

The integrability condition (d2A/dτidτ^) = (ΐPΆIdτβτ^ of the system (9) leads to the
system [(dF'j/dτj - (dFJdτj) + [Fp FJ, A] = 0. If Fj solve the system (0 ^ i g k - 1)
of Zakharov-Shabat equations,

dIl-dIl + [FJ,Fi-] = 0, (13)
dτt dTj

then the system (9) is clearly integrable. Conversely, let A(τ) solve (9). We consider
the Lax pair AY = λY, (dY/dτj) = FjY9 where Y=Y(τ)eC\ λ = λ(τ)sC. It is
well-known that (dA/dτ^ = [Fp A~] is equivalent to (dλ/dτj) = 0. Thus the system
(9) leads to (dλ/dτj) = 0 for 0 g j;<> k - 1, namely, Spec Λ(τ) = Spec Ao. Let ord (M)
denote an integer associated with the matrix M = (mij)1^ilj<k which is defined as
follows: If niij = 0 for every i —j > n but some mtj is not equal to zero for i —j = n,
then ord (M) = n. Thus — k ^ ord (M) < fe. We call the integer the order of the
matrix M. Since if Spec A(τ) = Spec >40, then there exists a nonsingular
upper-triangular matrix U(τ) which satisfies the matrix equation A(τ)U(τ) = U(τ)A0

[6, p. 219]. Here U(τ) is unique up to a diagonal factor. Since Ao is upper-
Hessenberg (5-b), A(τ) is so, namely, ord(i4(τ))= 1. Thus the matrices defined
by (12) are band matrices such that ord(Fy) = ord(F?) =j. Along the same line as
in [25, p. 8], we can derive for 0 ^ i: ^ k — 1,

where G£ = ^ + F£. Note that (dAt/dτj) - [Fp A1'] = 0 from (9). Since ord (Gj) = 0,
the order of the first term of the right-hand side of (14) is not greater than; and
does not depend on i. Whereas the order of the second is i +j. This implies that
Fj solve (13) for 0 ^ i^ k — 1. It is proved that the system (9) is equivalent to the
system (13). The systems (9) and (13) also guarantee the integrability of (10). Thus
the complex cyclic-Toda hierarchy is a compatible system. •

From a standard theory in Toda equations [20], the initial value problem of the
cyclic-Toda hierarchy can be solved by the QR decomposition

) β(0) = /, Λ(0) = /, (15)

j=o J

where Q is unitary and R is upper-triangular. Let us suppose that Q(τ) does not

depend on τ 0 . Since expί £ τjAj

0 1 is nonsingular, there always exist unique

\j=o J
C00-factors Q and R. Flow of the hierarchy on Ckxk + 2k is given by the formula

A(τ) = Q(τ)A0Q-1(τ\ B(τ) = R(τ)B0, C(τ) = β(τ)C0. (16)
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In order to prove this, observe that (dQ/dτ^Q " 1 are skew-Hermitian which appear
in derivatives of both (15) and (16). Note that Λ(τ) is an isospectral deformation
of Ao, namely,

det(zI-A(τ)) = q(z) (17)

for every τeC*. The next proposition plays a crucial role in our parametrization
of Jfq(k) in terms of the flow (16) on C f c x f c + 2 f c.

Proposition 2. If {A0,B0, Co} is a cyclic triplet, then {A(τ),B(τ\ C(τ)} given by (16)
is also a cyclic triplet for every τeCk.

Proof is carried out by a straightforward calculation as follows;

It is shown from Proposition 2 that the complex cyclic-Toda hierarchy induces
a flow on the space ratc(/c) defined by

f(z) = C*(zl - AoΓ'Bo -+f(z; τ) = C*(τ)(zl - A(τ))' ^ (τ) . (18)

Furthermore, we see from (17) that if/(z)erat^c(/c), then /(z;τ)erat4

c(/c) for every
τeC*. Define a space of cyclic vectors Bo of Ao

W"Άk

0-
1W) = k}. (19)

Since f(z;τ) = C*{zl - Ao)~* jexp(*Σ *A)\B0 and jexp^ *|f τ

the cyclic-Toda hierarchy induces the linear flow

l M J o ) K (20)

on the space ωAo. This aspect will be discussed again in the end of this paper.
Finally in this section, we define the space Sol(fc) of C°°-solutions of the k x k

complex cyclic-Toda hierarchy (9) and (10). For a given q(z) let {A0,β0, Co} be a
set of matrices of the form (5-b) such that (6) and det(zJ — Ao) = q(z). Let solq(k)
be the space of matrices {A(τ),B(τ)9 C(τ)}eCkxk x C*x x x C k x \ C00 in τ, satisfying
(9) and (10) for any such initial values {Ao,Bo, Co}. We write the quotient of solq(k)
by the free U(l) action {Ao,Bθ9Co}^>{Ao,exp(iθI)Bθ9Co} (θeU) on the space of
initial values as So\q(k) = solq(k)/~. The space Sol^ is parametrized by 2k — 1 real
parameters. Now set

Sol(fc)= \JSolq(k), (21)
qeCk

where the right-hand side denotes the union with respect to every q = (q0,..., qk_ x)
ofC*.
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3. Proof of Main Theorem

Let q(z) be a fixed monic polynomial over C of degree k. As it was said in Sect. 2,
we can express any element f(z) of rat̂ c(fc) as /(z) = C%(zl — A0)~1B0, where
det(z/ — Ao) = q(z). If we identify Bo with exp(iθI)Bθ9 ΘeU, we obtain an element
/(z) of Rat^(fc) = ratg

c(fc)/~ which corresponds to an equivalence class
[{Λ0,β0,C0}] of cyclic triplets. The fact that both the space JΓq(k) s Ratfl

c (k) of
SU(2) fc-monopoles and the solution space Solg(fe) of k x k cyclic-Toda hierarchy
are described by 2k— 1 real parameters is not accidental. As we shall see, CtiΓq(k)
can be identified with Sol9 (k).

We come to the basic result.

Proposition 3. The following two spaces are homeomorphic to each other;

(a) the subspace $Γq(k) of the moduli space of SO(2) k-monopoles,
(b) the solution space Sol^fc) of kxk complex cyclic-Toda hierarchy for initial

value 1{AO9 Bo, C o } ] such that d e t (z/ - Ao) = q{z).

Proof of (a)-»(b). Recall that Jf<?(fc)^rat<?

c(/t)/~. Any rational function
f(z) = (p(z)/q(z)) of ratc(fe) always admits a unique factorization (5-a), where

Λ"1 Λ
det (zl — Ao) = q(z). Set τeC* and G(τ) = exp I £ ZjAJ

0 I. Since G(τ) is nonsingular
\j=o /

and in class C00, there always exist the unique C00-factors Q(τ) and R(τ) of the QR
decomposition (15), G(τ) = β"1(τ)K(τ), β(0) = / and [R(0) = J. The parameter τ 0

appears only in ^(τ). The factor Q(τ) gives rise to a C°°-solution A(τ) such that
det (zl — A(τ)) = q(z) and Λ(O) = Ao via the first of (16). The remainders of (16) give
C^-solutions of (10), where B(0) = B0 and C(0) = Co. Thus we have a surjection
from rat^c (k) to sol^ (k). Let us introduce the equivalence relation /(z) ~ eiθf(z\
ΘeU. Then the resulting equivalence class denoted by [/(z)] determines an initial
triplet [{Λ0,J50, Co}]. Then for any [/(z)]6Rat^c(/c) there exists a flow of the
cyclic-Toda hierarchy corresponding to the initial value [{Ao, Bθ9 Co}]. We have
obtained a surjection ocq from Rat̂ c(A;) to Solq(k) of class C00. It is to be noted that
the flow induces a flow

[/(*)]-[/(*;τ)] = C*(zl -AoΓ1 exp^Re(τ0)/ + *Σ τjAi)Bo (22)

on Rat€
c(fc). Clearly, [/(z O)] = [/(z)].

Proofof(b)-+(a). Let A(τ) be an arbitrary C°°-solution of (9) for an initial triplet
[{y40, Bo, Co}] of the form (5-b) satisfying (6) and det (zl — Ao) = q(z). Let us consider
the system (0 ^j' ^ k - 1) of PDEs

^ FjQ(τ)9 6(0) = /, (23)

where Fj are defined in (12). This system is integrable from Proposition 1. Noting
that Fj are analytic and bounded under the standard norm for (12), we see that
there exists a unique C°°-solution Q(τ) for every τeCk. Since Fj are skew-Hermitian
and Fo = 0, Q(τ) is unitary and does not depend on τ 0 . Multiplying A(τ) to (23)
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from the left and using (dA/dxj) = [FpA\ we obtain (d(AQ)/dτj) = FjAQ. On the
other hand, (dQ/dxj)A0 = FjQA0. Since AoQ(0) = Q(0)Ao, these equations yield

A(τ)Q(τ) = Q(τ)A0 (24)

for every τeCk. We have shown that for any A(x) there exists a unique C°°-solution
β(τ) of (23) satisfying (24).

Next let us consider the integrable system (0 ^ j ^ k — 1)

which have a unique solution being nonsingular and upper-triangular. Along the
same way as above, we see that the initial condition R(0) = I guarantees

A(τ)R(τ) = R(τ)A0. (26)

Note that R(τ) takes the form R(τ) = exp(τo/)l/(τ), where U(x) is a nonsingular and
upper-triangular matrix, independent of τ 0, such that A(τ)U(τ) = U(x)A0 and
U(0) = /. Here U(τ) is a unique solution of the matrix equation which appears in
the proof of Proposition 1.

Now set

G(τ) = β-1(τ)Λ(τ). (27)

Taking the derivatives of (27) and using (23)-(25), we have

\τ) = A\τ) = Q(x)AJ

0Q-\x).

This implies that G(τ) holds (dG/dxj) = A{G with G(0) = /. Consequently, we derive

fc-ι \
(28)

Set B(τ) = R(τ)B0 and C(τ) = β(τ)C0. It is easy to see that B(τ) and C(τ) satisfy (10)
for the initial value B(0) = Bo and C(0) = Co, respectively. Let /(z; τ) be a rational
function defined by /(z;τ) = C*(τ)(z/ — ̂ ( τ ) ) " 1 ^ ) . Then from Proposition 2 we
see /(z;τ)Grat^c(/c) for every τeCfc. Let us introduce the equivalence class
[{Λ0,J30,C0}] of initial values by {Aθ9Bo,Co} - {Ao,exp(iθI)Bθ9Co} for θeU. This
induces the relation {A{τ\ B{τ\ C(τ)} - {^(τ), exp (iθI)B(τ\ C(τ)} for the cyclic-Toda
flow. Equivalently, this amounts to R(τ) ~ exp (iθ/)K(τ) for fixed £ 0 . For each

}, τεCk, we then obtain a unique rational function

[/(z τ)] = C*(z/-Λ)"1 exp^Re(τ0)/ + Σ τAVo

of Ratfl

c(/c). See (22). It is proved that the mapping αq:Ratή

c(/c)->SolJ/c) is an
injection of class C00.

We have observed that there exists a bijection α^Rat^/c^SolJ/c) which is
C0 0 in τ, namely, Ratg

c(fe) is diffeomorphic to Sol̂ (fe). Moreover, it follows that
Rat^c(/c) is homeomorphic to the subspace Jfq(k) of SU(2) fc-monopoles from the
Nahm-Hitchin-Donaldson theorem. These facts imply Proposition 3. •
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We now come to a position to prove the Theorem. The moduli space
JΓ(/c)^Ratc(/c) is decomposed into a union of disjoint connected subsets

Rax£(k)9 where qeCk. Indeed, it is easy to see πo(Rat^c(/c))-{0}. Thus
admits a foliation of codimension 2k with the leaves Xq(k). The solution

space Sol (fe) of cyclic-Toda hierarchy also admits codimension-2/c foliation whose
leaves are Sol^ (k). Proposition 3 asserts that each Xq(k) is homeomorphic to
Solg(/c). Thus there exists a mapping αoβ:JΓ(/c)-*Sol(/c) which preserves the
foliated structures, where the homeomorphism β:Jf(fc)->Rat(/c) is due to the
Nahm-Hitchin-Donaldson theorem. Hence X(k) is homeomorphic to Sol (k). This
proves the main theorem. Π

Finally in this section we consider the generic case where q(z) has k distinct
roots ζj. Any rational function /(z) of this class admits the expansion

k

f(z)= £ Qxp(yj)/(z — ζj). If the points ζj in C are very far apart, then f(z)

parametrizes Taubes' generic fc-monopoles [21,22] based on the points
(ζj9 - Re (yj)/2) on C x R. In this case, the space ratq

c(fc) is clearly diffeomorphic to
Ck and the foliation is a trivial fϊbration. We have observed from (22) that the
cyclic-Toda flow leaves invariant the position ζj on C and moves the position
— Re (y, )/2 on U and the phase angle Im (y,).

Manton [12] pointed out that a geodesic flow on the moduli space describes
the low-energy scattering of monopoles. To carry out this program Atiyah and
Hitchin introduced a metric on the space X°(2) = X(2)/(S1 x U3) [1] and
investigated the dynamics of 2-monopoles [2]. This geodesic flow moves the
position of poles of rational functions in rat c(2) and is not integrable [24].

On the other hand, the cyclic-Toda hierarchy is (completely) integrable and
describes mainly a phase shift of fc-monopoles. The cyclic-Toda hierarchy is an
isospectral deformation equation of cyclic matrices which flows 'downhill' toward
upper-triangular matrices with diagonal entries consisting of eigenvalues. In this
sense the cyclic-Toda hierarchy can be regarded as a gradient flow on the space
of cyclic matrices. This aspect of the usual Toda equation and the cyclic-Toda
hierarchy is due to [13] and [15], respectively. Thus the cyclic-Toda hierarchy is
in sharp contrast with the geodesic flow which has been studied by many authors.

4. Discussion

The topology of rational functions over C has been studied originally by Segal
[18]. He also proved that ratc(A;) is homeomorphic to the space ratR(fc,fc) of
rational functions over U of degree 2/c and the Cauchy index 0, namely,

ratc(fc)^ratR(fc,fc). (29)

The space mtu(k9k) is one of the 2k 4-1 connected components of ratR (2/c) being
labelled by the Cauchy index { - 2fc, - 2 k + 2,..., 2/c}.

Recently, the author [15] solves the problem of parametrization of the space
rat^ (ή) of rational functions of degree n with fixed denominator q(z) in terms of
n x n real cyclic-Toda hierarchy. If q(z) has r real distinct real roots, then there
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exist Ύ connected components of rat^(n). It is proved that the flow of real
cyclic-Toda hierarchy can be identified with one of the connected components
distinguished by the choice of initial values, and then each component is
diffeomorphic to a cylinder Uk~m x Tm (0 ^ m ̂  k — 1) in terms of the in variant-tori
theorem. Here the flow is parametrized by τeUn and leaves invariant the Cauchy
index. It should be remarked that the original (finite nonperiodic) Toda equation
is a special member of the nxn real cyclic-Toda hierarchy where the denominator
has n real distinct roots. In this case the flow describes an isospectral deformation
oϊnxn Jacobi matrices and should be called the Jacobi-Toda flow. The associated
rational functions have the Cauchy index — n and are in the connected component
ratR(n,0) being diffeomorphic to IR2w.

Segal's homeomorphism (29) enables us to "embed" the k x k complex
cyclic-Toda hierarchy into the 2fc x 2/c real one. The resulting space ratR(/c,/c)
should have rather different topological properties than the space ratR(2fc,0) of
the Jacobi-Toda hierarchy. For example, rat R ( l , 1) ̂  1R3 x Sι and ratR(2,0) s IR4.
Since JΓ(1) = rat c ( l) , this implies that a 1-monopole is determined by a point in
U3 and a phase angle.

Finally let us consider a linearization of the complex cyclic-Toda hierarchy
(9) and (10). As was shown in Sect. 2, the hierarchy induces the linear flow (20) on
the space wAo of cyclic vectors. Define i^Ao = wAo/~> where W ~exp(ίθI)W for
ΘeU and

*ΛO = *ΛJ~> *M = \HP\HP = *Σ PA-nonsingular, peCH, (30)
I j=o )

where Hp~exp(iθI)Hp for ΘeU. It is easy to see that JtAo acts freely on Ψ~Ao\

^Ao x ^AO^^AO b y (HP> W)-+HPW. Thus HTAo is difTeomorphic to tfM. On

the other hand, by the spectral mapping theorem [6, p. 115] £ pjAj

0 is nonsingular

if and only if /?(£,) τ*0 for any root ζj of det (zl - Ao) = q(z\ where
p(z) = pk_ιz

k~ί + — h p o Thus each Hpe4Ao uniquely gives a rational function
(p(z)/q(z)) of rat^ (fc) and vice versa. Moreover, we can see that #f Ao is diffeomorphic
to Ratg

c(fe). It is concluded that SU(2) monopoles can be associated with the linear
flow

exp(Re(τ o )/+ £ TJA{)\B0 (31)

on the space ΨAo of cyclic vectors through the cyclic-Toda hierarchy.
The modern theory of soliton equations has its origin in the observation in

[17] that the Schur polynomials (functions) completely parametrize rational
solutions of the KP hierarchy. It is also known that the tau-function (a generating
function of solutions) can be expressed as an infinite linear combination of the
Schur polynomials. See also [19]. In the present case, we can introduce the
tau-function of the cyclic-Toda hierarchy in the form of a linear combination of

fc-l / fc-l \

Toeplitz determinants of/z7 (τ), where £ hj(τ)AJ

0 = exp I — £ TjAj

0 I, Λ 0 (τ)=land
j=o \ j=o )
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hj(τ) = 0 for; < 0 and j ^ k. These Toeplitz determinants can be regarded as Schur
polynomials for the present case. Here we use the fact that any matrix that
commutes with Ao can be expressed linearly by the matrices {/, >40,..., y4ξ"1},
which follows from a consequence of the Cayley-Hamilton theorem [6, p. 223].
Combining this observation with the main theorem of this paper, we see that the
moduli space of SU(2) monopoles can be naturally characterized by the Schur
polynomials. The details of this aspect will appear elsewhere.
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