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Abstract. Explicit lower bounds are given for the size of the imaginary parts
of resonances for Schrόdinger operators with non-trapping or trapping
potentials, and for the Dirichlet Laplacian in the exterior of a star-shaped
obstacle, both acting in three dimensions,

1. Introduction

Resonances for perturbations of the Laplace operator A on W are of interest in the
theory of scattering for the Schrodinger equation

d ^ t ^ xeU\teU (1.1)
dt

and the wave equation outside an obstacle Ω

d2u(xj)

dt2
= Δu(x,t) xeUn\Ω,teM. (1.2)

They are associated with abnormally long, but temporary trapping of quantum
mechanical particles for (1.1), or waves for (1.2). Mathematically, a self adjoint
perturbation H of — Δ is said to have a resonance k = κ — iηeC if its resolvent
(H — z)'1 has an analytic continuation in z with a pole at k2. This gives a solution
φ of the eigenvalue equation Hφ = k2φ which also satisfies an outgoing radiation
condition at oo. (This condition is incompatible with square integrability, so k2 is
not an eigenvalue.)

Such a solution φ gives a solution φ(x,t) = exp( — ίk2t)φ(x) of (1.1) and a
solution w(x, t) = exp (— ikt)φ(x) of (1.2). The approximate lifetimes of these are
respectively (2/c?/)"1 and i/"1. Suppose the perturbation is supported in
^ κ = {lχl = ̂ } The time spent by an unperturbed particle or wave in gfiR is
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roughly 2R/velocity, which is 2Rβκ for (1.1) and 2R for (1.2). Thus for both
equations, the lifetime is "long" if 2ηR « 1. If the perturbation is of a non-trapping
type, we would expect to find no resonances obeying this inequality.

Star-shaped obstacles do not trap light rays, and potentials satisfying
E—V —rdV/dr>0 do not trap classical particles of energy E. In this paper we
show that in dimension 3 such perturbations, if supported in $R, do not produce
resonances with ηR very small and KR not too small. For K large the condition
becomes approximately 4J2ηR < 1.

If the non-trapping conditions fail, resonances with ηR « 1 are expected. For
the potential case we give lower bounds which are exponentially small in a certain
quantity which roughly measures the size of the trapping barrier.

Resonance free regions of the complex plane are known to exist for the
Laplacian in the exterior of an obstacle. An explicit lower bound η > const, was
found in [M] for a class of obstacles including star-shaped ones, and lower bounds
were shown to exist for non-trapping obstacles in [M-R-S]. The sphere of radius
R has a resonance at k = — i/R. The strip ηR^l has been shown to be
resonance-free in [R], a reference we learned about after completing this work.
Our explicit lower bound for η is weaker than the result of [R], but the method is
different, and should apply in even dimensions. It is shown in [B-L-R] that for
convex obstacles the lower bound grows as κ1/3.

For the Schrodinger equation, less seems to be known. In [B-C-D, S, D-H]
lower bounds on η are given for non-trapping V in the semiclassical limit, i.e. a
given lower bound for η is found to hold as Planck's constant h approaches zero.

Our bounds cannot recover such results, since they are O(h) at best. However
they yield explicit results for a given potential. Explicit bounds were found in [H]
for general (possibly trapping) potentials in one dimension. In [LO] an explicit
resonance-free strip below the real axis is given for a class of non-trapping potentials
in three dimensions. In this paper we give explicit energy dependent lower bounds
on η, separately for the non-trapping and trapping cases, both for potentials of
compact support in 1R3. Our energy dependent non-trapping bounds apply to any
reasonable potential, since there will be no trapping at high energy.

Our proof is elementary, and similar in spirit to those of [H] and [LO]. The
main ideas are demonstrated by the following results in one dimension. The basic
estimate for the non-trapping case uses the method of [LA-1] first developed for
resolvent estimates (and thus estimates on lifetimes). The modification for trapping
potentials was used in [LA-2, LA-3]. If V has compact support a resonance in
one dimension for — d2/dx2 + V on [0, oo) is just a k such that there is a solution
of — φ" +Vφ = k2φ with φ(r) = ce~ikr for r outside the support of V.
Theorem 1.1. Suppose that Fe^ ίP) , oo)), supp V c [0, K], and the operator
H = —d2/dx2 + V on [0, oo) with Dirichlet boundary condition at 0 has a resonance
atk — κ — iη, with K, η > 0. Then

κ2-V-rV
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Proof. Suppose that - φ" +Vφ = k2φ, with φ(0) = 0, and φ(x) = eikx for x ^ R.
Then, using integration by parts we find

0 = Re J x φ T - φ" + (V - k2)φ]dx
o

= \]\φ'\2dx-^\φ\R)\2 + \]*φ2 -V -xV')\φ\2dx
20 2 2o

RRek2 R

\φ{R)\2 + \m{κ-iη)2\x\mφ'φdx. (1.4)
2 0

Now

o o 2/ o 2

so the last term in (1.4) is non-negative. Since φ(x) = ceιkx for x^>R we have
φ'{R) - ikφ{R) = 0. Therefore

c 2 - V-xV')\φ\2
(Re/c 2 - V-xV')\φ\2dx

= RI φ'(K) - ifcφ(R) | 2 + 2κ:R Im φ'(Λ)φ(RJ + 2ηR Re φ'(R)φ{R)

= 2κR Im φ\R)φ{R) + 2̂ /Λ Re φ\R)φ{R)

R d
= R f —(2τc Im ψ/φ 4- 2̂y Re φ'φ)dx

odx

= R\[4κ2η\φ\2 + 2η\φ'\2 + 2η{V -κ2 +
o

= 2^/? J [(κ2 + K + η2)\φ\2 + \φ'\2ldx. (1.5)
0

Suppose that (1.3) is violated, then 2ηR < 1 (since Kand V vanish at R) and
therefore η2 ^ 1/(2K)2, so (1.5) implies (1.3). •

Remark. If κ2 > V(x) for xe[0, K], then by solving an ordinary differential equation
we can find g(x) such that g\x) ̂  1 and g\x){κ2 - V) - gf(x)K' ^ /c2. Replacing x
by g(x) in the proof of Theorem 1.1 yields a more general lower bound for η:

sup{κ2 + V(x)+ l/(2g(R))2:xe[0,Rl}'

(In general g(R) will be larger, and thus the bound smaller, the more V oscillates.)
Notice that (1.3) is trivial unless κ2 — V — rV ^ 0. This condition is sufficient

to rule out classical trapped orbits at energy κ2. If this condition is violated, there
may be trapped orbits, and resonances near the real axis. It is possible to bound
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the imaginary part of such a resonance from below by the following trick. Suppose
that for some R1> R,

u(R1)=l uf(R1) = 0, κ'(r)<0, (r<Rx).

If — φ" + Vφ = k2φ, then φ/u satisfies

, « / / V u J u

So, writing q = u"/u, we have, as in Theorem 1.1

1 *
1 - 4 - + (Rek2 - V + q - x{V - q)')

u
Ψ dx

Now

o υr

RiRi

u u

o χu2(y)
φ dx>0.

(φ\2

 3

 R

c

ι 1 Γ 2 >
I - I dx= \~\ \φ\2-2-
\uj ow2L w

\Ψ\2 \dx

so we obtain, as in Theorem 1.1

Rι

{\Ψ'\ iκ2 - η2 - (x(V -

Rι

0
η2 + V)\φ\2}dx,

which is impossible if η is too small. A bound UMIIQO is obtained in Lemma 2.7.
(With the simpler argument of [H] we must estimate φ. Here we must estimate
M, a function which may be chosen to improve the estimate on η. We do not pursue
this here.)

In the rest of the paper, we will extend these ideas to 3 dimensions. The
integration by parts argument which we give in Sect. 2 is quite similar, but to be
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effective a certain change of variables from φ to rφ is necessary. Most of the
difficulties, however, arise from the more complicated behavior of outgoing
solutions of (Δ + k2)φ = 0. We cannot expect that rφ = exp ikr, but (d/dr - ik)(rφ)
is small. The proof treats separately the cases of small and large angular
momentum. In Sect. 3, it is shown that for components with small angular
momentum / this quantity is small relative to r~ιl\rφ\, while in Sect. 4 we show
that the components with large angular momentum are small in size. A better
argument for this part of the proof would be welcome. In Sect. 5 the resulting
lower bounds are derived.

2. Interior Estimates

In this section we consider a solution φ of

V-y(x)Vφ(x) + λ(x)φ(x) = 0, xeBβ\Ω c R",

ψ(x) = 09 xedΩ, (2.1)

where Ω is a star-shaped obstacle, for real y and complex λ in %>l(&p\Ω). We
shall essentially estimate the Jf^-norm of φ over 0&P\Ω and the L2 norm of its
normal derivative on <?/2, in terms of its Cauchy data on {\x\ = p}. Here we allow
arbitrary dimension n, but for simplicity we eventually restrict to n = 3.

Proposition 2.1. Let 01 be a bounded domain in Un with %>ι boundary, ye^iβ) and
\St) both real and λe^\^) and φe^2{0t) complex. Then

Re j VG Vφ{ - V yVφ - λφ)dx

y(VG Vφ)(Vφ v)--VG v | V φ | 2 + | V G v R e / l | φ | 2 U s

- J lmλIm(VG'Vφφ)dx, (2.2)
0t

where

HessG(ϋ,i?)= I -^rWj, v = (vu...,vn)eCn.

Proof. Integration by parts yields

- f γ(VG-Vφ)(Vφ-v)dS, (2.3)



268 C. Fernandez and R. Lavine

and for arbitrary real / and θ

which implies

=- jV (/VG)|0|2</x- \VG Vθfθdx
M M

+ j VG vf\θ\2dS,

2dM

Applying this with f = y, θ = δφ/δxi to the second term on the right side of (2.3)
and also to the remaining term on the left side of (2.2) with θ = φ and / = Re λ
gives (2.2). •

In our applications, Im λ will always be a constant multiple of y.

R) is real and φ satisfies (2.7), and ϊmλ/γ is constant,Proposition 2.2. //0
then

ί hlrtr)-'-
δφ

~δr

-\yg{r)χ-v\Vφ\2dS

A δφ

~δr
gReλ\φ\2\dS, (2.4)

where v denotes the outword normal to δΩ here.

Proof. Take G(x) = - J g(s)ds so that

and

x, ΔG = g\

'

Then (2.4) follows from (2.2) and the observations that on δΩ,\Vφ\ = \ δφ/δv |, and

J Imλ!m(VG-Vφφ)dx

+ 2i
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because G(r) ̂  0 for r ̂  p and G(r) — 0 for r = p. •

If f2 is star-shaped, then x v ί> 0 on 3ί2 so the boundary integral on the left-hand
side of (2.4) is non-negative. But to get a useful estimate we need the integral over
08P\Ω positive. The choice g = r requires

(2-φ-rJ^O, (2.5)
or

Re f nλ + r— J^O. (2.6)

For the important case y = 1, (2.5) fails if n > 2.
However, we can make use of the fact, well known in certain circles, that one

can trade off between γ and λ. In fact, for u > 0 and smooth,

(2.7)

so that φ/w satisfies an equation of the form (2.1). For example, if ψ satisfies (2.1)
with y = l , and u = r~(n~1)/2, then

u 4r2

and φ = rin~ί)l2φ satisfies

r n ι r " 1 4rn+1

Now the quantities in (2.5) and (2.6) become r~(n~1} and

Re(/ί 4- rdλ/δr + (n - l)(n - 3)/4r 2)r" ( n-υ.

Thus we obtain

Theorem 2.3. Let Ω be a domain in Un (possibly empty) with ^-boundary. Suppose
that φ satisfies the Schrόdinger equation

pΩ, (2.8)

φ(x) = 0, xedΩ, (2.9)
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where VeV^W), supp V c J*p, and k = κ- iη. Then φ = rin~1)/2 φ satisfies

dS

Φ,ύ<3φ
+ κ - n λ -

(2.10)

In the next two sections it is shown that in dimension 3, if φ = rφ, where φ is
a resonance eigenfunction, then dφ/dr — ikφ cannot be too large at suitable values
of p. The following result shows that this quantity cannot be too small if φ satisfies
(2.8). (A similar result holds for n ̂  3.)

Lemma 2.4. Suppose that n = 3, and φ and φ are as in Theorem 2.3. Then

P\χ\=f
— -ikφ
or P\x\=P

— 2πp

dφ

Ύr

Ax
(2.11)

Proof. We have

dφ

Ύr

and

— ikφ
dφ

Ύr
φ

dφ _

dr

ί T - JO C i

p - r = p δ r r=pr
2

= J ni-2

= ί

Taking real and imaginary parts, we obtain

p J \φ\2dx,
dφ _

2fclm—φdS = <
o dr

- J 2ηκA
P\X\=P or

f
#P\Ω

- /c2

from which the conclusion follows. •

Combining this with Theorem 2.3 gives the following.
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Corollary 2.5. In dimension 3, with φ and φ as in Theorem 2.3, we have

J

271

(2.12)

This result gives the desired estimate for small η if κ2 — V — rδV/dr > 0. This
condition is sufficient to rule out classical bound orbits at energy κ2. When it fails,
resonances near the real axis may exist. In [LA-2,3] an upper bound was obtained
for sojourn times near the scatterer. Here we use the same technique to get an
inequality like (2.12), whose left-hand side is positive if η is (very) small. The idea
is that if H is a Schrόdinger operator whose potential V supports a classical bound
orbit at energy £, it may be equivalent at energy £, via (2.7) to another differential
operator whose symbol represents a classical Hamiltonian that does not trap.

In (2.7), take y = r~{n~1] and u = u{r). Then

so if φ satisfies (2.8), we have, writing q = u"ju,

ι uJ rn ι u

Thus the inequalities (2.5) and (2.6) required for an estimate become

(2.13)

_(K2 -r^-V- r ^ + q(r) + rq'(r)) ^ 0.
~"1\ dr )

In fact it is possible to choose u so that u'/u ̂  0 and the new potential V — q does
not trap at energy κ2.

Theorem 2.6. Suppose that K e ^ l R 3 ) and s u p p F c z J ^ and that
satisfies

dV
r—(x)

dr

with h decreasing and h(r) = 0 for r> R. Set

, oo))

(2.14)

ί 2 R }
Rx = max < R9 — f h(s)ds >

I κ2o J
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-\h{s)ds-—]h{s)ds r<Rt
? 0 ^ l 0

0 r^R,'

ifk = κ — iη and ψ satisfies (2.8) then φ = n// satisfies, for p> Rx

SB
δφ

Ύr
- | V φ | 2 -

and i

X I 2 —
J9 r2

dφ

Ύr

δφ

+ (κ2-η2)\φ\Λ-,
J P

(2.15)

δr
ikφ - (\Vφ\2-

δφ

Ύr

where

Rι

B = cosh2 $q(s)1/2ds.
o

First we require a result on ordinary differential equations.

Lemma 2.7. Suppose that, for 0 < r < r0,

q(r) ̂  0, q'(r) ̂  0, and q(r0) = 0.

Let u(r) satisfy

u"(r) = q(r)u(r), 0<r<ro,

u(ro)=l, u'(ro) = 0.

ThenforO^r^rθ9 u\r)^0, and

ro

1 ^ w(r) ̂  cosh j q(s)il2ds.
r

Proof The function v = u'/u satisfies

υ\r) = q(r) - v(r)2, 0<r<ro; v(r0) = 0,

while the functions

( r

v.(r) = 0 and v+(r) = q(r)112 tanh j

satisfy the same initial condition at r0, and

(2.16)

(2.17)
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So by comparison, v_(r) 2: υ(r) ̂  y+(r), i.e.

0 ̂  — ^ q(r)m tanh } φ ) 1 ' 2 ^ .

Then (2.17) follows by integration and exponentiation. •

Proof of Theorem 2.6. Define u(r) by

u"(r) = q(r)u{r), r < p,

Note that q is decreasing and non-negative, and vanishes at Rl9 so Lemma 2.7
applies to u. We have seen that φ(x)/u(r) satisfies (2.13).

We may apply Proposition 2.2 to φ/u, (with Ω = 0) since

Im/t -2κηu2/rn-γ

= ,2,n-l =~2κη.
u2/rn~

Taking g(r) — r/u(r)2, we get

dφ/u

dr
-rj2-~(rV-rq(r))

or
φ dx

*U dφ

Tr

By definition of q and Rγ, we have, for r < /?,,

(2.18)

^ r / dV κ2

>V + r .
dr 2

Therefore the coefficient of | φ/u \ on the left side of (2.18) exceeds κ2/2 - η2. Also

2dx
*2*< U

2dx_ . 1

-ji

1

u x
\φ φ

u r

u r

u
-φ
u

u'
φ

dx

+ r2V ( — - \\φ\2 I — -

2 η dx
v2*

M X \ Ίdx . « dS
—3 |φ| 2 K - ί -Ivl 2-

II" II „ A, '

We have used w/(Λ1) = 0 in the last step. Using this again, and the fact that, by
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Lemma 2.7, u'(r)/u(r) ^ 0 for r < Ru we obtain from (2.18) and (2.17),

^ L
K2

2 - ' / • - r

dφ

Ύr

2 dφ

γr
+ ( κ 2 - ^ ) | φ | 2 j - , (2.19)

J P
which implies (2.15). Also (2.16) follows from (2.15) and (2.11). •

3. Estimates for Outgoing Solutions of the Helmholtz Equation

A resonance for the operator H = - A + V(x) on L2(U3\Ω) with supp V c 31R is
a pole /c in the lower half-plane for Green's function, analytically continued in k
from the upper half-plane, or equivalently, a value of k for which the integral
equation

1 Jk\x-y\ i eiklx~yld\l/
* ( * ) = - - J -V(y)φ(y)dy--i- -/dS (3.1)

has a solution. The expression f(k,x) on the right-hand side of (3.1) makes sense
for any fceC, and satisfies the Helmholtz equation Δf + k2f = 0 for |x | > R. It
follows that/(fc, •) is smooth in this region, so its expansion in spherical harmonics

/ ( * , * ) = Σ Σ \x\<Pim(k,\x\)Yim(*) (3-2)
1 = 0 |m|g/

is rapidly convergent. Here φ / m satisfies

% ^ ),,.(-.,r) = *V,.(^) (3.3)
dr2 r2

and is analytic in k and r.
For k in the upper half-plane eiklx~yl/\x — y| decays exponentially as |x| -• oo,

so each φlm{k, r) must be a decaying solution of (3.3); in fact

φIm(Λ,r) = CwI(fcr), (3.4)

where

w,(z) = V y J' ' " β". (3.5)

By analyticity, (3.4) and (3.5) hold for all k.
We seek to estimate (d/dr — ik)(rφ). Because of its exponential growth, ψ is

difficult to handle directly. Instead, we make a complex change of variables, which
is the basic idea of complex scaling [Λ-S], Consider

where k = \k\exp(- iff). Then hγ satisfies

K[+V = \k\2hι(sl (s>0) (3.6)
ypβ H- s)
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and

Λ;(s)-ι|jfc|*ifr)->θ as s->oo (3.7)

by (3.5). Thus we have traded a real potential and complex eigenvalue for a complex
potential and positive eigenvalue. The following result on ordinary differential
equations provides the necessary estimate on φt.

Proposition 3.1. Suppose that K>0 and q is an integrable complex-valued
continuously differentiable function on [0, oo) satisfying

Re q' + ̂ ( R e q + K1) ^ 0, (3.8)
K

imq^O, Re 4 ^ 0 . (3.9)

Ifh satisfies

-h" + qh = K\ (3.10)

h'(s)-iKh(s)->0 as s->oo, (3.11)

then

A(s):= Ih'(s) - iKh(s)\2 - Req(s)\h(s)\2

= \h'{s)\2 + (K2 - Req(s))\h(s)\2 - 2K Imh'(s)h(s) ^ 0. (3.12)

Proof The equality in (3.12) is an algebraic identity. To prove the inequality we
calculate

| 2 K
2ί

= 2lmqΊmhth-RQq'\h\2-2Klmq\h\2

|Λ'|2 - (K 2 -

/v

by (3.8) and (3.9). Thus

increases with s, and by (3.11) and (3.9), it must approach a nonpositive value as
5-^ oo. Therefore ,4(s) g 0 for s g 0. •

Corollary 3.2. Let k = κ- iη. If
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then

Proof. First note that Proposition 3.1 applies to ht with K = \k\. For (3.11) holds
by (3.7), and we have, writing x = pcosθ = pκ/\k\ and y = psinθ = ρη/\k|,

q(s) = ]

1(1 + 1) /(/ + l)[(χ + 5)2 - y2 + 2i(x

(x - ίy + s)2 ((x + 5)2 + y 2 ) 2

so that (3.9) holds, since (3.13) implies x 2 > y2, and

Re q Im q
Re q + /c Im q H

|/c| ((x + s)2 + y 2) 2

This does not exceed 0 if

, y

since y = pη/\k\ and x = pκ/|fc|, this condition is

which is equivalent to (3.13).
Therefore

'βp) - i\k\Wι(kp)\2 -
l/clV

4. Estimates Based on the Integral Equation

The results of Sect. 3 do not hold for arbitrarily large / and fixed k. In this case
we must turn to the integral equation (3.1). If φ(x) = rφ(x) and φ is expanded in



Lower Bounds for Resonance Widths

spherical harmonics Ylm,

= Σ Σ

then (3.1) becomes

where

and

ί

Φ)= Σ

d^+

iιk\x\ L i'k\x\

i+12ι(l+j)\ (2z)'z/!

jfo (2/ + 2/+1)!;! (2/+1)!

, , ^ (/+j ) ( / - J + l ) u
wAz) = > e .

277

(4.1)

(4.2)

(4.3)

(4.4)

Proposition 4.1. Suppose that β c ^ , o is star-shaped, and R0^R< p. Ifψ satisfies
(3.1), and φ = rψ satisfies (4.1), then

Σ \ψ'im(p)-ik(Pim(p)l2

|m|SI

2/ ) Y_\P.

Proof. We need to estimate the kernel in (4.2). Since

v
(4.5)

satisfies

we have

so

dv

d\z\
\v\2 )=-2

/+ 1

arc

d\z

4\

2

d\z\

< 2
Imz
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l)! and v\(z) = 0(z2),

it follows that |t),(z)|2 ^exp(2|Imz|)(2'/!/(2/+ I)!)2 and

Therefore, if 0 < α < l ,

\z\a
ι + ι

Σ
l\j \2z\ |2z|

2l+lj%\jJ\z\ 21 l+j+l

Now

log!
l-j *\2l l+j+ϊ

I < f logxdx

2l1
^ - - J logxdx = 1 -21og2-log/,

SO

\2z\ \2z\ ^(e\z\^-j

21 "Ί+j+i-\ 21

Thus we have

^ α ί + 1 | z | / e | z | γ d / 21 V
- 2 / + 1 \2l)d\z\\ e\z\)

2/ + 1V 2/

Using the fact that, by BesseΓs inequality,

21

- i

\m\Sl
ί YJί*)f(*)dS(*)
s2

^ J \f(*)\2dS(x),

we have, taking α = R/p and RJp

Σ \φ'(p)-ikφ(p)\2

a
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eWrV <(R

2 V 21 J \m%ι\\p

dψdS(x)

ί Ylm{x)V(x)4,{x)dx
\Ω

ί
MR\Ω

s2 lm dv x v

\2l-2 C / p\2l + 2

I ί ί - 1 R
2Z + 2

P / dΩ

dφ

x v

Proposition 4.2. Suppose that φlm is as in Proposition 4.1, let δ > 0 and

β=l+-\δ[ l + :

and suppose βR/p < 1. Denote by l0 the smallest positive integer such that
lo(lo+l)δ^\k\2p2.Set

= R j \Vψfdx, / 0 = J
x v'

Then

Z_J z.^ i ' lmyr ' Tin

Froo/. By (4.5) the quantity on the left-hand side of (4.6) does not exceed

" ' 7

(4.6)

: 2 / ? 4
P / _ \ P

3 + 2

ι-ΓffY i - i ' " "

We have used \k\p/l ^ ^5(1+(1/0) ^ >/2l for / ̂  /0, which implies
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and

1/2

/ 2 \ ϊ l / 2

e\ I (2<5)1/2\")1/2

<M 1 + H
2{ \ KR )\

5. Lower Bounds for Resonance Widths

Now the results of Sects. 2,3,4 can be combined to bound η = — Im k below. The
first theorem deals with a Schrόdinger operator at energies where classical trapping
does not happen. The second obtains (exponentially small) lower bounds in
trapping situations where we do expect resonances near the real axis. The third
treats the Laplacian in the exterior of a star-shaped obstacle.

Theorem 5.1. Suppose that Ve^x(U3) with V(x) = 0for \x\^R. The Schrόdinger
operator H = — Δ+Von L2([R3) has no resonance at k = κ — iη, K, η>0 if

0, (5.1)
dr

and for some αe(0,1)

—y
η R < ^ - i ^ ! J ^βκRj , (5.2)
' 2Aβ

where

2R2

u e R V(x)2

2/?3

K ~ V ' X ' ~ " dr

:\x\ύR[,

4 ^ G i b ) 4
Remark. As /c-^oo, v/κ2->l, β-*l +e/2, fe->0, and A-^l, so for any α < 1 the
limiting width of the resonance-free region given by (5.2) is

ηRK-il+e/iy1- (4.718)" xa.

A resonance for — h2Δ + V at k is equivalent to one for — Δ + V\h2 at k/h. As
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• 0, we get asymptotically for the resonance-free region

ahv/κ2

ηR < '

Proof of Theorem 5.1. Suppose that φ is a resonance eigenfunction and the
resonance k satisfies (5.1) and (5.2). Then φ = rφ satisfies (2.12) with Ω = 0 . In
(2.12) set p = βR/a. Then by (5.2), 2ηp = 2ηβR/a < 1, and we have

J \κ\\ - 2ηp) ~(V + η2)(\ + 2ηp) - r ^ K
dr_\ r2

< 1

~ P

9

I
00

Σ
ί = 0

-^ - ikφ
or

Σ ) 1 Ψlm '
\m\<l I

' - ( j V φ l 2 -

2 W

dφ

dr

+ 1)
>

\ΨIJ2V (5.4)

where φlm are defined by (3.2). By Corollary 3.2, the terms with /(/ + 1) ̂  \k\2p2 =
(κ2 + η2)p2 in this series are all less than or equal to zero if

(5.5)
κ2j oc

The remaining terms in the series in (5.4) may be estimated by Proposition 4.2,
taking (5=1, since βR/p = α < 1, giving

Πκ2(l-2ηp)-(V-

(5.6)

But this inequality is impossible, and (5.5) holds if for |x | < p,

I α Y\2βηR e2(RV(x))2^ΎκR α

K — V(x) — r—(x)

We have used exp (4^p) ̂  e2 and

(5.7)

K ~ 2βκR

which follows from 2ηp < 1. But (5.7) follows from (5.2), giving a contradiction.

Theorem 5.2. Suppose that F e ^ R 3 ) and supp V c J ^ , and /̂ ί Λx, q(r) and B be
defined as in Theorem 2.6. The Schrόdinger operator H = — A + V on L2(U3) has
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no resonance at k = K — iη if KR > 1 and

\, (5.9)

where

R2 = max{\\V\\aoR/2κ\RueβR}

and β is defined by (5.3).

Proof. Suppose that k is a resonance satisfying (5.9) and let φ be the corresponding
resonance eigenfunction. Then φ = rφ satisfies (2.16) with p = R2, and since
4ηR2B < 1 we have

(5.10)

The terms in this series with /(/ + 1) ̂  B\k\2R2

2 are negative by Corollary 3.2 since
(3.13) holds:

3
2+" 2

(SκR2B)

by (5.9).
Because R2 ^ eβR > βR, the remaining terms in the series can be estimated by

Proposition 4.2 with δ = B~ \ giving

J , 2 v '

2 ssR r
Now since the maximum value of the function x2e~x is 4/e2 so that e"* ^ 4/(ex)2,

we have

\ekr2\
2 log2 (R2/βR)

by the definition of Λ2. Since βR/R2 < l/e, we have

These estimates with (5.11) give
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But (5.9) implies

which contradicts (5.12). •

Theorem 5.3. Let Ω a &R c= R3 be a domain with Ή1 boundary, which is star-shaped.
Then the Laplacian with Dirichlet boundary condition on dΩ has no resonance at

( 5 J 4 )

Remark. As κ-xx), it follows from (5.14) that α-»l, so the lower bound on ηR
given by (5.13) approaches (2 + e)" 1 .

Proof. If ψ is a resonance eigenfunction with resonance k satisfying (5.13) then
φ = rφ satisfies (2.12), and if p > Rβ and

η2

3 ^ ^ 1 , (5.15)

the integrals over @P\Ω in (2.12) are nonnegative and we obtain, using Corollary
3.2 and Proposition 4.2,

where

and β

oc

is

ηR

is defined by

\-oc2

defined by (5.3).

1
α

2 β i

_2β3

3 1

(2βκR)

, , 1

(2βκRγ

inf{(x v)2

(eR)2

I2

>

xeδΩ}

SΩ r2 2β3 l-(βR/p)2

 d

3

Ω rx v

J |Vφ|2x v ^ . (5.16)
e2 {βR/Pγ

2«*+ί R2 dS

~2β3 l-(βR/p)2 inf(x v) 2/Λ '

The function on the left side of (5.14) increases from 0 to oo as α runs from 0 to
1, so (5.14) has a unique solution in (0,1), and taking p = βR/(χ makes (5.16)
impossible, and (5.15) follows from (5.13), which gives a contradiction. •
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