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Abstract. For a class of holomorphic perturbations of the harmonic oscillator
in n degrees of freedom a local solution of the time-dependent Schrodinger
equation in the Bargmann representation is constructed which pointwise
propagates, to leading order in h, along the classical trajectories in complex
phase space.

I. Introduction and Statement of the Result

The relation between the quantum flow, i.e. the solutions of the time-dependent
Schrodinger equation, and the corresponding classical Hamiltonian flow is a very
old problem of quantum mechanics. It is well known that the strongest possible
relation between classical and quantum flow, (in the sense that the classical
evolution determines the quantum one exactly, not just at leading order in h, and
pointwise, not just in L2 sense) takes place for the coherent states of a system of
linear oscillators, i.e. for a system of linear oscillators provided their quantum
evolution is described in the Bargmann representation of the canonical commu-
tation rules.

Consider indeed, for (q, p) e T*R" ̂  R2π, {ph q3) = δip the classical Hamiltonian
of a system of n independent oscillators of unit frequencies:

H0{p,q)=2 Σ (Pk+Ίk)- (l l)

The transformation:

1 „ 1 /

K K (1.2)

1 , . _. 1 ,_
1/2
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is a linear complex canonical transformation of C2 π into itself such that T*Rn is
mapped one-to-one onto the real analytic submanifold Λ of C2n defined as
Λ = {(z,ζ)eC2n; ζ=-iz). The transformed Hamiltonian K0(z,z) = H0(C-1(z,z))
takes the form:

K0(z,z) = £ zkzk, (1.3)
fc=l

and since {zi? z j = iδ^ the Hamilton equations in the canonical coordinates (z, z)
are:

-£ = /F^o = iz; -£ = - iVzK0 = - iz (1.4)

with the initial conditions z(0) = w, z(0) = w, whence the phase-space flow:

w\—>z = weu, w\-+z = we~u (1.5)

for any initial condition (w,w)eC2n. Here of course zeιt = {z1e
i\ ...,zne

ιt).
The generating function of C is

l ί » , (1.6)
n

where <z,z>=

Its (normalized) exponential in unit h ( here /ι = ft= — , where h is the Planck

\ 2π

constant I, A(z,q) = (]/πh)~nl2exp(ih~1φ(z,q)) is the integral kernel defining the

unitary map U:

(Uψ)(z)= jnA(z,q)ψ(q)dq, ψeL2(R";dq) (1.7)

between L2(Rn; dq) and the Hubert space of holomorphic functions introduced by
Bargmann [Ba]:

J ^ = fw C - C wis holomorphic, f |w(z)|2e"A~1|z|2L(dz)< +ool,

where L(dz) is the Lebesgue measure in Cπ^R2 w.
In this representation of the canonical commutation rules the classical

canonical variables zk and zk are quantized by the maximal multiplication

operator by zk and the maximal differentiation operator h-— in $FW respectively.
όzk

Therefore the time-dependent Schrόdinger equation generated by the classical
Hamiltonian Ko reads:

ihdJ(t,z) = h(z9V,yf(t,z). (1.8)

Its solution with initial value f(t,z)]t==0 = f0(z) is of course, for all times:

/(ί,zH/0(z£Γ f ί). (1.9)
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This formula shows that for the linear oscillators the classical dynamics and the
quantization "commute:" namely, the quantum evolution is obtained just by
letting the argument of the initial datum evolve along its Hamiltonian flow.

A natural question arising in this context is therefore to what extent this result
holds beyond this very particular case in which the classical flow [see (1.5)] is
globally periodic with period independent of the initial conditions ("isochrony"
property; the discussion holds of course unchanged in the quasi-periodic case, i.e.
when the frequencies of the independent oscillators are rationally independent and
the resulting flow is quasi-periodic). The purpose of this paper is to show that, just
by working out some details in the Sjόstrand construction [Sj] of the Fourier
Integral Operator (FIO) with complex phase on complex domains [up to the
variant in taking the analytic stationary phase expansion described in Remark (v)
after the statement of the Theorem], it is possible to extend (1.9), to leading order in
ft (but all corrections in ascending power of ft computed) and locally (both in phase
space and in time) to a class of more realistic potentials diverging at infinity. The
anisochrony of the classical motions prevents the flow w t-> z(ί, w) from being a
global diffeomorphism of C": this allows us to construct [modulo O(ft°°)] only a
distribution solution, namely a locally holomorphic solution which does not
belong to the Bargmann space, and furthermore only for short times, since the long
time behaviour of the motions is governed by the perturbation, unlike the
asymptotically free case recalled below. This local solution enjoys however the
property of "pointwise propagation along the classical trajectories" which is the
natural generalization of the above result to the non-isochronous case: its value
u(t, z) at the point z and at time t is obtained, to lowest order in ft, just by evaluating
the initial Cauchy datum at w(ί, z), where w(ί, z) is the (backward) evolution at time
t under the classical Hamiltonian flow of initial datum (z, z).

Results of this type are long known when the potentials vanish at infinity, i.e. in
the asymptotically free case ([Yal, Ya2]; see also [RoTa]). To leading order in ft
the quantum evolution (in L2 sense) at large times can be obtained, up to a well
determined phase factor, essentially by letting the argument of the (microlocalized)
initial datum at ί = —oo evolve along its corresponding classical flow. The
considerably more difficult case in which the potentials diverge (positively) at
infinity has been considered only more recently within the techniques of
microlocal analysis, notably, in addition to [Sj], by Chazarain [Ch], Helffer-
Robert [HeRol, HeRo2], Robert-Petkov (RoPe], Tamura [Ta], Zelditch [Ze].
These last papers however deal mostly with the problem of relating the qualitative
properties of classical motions, such as periodicity, to the spectrum of the
corresponding Schrodinger operator, except that of Zelditch who obtained for a
class of bounded perturbations of the harmonic oscillators a result of reconstruc-
tion of singularities along the corresponding unperturbed classical Hamiltonian
flow, in analogy with the propagation of singularities along the bicharacteristics
for hyperbolic PDE.

Let us turn to state the present result. Consider the set of classical
Hamiltonians of the form:

(1.10)
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where the assumptions on the potential V(q) are as follows:

Assumption A. F:CW-+C is a holomorphic function such that:

(i) V(q)= Σ "d
|α| = 2

(ii) There exist lί>0,l2>0 such that \V{q)\^lxexplI2\q\n+1) for any qsCn.

Assumption B. The Schrδdinger operator corresponding to H(p, q, ε), defined as the

ε(q, Dq)
p

maximal operator Qε(q, Dq) in L2(Rn) generated by the differential expression

is self-adjoint.

Remarks, (a) All polynomials of even degree with real coefficients and real
positive coefficient of the leading term fulfill Assumptions A and B.

(b) The constant \nh, i.e. the lowest eigenvalue of Qo, is subtracted because the
unitary image of Qo under U in !Fn is just the maximal operator generated by

The linear complex canonical transformation (1.2) maps (1.10) into
H(C-1(z,z),ε) = K(z,z,ε), where:

() (1.11)
1/2 /

K0(z, z) being given by (1.3). Correspondingly, the Bargmann transformation (1.7)
yields in <Fn the unitary equivalent operators UQ0U~ι = Po, which is the maximal
operator generated by h(z, Vz}, and UQεU~ί=Pε, which is the maximal operator

generated by /ι<z, Vz} + εV\ —-=A). We remark that when V is not a polynomial
V γϊ )

Pε can be realized as an analytic pseudodifferential operator as discussed in Sect. 2.
Given the Hamiltonian (1.11), we denote by w(t,z, —iz,ε) = w(t,z) the flow of the
initial condition (z,0, ( = — iz, at time t. We further denote by Hφo the Sjόstrand
space with weight φ0 (see Definition 2.0 below) and, as usual, by [x] the integer
part of x. Consider now the Schrδdinger initial value problem

(ihdt-Pε(z,dz,h))u(t,z) = 0

w(ί,z),ί=o = wo(z)

with uo(z)e!Fn. Then we have:

Theorem. There are constants C, Cί9 C 2, C 3, C 4, and B(ε\ T(B(ε)) which tend to 4- oo
as ε 10, a weight ψt and a distribution u(t, z) belonging to the Sjδstrand space Hψt such
that, for \z\^B, | ί |gΓ, ΛΓ = [Cffc-1], ΛΓ^CC 2*" 1]:

1. u(t,z)]t=0 = u0(z).

2. \e-h~ίvh{z)(ihdt-Pε(z, dz, h)) u(t, z)\ ̂  C2h
Nι.



Complex Phase Space 397

3. For any fixed {z,t)eBx[-T,T] one has:

u(t, z) = eih~ 1 S ( ί ' z ' " l w ( t x »-*" 1 | w ( t ) |2iio(w(ί, z)) ao(t, z, 0)

+ V * 1 Σ VMJtafaz, -iwfcz^ + Hfez,*-1), (1.13)
1=1 j=O

where M^atfs are linear combinations of derivatives of the a-s whose coefficients are
derivatives of S and u0, all calculated at — iw(t, z), and

^ * ' 1 . (1.14)

Here S(t,z,ξ9ε) is the solution of the Hamilton-Jacobi initial value problem:

0
(1.15)

S,,-o = <*.£>.

the coefficients apj = 0,1,... are the solutions of the transport equations:

-Al + R1)aJ=Bjia0,...,aj-ι),\

Rί is the 2-nd term of the symbol of Pε realized as an analytic pseudodifferential
operator and Bj{a0, ...^a^^) is a linear expression of derivatives of ajs.

Remarks, (i) According to the standard sign convention in writing the time-
dependent Schrόdinger equation u(t,z) is a local approximation of (e~lh~ltKu0)(z%
so that the classical flow is actually the backward one: u(t, z(t, w)) = uo(w).

(ii) Since the integers N and N± tend to infinity as h tends to zero, u(t,z) is
actually, by (2), a local solution in the Sjόstrand space Hψt modulo /i00. In this sense,
i.e. up to terms O(/i°°) included in R(t,z,h~% αo(ί,z,0) represents the sum of the
series

Σ -r da

ξa0(t, z, - ίw(t, z)) (ίw(ί, z))α

|α| = oα!

which arises by a direct application of the analytic stationary phase expansion,
(iii) For ε = 0 (harmonic case) we have αo = l, α7 = 0 , j = l, ... S(t,z,ξ)

= <z, ξy eι\ w(£, z) = ze~lt. Since ξ = — iw (1.13) reduces to w(ί, z) = uo(ze"% which is
the formula obtained above by direct integration of the Schrόdinger equation.
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(iv) Formula (1.13) should be compared, e.g., with formula (0.7) of [Ya 1]. Note
in this connection that the Maslov indices do not appear here because our solution
is local both in space and time, that αo(ί, z, 0) (see below) is nothing else but the
square root of the absolute value of the Jacobian determinant of the transforma-
tion z h-• w(ί, z), and that the action (0.9) of [Yal] is in the present case S(ί, z, ξ).

(v) To obtain the most explicit representation in terms of the classical motions,
[formula (1.13) above] we will avoid the introduction of the Morse coordinates
around the critical point, because they are not explicitly known a priori. Instead we
will work out the phase in such a way to obtain a quadratic critical point, so that
(1.13) will follow by a direct application of the analytic stationary phase expansion
[Sj, p. 14] plus an estimate of the remainder.

II. Proof of the Theorem

The basic idea of the proof will be to work out in the complexified phase space C2n

= T(*,o)Cn (the holomorphic cotangent bundle of C2w, see [N]), where it will be
possible to realize Pε as an analytic pseudodifferential operator in the sense of
Sjόstrand and to construct a solution of the initial value problem (1.13) by means
of a suitable "localized" parametrix under the form of a Fourier Integral Operator
with complex phase.

More precisely, given (u(w) in a suitable Sjόstrand space Hφ (see Definition 2.0
below), we will construct, (following e.g. [GeSj, GrSj, LSj]) a phase S(t,z9ξ;ε),
"transport coefficients" α/ί, z9ξ;ε) and determine a contour Γo in C2w such that, for
allΛΓeN,

E{ήu{z) = (2πhynHeih~HS(t>z>ξ;ε)-<w<ξy) £ aj(t,z,ξ;ε)hju(w)dwΛdξ
Γo 7 = 0

(2.1)

is locally in Hψt and:

e-h-χ"**\ihdt - PJtz, δz, h)) E(t) u(z) = O(hN).

E(0)u = u.

[We recall that Eqs. (1.15-17) are obtained by looking for a solution of the form
(2.1), inserting in (1.12) and requiring the vanishing of all resulting powers of h.~\ E(t)
will therefore be the "localized" parametrix, yielding w(ί, z) = E(t) u(z). The repre-
sentation (1.13) is then to be obtained by application of the analytic stationary
phase expansion [Sj, p. 14]; in this particular point our treatment will not follow
the general theory of [Sj]; in fact, as already mentioned in Remark (iv) above, we
will avoid the introduction of the Morse coordinates by reelaborating the phase in
such a way to generate a quadratic term, which will be possible for ε suitably small.

Let us begin by making more explicit the above remark that the linear complex
canonical transformation (1.2) can be holomorphically continued to a canonical
map of C2n onto itself. Consider indeed x e C", y e Cn with Re(x) = q, Rc(y) = p, and
set, for z e C :

φ(x, z)=l- «z, z> + < JC, x} - 2l/2<z, x » (2.3)



Complex Phase Space 399

[that is φ is the holomorphic continuation of the Bargmann phase (1.6)] and let χφ

be the bijection of C2n onto itself defined as

Xφ (*> - dxφ(*> z) = y=- i(x - ]/ϊz)) h-> (z, dzφ(x, z) = ζ = i(z - ]/ϊx)), (2.4)

whence:

for x,yeCn. When (x,y)=(q,p)eR2n then φ = φ9 χφ = χφ and ζ=—iz. Hence
^(T*R n ) = ̂  = {(z,0eC 2 n ; ζ= - i f } . The F.B.I. theory of Sjόstrand [Sj] requires
the examination of the critical points (in q) of — lmφ(z, q). We immediately have:

c.v.q φ(z, q) = φo(z) = - Im φ(z, q(z)) = \\z\2\ here q(z) = γl Re(z).

In this case we reobtain the Bargmann phase φ0, and the manifold A can be further
characterized as the real analytic submanifold of 7JJ 0 ) C

n defined as
ί 2 )

A= Uz,ζ)eC2n; ζ=-Vzφ0\. Now consider the (2,0)-forms in C2n,

ώ = Σ dyjΛdXjiσ= X dζj

and their restrictions to T*RΠ and Λ, respectively:

ω = c

where as usual 5/ = Σ ^zjdzk, and analogous definition for df. Then it is easy to
fc = O

check that χ*(σ) = ώ and χ*(σ) = ω, i.e. the transformations χφ and χφ are canonical.
In this way the Hamiltonian H(x,y98) = j{(x,x} + (y,yy + εV(x))9 which is the
holomorphic continuation of (1.10) to C2n, has canonical image under χφ given by:

K(z, C, ε) = H(χ; ̂ z, ζ), β) = <z, ί θ + εF I — = ^ 1. (2.6)

In turn K(z, ζ, ε) is nothing else than the holomorphic continuation of K(z, z, ε), the
image of H(p,q,ε) under χφ:

Therefore A is by construction an invariant manifold of the Hamiltonian vector
field associated with K(z, ζ, ε): the restriction to A of the flow in C2n generated by

(2.6) is of course the flow generated by K(z,z,ε) = |z|2 + ε F ( — — ) . We shall

\γiJ
henceforth freely use, without any further specification, this possibility of looking
at the given Hamiltonian flow as the (invariant) restriction of the flow of the
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holomorphic Hamiltonian field on C2",

The first step in the construction of the local solution of the Schrόdinger initial
value problem by means of the technique of the FIO on complex domains is
represented by the realization of Pε as an analytic pseudodifferential operator in
the sense of Sjόstrand. First let us recall the definition of the Sjόstrand space
HφC(Ω), where Ω is an open subset of C", and φ:Ω->R+ is continuous.

2.0. Definition. Let u(z,h) be a holomorphic function on Ω for any h>0. Then
ueHι£c(Ω) iff for any K(QΩ and for any ε>0 there is Cε such that \u{z,h)\
^ Cεe

h~ 1<^z)+ε>/or any zeK, any h e]0,1 [. For any given xoeΩ the space HφfXo is
defined by the equivalence classes of functions u' defined as follows: if (u, v) e Hι£ (Ω)
we shall say that u&v (u equivalent to v) onx0if u — veHX£?(W) in a neighborhood
W of x0 and some φ' < φ.

In our case x0 will be the origin in Cn and our operator will act in the spaces
Hφ XQ. Notice also that J^CH^C"), where φo(

z) = i l z l 2 i s the Bargmann phase.

2.1. Lemma. Let

be the symbol of Pε as a pseudodifferential operator in C2n. Then a(z, ζ, h) is a formal
analytic symbol in the sense of Sjδstrand, with:

fa(2.8)

where the principal symbol p0 is the classical Hamiltonian,

and:

(2.9)

Here £ * is the sum over all non-negative integers aμ such that

Σ «μ = | ί |-Λ Σ μ0μ = ti> i=ί,29...,n,

and for any compact subset Ω = ΩίxΩ2ofCn there are constants kx and k2 such that

max ( z , 0 6 β l x Ω2 \R3{z, iζ)\ ^ k±k{. (2.10)

Proof The proof of (2.8), (2.9), (2.10) is identical to that of Lemma 2.4 of [GrPa]
and can therefore be omitted. The estimate (2.10) implies that α(z, ζ9 h) is a formal
analytic symbol ([Sj]). •



Complex Phase Space 401

Remark. By this lemma we can thus write the formal pseudodifferential represen-
tation:

dwAdξ (2.11)

/ Λ
using a representative of α i.e., a suitable N = N(h) in the sum £ R}h

j I. We will
\ j=o /

see below how to specify a suitable integration contour Γ in C2n ("good contour" in
the terminology of Sjόstrand [Sj]) which makes Pε(z,dz,h) a well defined
pseudodifferential operator in a suitable space Hφ.

We now proceed to the construction of the phase S in the standard way, i.e. by
the solutions of the Hamilton's equations (2.12) below and Hamilton-Jacobi
theory; since however we are working in complex phase space, the positivity
properties which immediately ensure global existence of the Hamilton flow and the
in variance of suitable open sets under it do not hold so that these questions have to
be preliminarily examined.

Consider the Hamilton equations in C2w:

dz
dt

dζ

dt

_dκ
~ dζ

dK

dz

(2.12)

Since K(z,ζ,ε) is real analytic in (£,ε)eR2, and holomorphic in (z,QeC2w, the
mappings (ί, w, ξ, ε) ι-> (z, ζ) are holomorphic in the (w, ξ) variables and real analytic
in the (ί, ε) variables (this follows from a compactness argument if (ί, w, ξ9 ε) belong
to compact sets; see e.g. [N]), the domain of definition being specified in
Lemma 2.3 below. Moreover let us note, for further convenience, that we can
write:

1

z(ί, w, ξ, ε) = z(ί, w, ξ9 0) + ε J (<3εz) (ί, w, ξ, τε)dτ = weu + ε/^ί, w, ζ9 ε)

I (2.13)
ζ(t, w, ξ, ε) = ζ(t, w, ξ9 0) + ε f (3,0 (ί, w, ξ, τε)dτ = ξe" ί f + /2(ί, w, ξ, ε)

o

with ε\Ik(t9w9ξ,ε)\->0 as ε-»0, fc=l,2; (ί,w,ξ) fixed and, once chosen a suitable
compact set in (ί,w,£,ε), εMax|/fc|->0 as ε->0.

2.2. Lemma. L ί̂ M be a manifold (differentiate, analytic, holomorphic), K a
compact subset of M and v a vector field on M of class Cr (C00, Cω, holomorphic).
For any peM let φ(t,p) be the flow of v, and let D be a compact subset of K with
D + K and DndK = 0. Then if peD there is T>0 such that φ(]-T,T[xD)CK.

Proof Let us first remark that it is well known that the flow has locally the same
regularity as M and v. By [A, Corollary 5] if peK then either φ(t,p) exists for all
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ί e R o r there is Tp>0 such that φ{t,p) is defined for \t\^Tp and φ{Tp,p) [or
φ(— Tp,pJ] belongs to dK. Without loss, consider only the f > 0 case. Let

P+ = {T>0; 3peD such that φ(t9p)eK, V ί : 0 ^ ί ^ T , φ ( T , p ) e δ K } ,

and set T+ = infP + . Suppose T+ = 0. Then for any ε > 0 there is pεeD such that

φ(ε, pε) e dK. Choose εn = -. Then for any n e N there is pn e D such that

n

φί-,pn\e dK. Since pn e D, and D is compact, there is (wfe)fceN such that pnk-^p e D

1
and >0 as fc-> oo. By the regularity of the flow and the closedness of dK we have

nk

φ ( —, pnk) ->y G dK. On the other hand φ(0, p)=peD, which contradicts
\nk )

dKr\Ώ = 0. This proves Lemma 2.2. •

The further property of the complex Hamiltonian flow needed in what follows
is contained in the next preliminary result. Fix 0<Ao<Al9 T(ε0) = T9 ε0 in such a
way that (ί, w, ξ, ε) H-> (Z, ζ) is regular [i.e., holomorphic with respect to (w, ξ) and
real analytic with respect to (ί, ε)] for (ί, w, ξ9 ε) e [ - T, T] x J50 x Bo x [0, ε 0] = /(T)
χ β o χ β o x / ( ε o ) where Bf = {zGCM | z | ^ ^ } , i = 0,l.

2.3. Lemma. 77zere αr^ εx and 4̂, 0 < ε 1 <ε 0 , 0<A<Ao such that:
(i) The mapping w i-> z(t, w, ξ, ε) is, for any fixed (ί, ξ, ε) eI(T)xBox /(εj, a

holomorphic diffeomorphism on Bo;
(n) Let B = {zeCn;\z\^A}. Then z(t,B0,ξ,ε)cB for any (t,ξ,ε)eI(T)

xBox /(εi).

Proof. Set: K = BX x Bt; D = B0 x Bo, and denote once again by T the minimum
between the T of Lemma 2.2 and T(ε0) defined above. Therefore there are
constants C^ o ) , i = l,2, such that:

3i x Bι x 7(ε0)

Since -r— =eitInXn + ε-z-L(t9w9ξ9ε)9 z(t,w,ξ,έ) is invertible with respect to w for
ow ow ,

ε < ε x on I(T)xBoxB1xI(εo) where ε 1 <-^ Γ - is fixed. Now z(ί, w, ξ, ε) = weιί

, w, ξ, ε), C(ί, w, ί, ε) = Ĉ  " l t + εfc(ί, w, ξ9 ε). Let:

M (α) = max / ( Γ ) x Bo x Bo x / ( β o ) |α(ί, w, £, ε)|,

Af (6)=max / ( Γ ) XBQXBQX / ( β o ) |b(ί, w, £, ε)|,

M(α, ft) = max {M{a\ M(b)}.

Then it is enough to choose εx in such a way that A = Ao — εxM{a, b) > 0 in order to
obtain, with B = {z e Cn; \z\ <> A}, z(t, BOi ξ,ε)cB for any (ί, ξ9 ε) eI(T)xBox I(ε0).
Moreover we can also conclude that ζ(t,w,B0,ε)cB for any (t,ξ,ε)eI(T)
xBox /(εj . This proves Lemma 2.3. •
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After these preliminary results we are ready to solve the Hamilton-Jacobi and
the transport equations. We have:

2.4. Proposition. Equations (1.15-17) admit a solution S(t, z, ξ, ε), aj(t, z, ξ9 ε), respec-
tively, which are holomorphic functions of (z, ζ)eBx Bo, and real analytic functions
of (ί, ε) eI(T)x /(ε^. Furthermore £ aft is a formal analytic symbol in the sense of
Sjδstrand, and j-°

VξS = w(ί, z, ξ, ε), VJS = ζ(t, w(t, z, ξ, ε), ξ, ε). (2.14)

Proof First remark that (1.15), (1.16), (1.17) can be rewritten as, respectively:

( 2 1 5 )

with obvious definition of fp j=ί,2,.... By the holomorphic analog of the
standard Hamilton-Jacobi theory, it is well known that the formula

S(ί, z, ί, ε) = <z, O - J X(z, «5, w(5, z, ξ, ε), ί, ε), ε)ds (2.18)

yields a solution of the initial value problem (2.15) on I{T) xBxBox /(εj for any

εi<£o

S is holomorphic in (z, ξ) and real analytic in (ί,ε). Moreover we have:

PzS(ί, z, ξ9 ε) = C(ί, w(ί, z, & ε), ξ, ε)

VξS(t,z,ξ,ε) = w(t,z,ξ,ε),

and we can also write S(t,z, ξ,ε) under the form:

S(t,z,ξ,ε) = {z,ξye-it + εS1(t,z,ξ,ε), (2.20)
where <z, ξ}e~lt is the phase function corresponding to the unperturbed flow
generated by Ko. Given S, (2.16) and (2.17) can be solved by the well known
solution technique for first order partial differential equations. The result is:

ao(t,z,ξ,ε) = exp(ε](ίR1(s,z,ξ)--As

2(s,z,ξ)) ds) (2.21)
\ °\ Z /\z = z(s,w(t,z,ξ),ξ) J

t

aft, z, ξ9 ε) = ao(t9 z, ξ, ε) J Jfs, t9 z, ξ)

x (exp(-β}fiR^τ,z,ξ)- \As

2(τ9z,{)) d τ ) i s ) , (2.22)
\ V °\ Z /\z = z(τ,w(s,z,ξ),ξ) J )
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where JJ{s,t,z,ξ)=fJ{s,z(s,w{t,z,ξ\ξ\ξ). These functions are holomorphic with
respect to (z,ξ)eBxB0 and real analytic with respect to (t,ε)eI(T)xI(ε1). For
ε = 0 we have αo = l, α^=0 for all j>0. Consider now:

eih~ls Σ ajhj=eih'ίsaN. (2.23)
j=o

Let us verify that αw is a formal analytic symbol by using [Sj, Theorem 9.3]. In the
same notation, set indeed p(ί,z,w;τ,C,ξ)= — τ—po(z,Q and

(that is, H is the initial hyperplane ί = 0 in C2n+1). We have:

^ = -lφ0,p(0) = 0, and V(τ^ξ)p = (-l,Viζfξ)Po) = (-l,υ).

Now (—l,ι;) is obviously transverse to H, and

Hence the equation

e-n-^ihdt-Pfod.h^-^O,
(2.24)

1

where α= Σα,M has a solution am which is a formal analytic symbol by [Sj,

Theorem 9.3]. Let us now prove that, modulo terms exponentially vanishing in
A A

A"1, a = ao0. To this end set, for |z|:g —, \z — w|^— (so that z — weB) and
/( £ ) : 3 2

Γz, ξ, t = ί(w, θ) e C2n; θ = V2S{U z, ξ) + iR(Ί=ύ), |z - w| ̂  | J , (2.25)

where R is a constant greater than the maximum of the Hessian matrix of S over
I(T) xBoxBox 1(8^. It will be seen below that Γt z ξ is a "good contour" for (2.11);
if this holds, we can write

( /z-\-iθ\ tfi
<z,W> + εF - V - +β Σ Λ,(z

V J/2 / J=o

x (eih~1S{t>w>ξ)aNl(t, w, ξ))dw A dθ. (2.26)

By the analytic stationary phase expansion (see [Sj, Example 2.6]) applied to
(2.26), the phase being <z — w, 0> + S(ί,w, ξ) and the stationary point z = w,
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θ= VzS(t,z, ξ) we can therefore write, with C = —:

Γ ' s > ) α^ 1 ( ί ,z-w', ί))) +/?W l(A-\t,z,ξ), (2.27)
/|w' = O

where the substitution z — w = wf has been performed in the integral and, choosing

By expanding in Taylor series up to the second order in w with initial point 0 we
have:

ί, z - w', ξ) + <w', Γ2S(ί, z,

= -Im(S(ί, z, ί) + \ <β(ί, z, ξ, ε)w', w ' » ^ -ImS(ί, z, ξ) + C(ε) |wf,

and choosing ε in such a way that C(ε) — 1 < 0 we get, since |w ' | ^C:

where the constant C will be specified later. If all coefficients of the power of h are
required to vanish we obtain Eqs. (1.15-17). This concludes the proof of
Proposition 2.4, modulo the proof of the following

2.5. Lemma. Γz t ξίs a good contour for P ε , namely for the phase of the integral
(2.26).

Proof. Let us first recall the definition of good contour: the smooth chain Γ,
assumed to be a bijection between W<Q R" and C together with its differential dΓ, is
a good contour for a smooth real valued function φ with a saddle point at x, x ε Γ if
for any y e Γ we have <£(y)—<£(x) ;£ — C\y—x\2 for some C > 0. Thus in our case we
compute, for (w,θ)eΓz {y.

-Im«z- w, VzS(t, z, ξ) + iR{z - w)> + S(ί, w, ξ))

= - Im(S(ί, w, ξ) + <z - w, PzS(ί, z, ξ)» - Λ|z - w\2

= -ImS(t,z,ξ)-lm<Qtiξ(w)(w-z),w-z}-R\w-z\2

^ - ImS(ί, z, ξ)-(i? - C(ε)) |z - w|2
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so that it is enough to choose R>C{sί) since C(ε)<C(ε1) for ε < ε ! This proves
Lemma 2.5. •

Now fix γ>0 such that | ( 1 + y)2 + iy( l + y) + C'(ε 1 )<l, where C ' ^ )
= max|Hess5S|. This is always possible if we take ex such that C /(ε 1)<^. Then
choose C1>0 such that (ί+γ)C1<Ao, and 0 < C2 < A in such a way that \w(t,z)\

^yCt if \z\ rg -y- (shrinking T if necessary). Here w(ί,z) is the critical point of

(W j g ^ _ i m (5(ί, z, & ε) - <w, O ) + ΨoM, (2-28)

where φo(w) = i |w | 2 . The critical point is given by:

2 (2.29)
VW(S(U z, ξ, ε) - < w , O ) + T K,Ψ(M = ~ ξ ~ iw = 0 J

whose solution is the classical Hamiltonian flow:

w = w(ί, z, - ί'z; ε) = w(ί, z; ε) = ^S(ί, z, - fw(ί, z); ε) Ί
I (2.30)

ξ = - iw(ί, z, - iz; ε) = - iw(ί, z; ε). J

Notice that (w,z) belongs to A; moreover, since

has a nondegenerate critical point of signature (2n, In) in (0,0), the same will be true
for (2.28), at least for εγ suitably small. Therefore the function

ψt(z)= -Im(S(ί,z, -ιw(ί,z))-<w(ί,z), -ιw(ί,z)» + φo(w(ί,z)) (2.31)

will be plurisubharmonic, i.e. Azψt(z)^0. Moreover:

(VZS) (ί, z, - iw{t, z)) = y P , V ^ ) (2.32)

2.6. Lemma. Set: Γo = {(w, ξ) e C2 π; <̂  = - iw, \w- w(t, z)\ ̂  C j . Γten Γo is α
contour for the phase — Im(S(ί,z, ξ ε) — < w , i 2

Proof. It is easy to check (by polarization) that

Then, again by Taylor expansion up to second order, this time with respect to ξ:

ί, z , - ΐ w ) - 1 w|2 + i |w | 2

ί, z, - iw(t, z ) ) - |w(ί, z)|2

= - I m « VξS(t, z, - iw(t, z)\ - ί(w - w(ί,

= - Im <w(ί, z), - iw> -1w(t, z)\2
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where v= — i(w — w(t,z). Choosing εί in such a way that C / (ε 1 )<| the lemma is
proved. •

Let us now take Ar1 = [ i C ^ - 1 ] = [ C ^ " 1 ] and ΛΓ = [CiΛ"1], where the
(C \ 2

constant C3 is chosen in such a way that 1 < ( —γ- I < e, and

| ( i + y ) 2 + ^ ( ^

For ue^n and |z| ̂  —- we can now define:

£(ί)φ) = (2π/I)-wjJ^"1(S(ί'z'ξ;ε)-<w'ξ%1(ί,z,ξ,/I)M(w)dwΛd^ (2.33)
ΓQ

Then, by Lemma 2.6, E(ί): Hφo^Hψt>o. Furthermore, let us realize Pε by choosing
the contour

Γx = |(w, θ) E C2n; θ = y Γ2^(z) + i Λ ( 7 ^ ) , |z - w| ̂  i C2, |z| ̂  1C2Γ^(z) + iΛ(7^) |z - w| ̂  C2, |z| ^

(note that if |z| f^\C2 and |w — z| ̂ ^ C 2 then |w\ ̂  C2 <^4) which is a good contour
for the phase in (2.11). We omit the proof because it is identical to the proof of the
Lemma 2.5 [by (2.32)]. Then by (2.32) and [Sj, p. 23] Pε:Hψu0^Hψty0.

Proof of the Theorem. We have:

P ε (z, δ z , h) (E(ή u) (z) = (2πΛ)" 2n J J e ί Λ " H < z " w ' θ > + S ( ί ' w ' ξ ) " < x ' *»
(w.β)eΓi
(Jc,$)eΓ0

x φ , θ, ε, fc) % 1 ( ί , w, ξ) u(x) d(w, θ, x, ξ), (2.34)

where d(w, θ, x, ξ) = dw Λ dθ A dx A dξ,

= {2πh)-n$$e-ih~ί<w>ξyAε{z,ξ,t)u(w)dwAdξ
Γo

so that (ίhdt-Pε(z,dz,h))E(t)u(z) = F(t,z,hl where by (1.15-17) and
Proposition 2.4:

To conclude the proof of the theorem it is enough to apply the stationary phase
formula to E(t)u and to estimate the error term. In order to avoid the use of the
Morse coordinates, not directly known, we add and subtract in the phase of (2.33)
precisely those terms which build a quadratic critical point at w(ί, z). The price to
pay is of course the inapplicability of the general statement on the smallness of the
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remainder; therefore this property has to be directly proved. Thus we write:

χ eih-HS(t,z,ξ)-<w, -i«,(t,z»-<w(t>z),O + <w<t,z), -«»<«.«)»α W i( ί > Z j ξ,h)u(W)dwΛdξ

= (2πhy ' | l 2 1

\\w-w(t,z)\SCi

|α| = oα!

hι Σ y Mia ft, z, - iw(t, z))) + R(h~ \ t, z),
j0

where ,

IM^) ! ^ const ^

Since

by the Taylor formula at second order with respect to ξ we have (v = — ί(w — w(ί, z)))

ί, z, - iw)- <w(ί, z), - iw> - <w, - ίw(t, z)» -1w(ί, z)|2 + i |w|2

, z, - iw(ί, z)) + < Γ{S(ί, z, - iw(t, z)), - f ( ί^^( ί^))>

, -/w(ί,z)>-|w(ί,z)|2

, z)|2 - 1 |M - |w(ί, z)||2 ^

Moreover, by our choice of N:

This implies:

\ ί, Z)| < Cβ Λ ~ ^t(z)e-h- ici(l - 21og(C3/Ci))gΛ-

Ψt(z)e ~ const h ~ ι

for ε small enough. This concludes the proof of the theorem. •
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