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Abstract. We prove that the disordered Gibbs distribution in the ferromagnetic
Ising model on the Bethe lattice is extreme for T^ T?0, where TC

SG is the critical
temperature of the spin glass model on the Bethe lattice, and it is not extreme
for T<TC

SG.

1. Introduction

The Bethe lattice SΓk of degree /eg; 1 is a tree (i.e. a graph without cycles) such that
exactly (fc +1) edges come out from any of its vertex. The Ising model on the Bethe
lattice is defined by the Hamiltonian

where the sum is taken over all pairs of the nearest neighbors <x,j> and the spins
σ(x) take values ± 1 .

In the ferromagnetic Ising model

(1.2)

and in the spin glass model the interaction Jxy is random and

Jxy=±J, J>0, (1.3)

with probability 1/2 independently for any pair <X y}. Both in the ferromagnetic
Ising model and in the spin glass model phase transitions occur, but the values of
the corresponding critical temperatures are different. Denote

0 = tanh(J/T). (1.4)

Then the critical value θ for the ferromagnetic Ising model is

0f = l/fc (1.5)
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(see [1-9]) and for the spin glass model

θs

c

G = \/]/k (1.6)

(see [10-12]) where k is the degree of the Bethe lattice.
The question arises whether a manifestation of the spin glass phase transition

exists in the ferromagnetic Ising model. The answer to this question turns out to be
positive, and as we show in the present work ΘS

C

G is the stability border of the
disordered phase in the ferromagnetic Ising model. The main result of this paper is
the following theorem.

Theorem. For 0<θ^θ^G = l/]/fc and only for these values of θ the disordered Gίbbs
distribution is extreme.

Let us remark that for 0 < θ ̂  ΘF

C = 1/fc the Gibbs distribution is unique and so it
is extreme. On the other hand in the papers [4] (with a reference to a private
communication of Kanae) and [7] it was proved that for 0> l/]/fc the disordered
Gibbs distribution is not extreme. Thus our new result is related to the interval 1/fc
<0^1/|/fc. This case was discussed in [7,8] as an open problem.

The content of the paper is the following. In Sect. 2, following [1-9], we
construct the disordered Gibbs distribution for all values of the temperature. In the
main part of this work, in Sect. 3, we describe under which conditions it is extreme.
Some results of [11] are essential for this section. In particular, it will be seen that
the stability of the disordered Gibbs distributions is closely related to the phase
transition in the spin glass model.

Some other bifurcation properties of the disordered Gibbs distribution at the

point θ = \/]/k were studied in [4, 6, 7, 13].

2. Construction of the Disordered Gibbs Distribution

Let V and L be respectively the sets of vertices and edges of the graph 3Γk and x° e V
be an arbitrary vertex. Denote

Wn = {xεV\d(x,x°) = n},

where the distance φc, 3;) on V is introduced as the length (the number of edges) of
the shortest path connecting x with y. It is clear that Wn is the "sphere" of radius n.
Let

K= U Wm = {xeV\d(x9x°)£n}
m = l

be the "ball" of radius n. Denote Ln = {l = (x,y)eL\x,yeVn}.
We say that x < y if the path from x° to y goes through x. Moreover, y is called a

direct successor of x if y > x and x, y are the nearest neighbors. Denote S(x) the set
of direct successors of x. Observe that any vertex x Φ x° has fc direct successors and
x° has (fc + 1) ones.

For A C V denote ΣΛ = {— 1, + 1}Λ, the configurational space of the set A.
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Introduce a class of Markov chains on ZΓk. Let hx be a real-valued function of
xeV. Consider for each n the probability distribution on ΣVn, defined by the
formula

μ > n ) = ZB-1expί(l/T) £ Jxyσ(x)σ(y)+ £ hxσ(*)\, (2.1)
[ JxeW

hxσ(*)\,

n J
where σn = {σ(x),xeVn}eΣVn and Z " 1 is a normalizing factor. We say that the
probability distributions μn(σn) are compatible if for all n ^ l ,

iv.ί'i^^fvi), (2.2)

where σ(π) = {σ(x), x e P^}. In such a case there exists a Gibbs distribution μ on Σv

such that μ(σn) = μn(σn). This Gibbs distribution satisfies the Markov property (see
[3,8]) and it is called the Markov chain, associated with the interaction
{Jxy,(x,y}eL}. The following proposition describes the conditions on the
function hx which ensures the compatibility of the probability distributions μn(σn).

Proposition 2.1 (see, e.g. [3,8]). The probability distributions μn(σn\ n = l,2,..., in
(2.1) are compatible iff for any xeV the following equation holds:

hx= £ a r t a n h ^ t a n h / g , (2.3)
yeS(x)

where θxy = tenh(Jxy/T).

It is noteworthy that any extreme Gibbs distribution on ZΓk corresponding to
the interaction {Jxy, (x, y > L) is a Markov chain (see [3, 4, 8]).

A Markov chain μ on Σv is called homogeneous if Jxy = J, <x,j;)eL5 and
hx = h^ for any x = x°. For h% (2.3) implies the equation

h+ = k artanh(0 tanh/ij, (2.4)

0 = tanh(J/T). For any θ this equation has a solution h^ = 0. The homogeneous
Markov chain μ# corresponding to the solution ^ = 0 is called the disordered
Gibbs distribution, or the disordered phase.

Note that in the ferromagnetic case for θ>θF

c=\/k the equation (2.4) has two
non-zero solutions ±/i^, h%>0, corresponding to two homogeneous extreme
Gibbs distributions, namely, -h or — phases (see [1, 3, 4, 6-9]). For Θ>ΘF

C some
non-homogeneous extreme Gibbs distributions of the ferromagnetic Ising model
were constructed in [4,9].

3. Extremity Conditions of the Disordered Phase

Now we shall prove that the disordered Gibbs distribution of the ferromagnetic
Ising model is extreme for O<0^1/j/fc. We shall verify the following property.

Property E. For any ε > 0, n > 0 and any configuration

there exist N>n and ΩNCΣWN such that
1.
2.
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Property E means that for typical boundary conditions σ(N) the conditional
distributions μ#(σn\σiN)) converge to the unconditional ones μ#(σM), as N-+00. For
the sake of brevity here and later we denote for A C ΣΛ9

and for σn e ΣVn,

Moreover,

where

From Property E it follows that μ# is an extreme Gibbs distribution (see [1]).
Let us verify Property E.

Substituting hx = 0, xe WN, in (2.1), we have:

μ # K ) = Z ^ exp{-(l/T)HNK)}, (3.1)

where

HN(σN)=-J Σ

xeVN}. This formula can be interpreted in the following way: If

h^=— X σ(y), xeWN-l9 (3.2)
TyeS(x)

then

HN(σN) = H J V_ 1(σ i V_ 1)-i Σ σ(x) Σ Φ)
xeWN-! yeS(x)

SO

/ i # ( σ j v ) = Z ^

This implies that the joint distribution of the random variables

{σ(x), xeFΛf_1} = σJV_1

and {hg\ xeWN^1} = h(N N~1) with respect to μ* has the form

Σ Π v(ΛW), (3.3)
xeWN-ι jW
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where vQi^) is the distribution of the random variable (3.1) under the condition
that σ{y) are independent, σ(y) = ± 1 with probability 1/2. It is easy to see that v is
the binomial distribution.

Formula (3.3) resembles (2.1) but now the variables h^ are random. Using the
recurrent equations

, (3.4)Σ
yeS(x)

where # = tanh(J/Γ) define the set of random variables

Since the random variables hx

N) satisfy the compatibility conditions (3.4),
Proposition 2.1 implies that the joint distribution of the random variables

{σ(x\xeVn}=σn and

with respect to μ# has the form

+ Σ KNHχ)\ Π vs-MP), (3-5)
W J W

Σ
xeWn

where the probability distribution vN_n(hx

N)) is defined in the following way.
Consider the set of independent random variables {σ(x), x e WN} taking values ± 1
with probability 1/2, and the corresponding probability space (ΣWN, B, μ0), where
μ0 is the Bernoulli measure with p=q = 1/2. Consider on this probability space the
random variables hx

N) which are defined recurrently by Eqs. (3.2), (3.4). Then for
any fixed n < N the random variables {hf?\ x e Wn} are independent, identically
distributed and symmetric. By v^.^/i^) we denote the distribution of h^ for
xeWn.

The central point of our considerations is the following lemma. Let Dhx

N)

denote the variance of the random variable h^ = h^\σiN)) with respect to the
Bernoulli measure μ0.

Lemma 3.1 (see [11]). // 0<θ^θs

c

G = l/]/k, then

lim D/zf} = 0, xeWH. (3.6)
iV-«-*oo

If ΘS

C

G<Θ<\, then there exists some ε>0 such that

xeWn, (3.7)
for any

We remark that this lemma plays an essential role in the proof of the existence
of the spin-glass phase transition on the Bethe lattice (see [11]). It is proved in [11]
only for fe = 2, but the generalization to the case fe>2 is straightforward. For the
sake of completeness we present a simplified version of the proof of Lemma 3.1 in
the case most interesting for us, when θ^l/]/k.

From the independence of h^ in (3.4) it follows that

Dh[N) = kD artanh(0 tanh/if >),
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xeWm-u yεWm, m^N— 1. It is easy to verify that for any

|artanh(0tanht)|^0|t|,

so we get

DhW£kθ2DkW. (3.8)

Iterating this inequality we have that ίox xeWmyeWN.u n£j JV —1,

which implies (3.6) for θ< 1/j/fe.

For θ = l/]/fe we have to refine the above arguments since (3.7) ensures in this
case only that

xeWm_uye Wm, i.e. that with the decrease of m the value Dh^ does not increase.
Assume that

lim Dh^ = γ>0, xeWn. (3.9)
N — n-» oo

Then for alliV>n^0,

Dh(

x

N)^γ>0, xeWn.

Let ζ be a real symmetric random variable and let F(t) denote its distribution
function. For ε > 0 introduce

Dεζ= J t2dF(ή,
\t\>ε

i.e. the "cut-ofΓ variance of ζ.
Observe that for |ί|>β,

a r t a n h ί ^ t a n h ί ]

with some δ = δ(ε)>0. Thus for x e Wm^ 1? y e Wm,

= kD artanh ( -— tanh/zf}

Σ
ι«ι>«

) . (3.10)

Moreover, since for any ί e R 1 , | ί |< l ,

|artanh(θt)l ύ artanhθ = J/T,
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by (3.2), (3.4)

\h™\£kJ/T (3.11)

for any y e VN_ t. Hence

so by (3.10)

where <S0 = δ/(kJ/T)2. Iterating this inequality we get that

Comparing the last inequality with (3.9) we get that

lim Z)ε/
N — n-κχ>

This relations hold for any ε > 0 and

lim Z)ε/4N) = 0, xeWn.
N — n-κχ>

Thus lim Dh™ = 0, which proves (3.6) for θ = 1/l/fc.
7V-M-»OO

The proof of (3.7) for 0> l/j/jfc is in [11].
Let us note once more that the different behavior oΐDh{"\ xeWn,eisN — n-+oo,

for θ S l/]/k and for θ > l/|/fc is a manifestation of the phase transition occurring in
the spin glass model on the Bethe lattice (see details in [10-12]).

Let 0 < θ ̂  1/j/fc and n > 0, δ > 0 be fixed. To verify Property E define for N > n
the set

j/jy£ = | σ ' = |σ(x), x ε KV ÎI inij'(σ ' [ s o , x e I T J .

Let us prove that

jlimμ#(ΩJV>,) = l . (3.12)

By (3.5)

Qn{{tt?\xeWn})

where

Σ Qπ({h™,xeWn}) '
W}

Qn{{tt?\xeWn})=YJtxV{-{\IT)Hn{σn)+ Σ ht»σ(x)} Π
σn xeWn xeWn

By Lemma 3.1

when n is fixed and β^l/]/fc, so (3.12) follows from (3.13).
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Let us estimate now |μ#(σΛ|σ(iV)) — μ#(σπ)|. By (3.5) we have that

ιi (a \n(N))-

.(σ1J+ Σ

where h™ = A<fVN)), xeWn, are expressed via σ{N) by formulas (3.2), (3.4).
Moreover according to (3.1),

exp{-(l/Γ)Hn(σB)}
( 3 1 5 )

As n is fixed, it follows obviously from (3.14), (3.15) that for any ε > 0 there exists
δ > 0 such that

|μ#Kk ( N ) )-μ#(O<ε, (3.16)

if \h(

x

N)\<δ for all xeWn, i.e. for σ(N)eΩN,δ.
Thus for a given ε > 0 we can choose at first such δ > 0 that (3.16) is fulfilled for

σ{N)eΩN>δ, and next by (3.12) such N that

Hence we have proved that for μ # Property E is valid, so μ # is an extreme Gibbs

distribution for 0<^l/j/fc.

Let θ > l/|/fe. Then (3.7) holds for some ε > 0. Taking into account the estimate
(3.11) we get that there exists some δ>0 such that

xeWn9

for all N > n ̂  0. As the random variable h^ is symmetric, this implies that

Frob{h(

x

N)>δ}>δ/2, xeWn.

Introduce the set

Then it is easy to see from formulas (3.13)—(3.15) that there exists some y > 0 such
that for any iV>0,

and

This means that Property E does not hold which implies that the distribution μ # is
not extreme (see [1]). The theorem is proved.
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