
Communications in
Commun. Math. Phys. 128, 247-261 (1990) Mathematical

Physics
© Springer-Verlag 1990

A Note on the Global Structure
of Supermoduli Spaces*

Gregorio Falqui and Cesare Reina
S.I.S.S.A, International School for Advanced Studies, Strada Costiera 11, 1-34014 Trieste, Italy

Abstract. We recall some deformation theory of Susy-curves and study
obstructions to projectedness of supermoduli spaces, both from a general
standpoint and by means of the local "coordinate charts" most commonly used
in the physical literature. We prove that these give rise to a projected atlas for
genus g = 2 only.

Introduction

Although the burst of interest for string theory in the last years seems to be fading
away, there are still interesting open problems to be solved. Among others, the
question of the global structure of supermoduli space arises, which is believed to
play in superstring theory the role of moduli space of algebraic curves in the
bosonic model. For instance, when computing amplitudes in superstring theory
via a path integral approach, one faces the problem of dealing with odd variables.
While the bosonic piece of the Polyakov path integral is well understood as an
integral over moduli spaces of algebraic curves, the fermionic part is more
embarrassing as the discovery of ambiguities in performing the integration over
odd variables pointed out (for a review see e.g. [AMS], [DP] and references quoted
therein). To cut a long story short, the basic trouble comes from the fact that in
a given supersymmetric gauge the measure for superstrings reduces to a Berezin
form, which unluckily is gauge dependent. This is because a supersymmetry
transformation induces a small variation of one's gauge choice in a "non-split"
way. In other words, the modular parameters change by a nilpotent contribution
which in turn induces a change of the string measure by a "total derivative."

Besides these local problems, on which most of the physical literature was
focused, there is an even more serious global obstacle to give a mathematically
sound definition of the path integral. This may arise from a Gribov-like ambiguity

* Work partially supported by the National Project "Geometria e Fisica," M.P.I.
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in supersymmetry gauge fixing, which would imply non-split "coordinate trans-
formations" in the overlap of any pair of local charts on "supermoduli" spaces.

Although the local problem may be handled [MT] within the correct treatment
of Berezin forms under non-split coordinate transformations [R], yet it is not clear
how to handle the global issue. Anyway, this approach is not satisfactory for the
following reasons. First, due to the non-naturality of the splitting of the Berezinian
sequence even in the smooth case, possible divergences in the amplitudes (before
GSO-projection) may give rise to boundary terms. Second, one would like to set
up a formalism which manifestly keeps into account super-holomorphic structures
step by step.

In this paper we consider such problems from a more mathematical point of
view, by studying the global structure of supermoduli "spaces". Our strategy is to
describe the supersymmetric analogue of the moduli stack, but we do not attempt
to formalize such a structure here. We choose instead a direct coordinate approach.
Although a stack theoretical approach is the natural arena for the present problem,
we feel that the more informal way we are going to follow here is closer to the
physical literature. We limit ourselves to recall some ideas about moduli stack in
the Appendix, where we also comment on the Z 2 "global" ambiguity as described
in [LR].

With this proviso in mind, our basic result is that the usual choices done in
the physical literature yield non-projected structures for genus g ^ 3.

This paper is organized as follows. In Sect. 1 we collect some basic facts about
susy-curves and their deformations and we discuss the actual meaning of putting
coordinates on supermoduli space, studying in particular the first obstruction to
projectedness. In Sect. 2 we construct a particular class of universal deformations,
which generalize to the Z2-commutative case Schiffer deformations of algebraic
curves; these give the mathematical counterpart of the choice of ̂ -function gravitino
zero-modes done in the physical literature. We then show, by means of explicit
computations, that such choices cannot give projected atlases for supermoduli.
The only exception is the case of even ^-characteristics at genus 2 where a careful
choice of the "gravitino" supports proves, in a constructive way, the splitness of
even supermoduli for smooth curves of genus g = 2.

1. Susy-Curves and their Deformations

To make the paper self-consistent, we will recall some basic facts on susy-curves
[D, F, BMFS] which will be needed in the following. For a more complete treatment
see [LR,FR], which we briefly summarize here. The structure sheaf sίx of a
supermanifold is a sheaf of Z2-graded commutative algebras over a manifold X,
which is locally isomorphic to the sheaf of Grassmann algebras Λ*£ generated
by a locally free sheaf S on X. Taking even and odd parts one has s4x ~ stf\ φ s4\\
Λ*<$ ~ (Λ*δf@{Λ*δ)1. A supermanifold is called split iff s/x ~ Λ*£ and projected

1 Recall that this is actually a morphism of ringed spaces; together with the map X - ^ B of topological
spaces, one has a homomorphism of sheaves of Z2-graded algebras π :n~1sfB-*sfx
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1.1. A family of susy-curves X parametrized by a complex superspace B is a proper
surjective flat map π\X-+B of complex superspaces1 having 111 dimensional fibres,
together with a 0| 1 dimensional distribution Θπ in the relative tangent sheaf 3~nX
such that the supercommutator m o d ^ π , [,]^ :@f2-+^~πX/@π is an isomorphism
(see [LR] for more details).

A susy-curve over a point {*} will be called a single susy-curve. A deformation

of a single susy-curve is a family X-?-+(B,b0) of susy-curves over a pointed
superspace together with a fixed identification of the central fibre, i.e. a diagram

C <=L

which commutes as a diagram of maps of complex superspaces. Notice that,
whenever (B,s/B) is a superdomain, (e.g. a superpolydisk with coordinates (t,η)\
we can cover X with open sets of the form <%0L = Ua x B, where {Ua,za, 9a} is an
atlas for C and use relative canonical coordinates2 in such a way that (xα, φa)] bo =
i(zα, i9α). Then the clutching function on ^an^β takes the form3

βi t> n)

Having a single susy-curve no extra parameters, its clutching functions read

*α = faβ(Xβ)l Φa=± y/f*β(Xβ)Φβ

and therefore it is trivially split.

1.2. On a family of susy-curves there are two natural subsheaves of the tangent
sheaf F X, namely the subsheaves <Γ& (&~®) of the (relative) germs of derivations
which commute with Q)π. Associated to the exact sequence

we have a coboundary map (the Kodaira-Spencer map) KS:H°(π*(&~ί%)-+
Hι($~®). The family is called versal whenever KS is an isomorphism (see [W] for
a study deformation theory of super-holomorphic structures). When C <=-+X ~^-+B
is considered as a deformation of C, we can restrict KS to the central fibre C o

getting KS0: TboB -• Hι(C0,3~®)\ one can show that if KS0 is an isomorphism, then
X is a universal deformation of C. Some relevant examples of such deformations
will be constructed in Sect. 2. Notice that there is an isomorphism [LR] between
&% and 0® 2 . This fact enables us to speak of an even (respectively odd
Kodaira-Spencer map KS% (respectively KSodd) by projection on the even (odd)
part of

2 A relative coordinate system is called canonical if the generator for 2 ϊ^β takes the form
d/dφx + φa'd/dxa. Such coordinates always exist [LR]
3 The overall sign ± will be left implicit. Z2-ambiguity is not going to be tackled in this paper
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13. The global structure of supermoduli spaces is quite subtle because of the
presence of automorphisms of susy-curves, and in particular of the canonical Z 2

automorphism. Here we will limit ourselves to a somewhat simpler problem in the
framework of the theory of moduli stacks [Mu], a very brief sketch of which will be
given in the appendix. To make things intuitive, a "covering" on the moduli stack

is a collection of versal families {Xj—>Bj}jeI of genus g susy-curves such that

1. the reduced families {XJ

τed~^Bj

red}jeI give a covering of the stack Σg of
genus g spin curves [C];
2. whenever XJ

rcd and Xjed contain isomorphic spin curves, the isomorphism of
reduced families

πred

over suitably restricted base spaces, comes together with morphisms L^Lji1 stfx.->
stfx. and h^'.h^^/β.-^^/β. which make the two families superconformally
isomorphic. We shall say for short that, in this latter case, Xj and X( partially
overlap. Notice that with two modular families, hj{ and h^ are essentially
unique.

An obvious way to construct an "atlas" on the stack is to choose the B/s to
be superpolydisks and the X/s to be universal deformations of susy-curves C,. So
each Xj comes with the open covering {%Uj\ with coordinates {x^φ^t^η^. We
can as well cast the maps if in the form of (1). Setting oc^xXj β^>βj we get

Φ«j = y/fajβMβjl tj>1j) + PajβjάjβMβjl tj, ηj) + μ*jβj(
χβj', tj,1j) (2a)

As a morphism of complex supermanifolds is completely specified by expressing
its effect on the "coordinate functions," when Xj and Xk partially overlap one can
locally describe h*j and L#

kj in terms of the following maps:

Notice that the last two lines give the coordinate description of hfj. These give
rise to a superconformal isomorphism provided that



Global Structure of Supermoduli Spaces 251

More explicitly, considering a common open covering ΰίla for the reduced families
Xt and h*(Xj)9 redefining L*.βj = l/aβ,L#βjβkΞ=L#

β,tj = t9ηj = η9 tk = s, ηk = ξ,

these equations take the form

Uβ(Lβ(xβ> Φβ'> U η)l t, η) = La(Lk

aβ(xβ9 φp; h(t9 η\ S(ί, η))\ ί, if). (3)

An easy computation shows that this is equivalent to imposing the following
conditions on the building blocks of the superconformal maps (2a) and (2b):

— 9cLj*k° J cxkβk \/9ajctk° J 0Lkβk'\
σcLj(ik

O jctkβk) μakβk> (4a)

where the meaning of ° is as given in Eq. (3) and

= σ<xj<xk°f*kβk + \/9'ajΛk

Of<xkβk + σ<xjΛk

σ'ajak°f<xkβk^θLkβk' (4b)

Notice that, as in the ordinary case (see e.g. [K]), when dealing with universal
deformations these relations actually determine the maps tk = hkj(tpηj),ηk = Ξkj(tjηj).
It is convenient to expand these equations in powers of odd generators. One
possibility is to quotient Eqs. 4a and 4b by π~γJί\. (n= \,2,...\JVB. being the
ideal of nilpotents in the base (Bj9 <s/Bj), which leads to the notion of susy-curves
over a thickened basis as in [LR]. For our purposes, however, it is sufficient to
quotient the equations above by the full 3 r d power Jί\. of the nilpotent ideal in
stXj. In fact, as one easily checks, up to Jί\. the maps hjk are the same in
both procedures. On the other hand, we gain a nice intuitive description of what
is going on in terms of the (etale) sheaf cohomology on the moduli stack, entering
the details of which is outside the aims of this paper.

Equation (3) modulo Jίx. give us the reduced structure of the moduli stack of
spin curves. Up to Jί\. we get

σ<Xj*k°fakβk + V 9'<xj<xk° Jakβk 'μlkβk ~ \/f*jβjO9βjβk'
σβjβk + ^ljfijO9%fik

(here superscripts denote the order of the ^-expansion) which, upon tensorization
with d/dφak tells us that μaiβid/dφa. and Lfjμajβjd/dφaj are cohomologous in
Hγ(Ct, 5£~1) via the coboundary σa.a.d/dφa.. Then we get the well known fact that,
up to order 1, we can safely take cohomology classes getting the Γst infinitesimal
neighbourhood of Σg as /^π^JS?"1.

The first obstruction to projectedness of the supermoduli stack can be seen at
the next order. One gets that hfj must satisfy the condition

A clearer coordinate free description of this condition can be given by noticing
that modulo Jί\p the glueing maps give rise to the data of vector fields in each
"overlap" as follows:

i) on Wai n Vβi Vaiβi = fliβi — + φaiμ\iβi
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ii) o n * J j Jj^ j ^ i ^ j W ι

The cocycle rule for Lf ^ shows that these may be interpreted as a one-cycle on
the supermoduli stack with values in y®. In the same spirit base changes on the
families of the "atlas" mod Jί\ induce the action of coboundaries. Indeed, these
correspond to vector fields of the form

acting on the cocycle Vaiβj by

In particular we see that this induces the action of coboundaries on the cocycle
μa.β. so that these representatives can be chosen at will. In other words, changing
representatives oϊμaιβι "fibrewise" in Rxπ^<£ " 1 yields non-equivalent families [LR]
and must be compensated by suitable base changes.

In spite of the fact that this description deserves a detailed formalization, we
will use it in its present rough form as an intuitive clue to construct an explicit
representative of the first obstruction to projectedness of supermoduli stack.

2. Schiffer Deformations and Obstructions to Projectedness

This section is devoted to study what happens when we try to "glue" two universal
deformations of susy-curves of a special kind which extend to the supersymmetric
case the so-called Schiffer deformations of ordinary curves. The interest in this
construction is that it is the mathematical counterpart of the choice of ^-function
gravitino zero-modes usually done in the physical literature (see, e.g. [B]). We
recall the following [FR].

Lemma 2.1. Let L be a θ-characteristic on a curve C r e d of genus g. For a
generic point peCτed and k ^ 1 the connecting homomorphism δk

p:C -+H1(Cred, <£~k)
associated to the exact sequence

is injective. The map δk:Cred-^H1(Cτed,^~k) given by δk(p) = δk

p(l) is full, i.e. there
are (k + \)(g — 1) points p f eC r e d such that δk

p.(\) gives a basis of Hι(Cx^d,S£~k\

Thanks to this lemma one can easily construct deformations of a susy-curve C by
choosing n + m generic points PiECred with local supercoordinates (zh 0f), (z,^) = 0),
and glueing (11 l)-dimensional superdisks Δ\111) with local coordinates (xh φf) with
Cτed\{pi} by means of the maps

4 These intersections do not really exist. Ours is a heuristic notation denoting patches on families which
partially overlap in the sense specified above



Global Structure of Supermoduli Spaces 253

for i: =* l,. . .,n and

Άi-n

for ί = n + l , . . . , m . Since these maps are manifestly superconformal (wherever
defined), we get a family of susy-curves over a superpolydisk Δn^m. Moreover, the
Kodaira-Spencer map restricted to the central fiber reads

So the deformation is universal for n\m = 3g — 3\2g — 2 and will be called a Schiffer
deformation of the susy-curve C. Notice that if n | m ̂  3# — 312g — 2 the deformation
is complete but overparametrized by an amount of n-(3g- 3)\m-(2g- 2)
parameters. An atlas for X^Δn{m can be constructed along the lines discussed in
Subsect. 1.3 as follows. We can cover C o with an atlas (Ua;za9θa) such that
for l ^ α , / ? ^ n + m, UanUβ = 0 , and with transition functions za = faβ(zβ);

# α = \/f'<xβ(zβ)'θβ' Then an atlas for X is given by %a=Uax Δ™^ with coordinates
(xα, φα; ίf, ηt) and with transition functions

where:
for 1 ̂  α ̂  n and any β^m + n

faβ(Xβ)

n + l ^ α g n + m and any β^n

~f*β(χβY
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for α, β ^ n + m

The crucial property of such a deformation we want to capture can be summarized
in the following.

Proposition 2.2. There exist universal deformations X -> Δn^m, (n\m = 3g — 312g — 2)
of a susy-curve C whose transition functions

i) depend linearly on the odd deformations parameters;
ii) are split but for a finite number of intersections
iii) the relative one-cocycle with values in <£~ ιμ(xβ has m = 2g — 2 simple poles on
each fibre of X.

More generally, we have complete deformations with the same properties when
n\m^3g — 3\2g — 2. Needless to say, given any other universal deformation
X'-+A'n\m of C (e.g. one given by a generic choice of non-trivial μα/s) there is a
unique base change h:Δn^m-*Δfn^m such that h*Xf is isomorphic to X (possibly
after a suitable shrinking of the bases). This makes us free to choose Schiffer
"atlases" on the supermoduli stack of the form {Cj;Xj->Δn

j

lm}, the Xj->Δfm being
universal Schiffer deformations of Cy To handle such deformations, and in
particular the choices of the μaβ, we need some more technicalities. Given two
different choices of m = 2g - 2 points {/?J, {pm + i} i = 1,2,..., 2g — 2 on each fibre5

Ct of a deformation X, we have a Stein covering of C r e d made of the disjoint union
of Uo = Cτed\{pk}k=ly...,40._4, and small disks {Uk}k=1Ag_4 around each pk such
that the only non-empty intersections are punctured disks given by Uok =UonUk.
Now two choices of one-cocycles μaβ can be represented on this covering by a
collection oίmeromorphic sections of ϊ£ ~x \Uk with simple poles at ph 1 ^ i ^ 2g — 2
and at pp 2g - 1 ̂  j ^ 4g - 4, i.e.

40-4 Pi-m *

j=2g-l Xi dXi

We shall need the following

Lemma 2.3. There exists a unique (up to a sign) linear map εk = Aί\γ\[ such that μOi

and vOi are cohomologous.

Proof The difference λi0 = μOi — voi has simple poles at 4g — 4 points. From the
exact sequence

5 These actually can be made to define a divisor on X, but we prefer to work fibrewise
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we have

£2g-2

/ /4β-4 \ \

so that λekπδ iff there are 2g-2 sections s^eH0^ &~ι[ ^ pt \ I such that6

where s* denotes the holomorphic tail of sk

0 on Uim9 i.e. s£ f̂  = Bf/xf + s*, with
B = (0,A). •

We can now prove the following

Proposition 2.4. For g ^ 3 Schiffer atlases are not projected.

Proof. Let X ; and J*fk be two universal Schiffer deformations which partially
overlap, and let μΛ.β.,μΛkβ the corresponding JSf"1-valued one-cocycles. From
Sect. 2 we know that there exists an jSf"1-valued coboundary which make them
cohomologous. Then the obstruction to projectedness mod Jf* now reads

2
def

As in Proposition 2.3 we can take μaβ (vaβ) with support on the punctured disks
UOa for α = 1,..., 2g — 2 and for α = 2g — 1,..., 4# — 4 respectively. Then, after the
suitable identification of the odd parameters given by Lemma 2.3, we have

μ*β - v*β = Σ ^ fc(4 - s ϊ ) a n d σ« = Σ >7k& i 6-

^ - vaβ = μa0 - vα0 Γ c/ =

Now τ 2 reads

τ 2 =

Σ ^ ^ ( Σ ίVo " 4)) f̂  20 - 1 g α ̂  4̂  - 4

/ / 20-2 \ \

We benefit here from the fact that for generic points pf, H°l & 11 pj + £ pm+, I I is one-dimensional
< Λ Λ \ \ £ = 1 / /

r i — 1 7/i 7 xfor ; = ! , . . . , 2 0 - 2
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i.e.

|

Σ
Kkl

As the last row can be written as £ ηιηk(sk

os
ι

a - sk

os
ι

o), then τ2 = ξOa -ξo + ξa9 where
kl

0 2# - 1 ̂  α ̂  4# - 4

This shows that τ 2 is a one-cocycle with values in i f ~2 cohomologous to ξOα,
which, in turn can be identified with a family of local meromorphic sections of
if" 2 with simple poles at the points pα. This is cohomologous to zero if and only
if the i(2gf - 2)(2g — /i) = {g— \)(2g — 3) sections sk

os
ι

a — sι

os
k are cohomologous to

zero. The exact sequence

gives us on each fibre

^ ί J - ^ H 1 ( J S f - 2 ) . (4)

Now for any choice of pα's, dim// 0 ! i f ~2( £ p α J I ̂  g and so for # ̂  3, τ 2 cannot

V V /be cohomologous to 0. Since the representative for the splitting cocycle is

h\j)d/dtj = (KSn~1(τ2l we see that hff cannot vanish. •

For g = 2 this dimensional argument clearly breaks down. In fact, special choices
can be made (see e.g. [GIS]) which allow us a constructive proof of Deligne's
result7 on the splitness of even-supermoduli space at g = 2. This runs as follows.

Proposition 2.5. There exist split Schiffer "atlases" on the even supermoduli stack
atg = 2.

Proof. Let p± be two conjugate points under the hyperelliptic involution h. The

7 Deligne's proof is contained in an unpublished letter to D. Kazhdan [AG], whose content is actually
unknown to us. Anyway the splitness of genus 2 supermoduli spaces can be understood also in terms
of the holomorphic geometry of moduli of spin curves [FMRT]
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exact sequence

O - J S ? - 1 - J ^ - 1 ( p . + p + ))-,JS?-1(P-+p

yields

Now d e g J ^ " 1 ^ + / > + ) = 1 = 0 - 1 , and therefore Hn{^~ι{p_ +p + )){n = 0,1)
have the same dimension. So to prove that δ is an isomorphism we notice that
P-+p+ is a canonical divisor, so that Hx{<£~ί(p- + / ? + ) ) Ξ Ξ / J 1 ( J £ ? - 1 ® j f ) ~
H°{5£) = {0} because genus two even ^-characteristics are non-singular.

Accordingly we can choose the μaiβi defining the Schiffer deformations Xt with
simple poles at p+. 8 Now glueing two such families Xj and Xk as in Subsect. 1.3
we see that the obstruction cocycle τla = sls2.— sfal to splitness (which is the same
thing as projectedness at g = 2) is an <£ ~2-valued one-cocycle with simple poles
at pi

± and pk+ depending linearly on two parameters.

Now τ 2 is cohomologous to a global section in H°(J£~2(pL + p\ + p*_ + p+))
if and only if the family ωOL = zOL τla is cohomologous to a global section of
Jf (indeed ^~2(pL + p\ +/?*_ +p\) = X). Since abelian differentials are anti-
invariant under the hyperelliptic involution h we need only to show that the leading
terms of ωa satisfy ω ^ - Λ*ω2 and ω 3 = — /ι*ω4. This turns out to be true for
the following reason. The section SQ (respectively si) is the unique (up to
multiplication by a constant) meromorphic section in i f" 1 having simple poles
at pL,pk-,pk+ (respectively at /?J+,/?*_,/?+.) Since h*(sl) has the same behaviour as
s2, and conversely, there must hold h*(sl) = λsl and h*(sl) = μs£ with λμ = 1. Now
a glance at the expression of τla shows that h*(τla) — — λμτ%Λ and this concludes
the proof. •

3. Final Remarks

But for g = 2, this paper contains results which are essentially of a negative type
and namely that the simplest choices one can make in defining universal
deformations of susy-curves give non-projected "atlases" on supermoduli spaces,
a fact that has been suspected for a long time in the physical literature.

This does not mean, of course, that there are no subtler choices of gravitino
zero-modes which may eventually lead to projected atlases. For instance, our proof
of Proposition 3.3 heavily relies on a dimensional argument that can be easily
bypassed by suitably enlarging the functional dependence of the gravitino choices.
Namely, one could allow gravitinos to have simple poles at N^(g — \)(2g — 3)
points. The nontrivial part is however to study whether the obstruction cocycle
can be made trivial, and, in any case, this may possibly remove only the first
obstruction to projectedness leaving open the question of higher order obstructions.

8 We stress that genus g = 2 is the only case for which this choice is significant. In fact, for g ^ 3 the
variety of curves admitting singular ^-characteristics is a divisor in Σ9^
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Needless to say, a full study of the problem requires a more careful handling
of sheaves on the moduli stack of spin curves and their cohomology, including
families with singular curves. Anyhow, the fact that the most natural choices one
can make do not work has severe consequences for physical applications, where
one needs a detailed computational control of the matter. Accordingly, we feel
rather than looking for abstruse fine tunings of choices, the strategy of setting up
a formalism which is insensitive to splitness obstructions is more promising. In
other words one may try to work on the split model of supermoduli, and extract
from it the relevant information. The results on super-Mumford forms of Manin
and others [BMFS, M,V] seem to support this possible way out.

Appendix. A Glimpse to Moduli Stacks

If the moduli spaces Mg of genus g curves existed as manifolds, one would have

been able to use the bases B of universal deformations C cL>X -+B to give local

coordinates on Mg by setting [isomorphism class of π"1^)]—>beB. Unfortunately

this is not the case because of the presence of automorphism. Indeed, for any

automorphisms αeAut(C), we get another deformation C <=!!!_> χ _ * # of C and
by the universal property there is a base change φ(a):B^B making the two
deformations isomorphic. So, Aut (C) acts on B; in other words, B overparametrizes
the curves "near" C, while the correct local model turns out to be J5/Aut (C). This
way of thinking leads to the construction of the "coarse moduli spaces." Incidentally,
these turn out to be complex spaces but generically not smooth manifolds.

Another possibility of dealing with the moduli problem is to enlarge the very
concept of "manifolds" by first enlarging that of the underlying topological space.
This generalization is actually a stack and we want to describe here its basic
features, referring to the literature for the complete set up [Mu, DM, P].

Let us first work at the topological level. The basic idea of Grothendieck is to
forget about points (i.e. isomorphism classes of curves in our case) and to construct
a generalized topology by allowing more open sets and "inclusions" than usual.
Recall that a topology on a space can be considered as a category, whose objects
are open sets and morphisms are inclusions. Intersections and unions correspond
to products and sums in the category and of course finite products and any
sum exist in the category itself. The basic property one is going to generalize is
that, in ordinary topologies, the morphisms between two objects U, V are either
empty or consist of a single morphism; namely the inclusion of U in V. One gets
in this way a category Jίv which in our case (for g ^ 2) can be described as follows;

1. objects ("open sets") are versal families of smooth curves of genus g UjiXj-^Bj
over smooth bases Bj9 with final object X,
2. morphisms ("inclusions") are morphisms of families of curves and projections
on the final object X,
3. the category is closed under finite product ("intersections") and generic sums
("unions")
4. a collection of morphisms
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is a covering of 5 if S = [j ga(Sa). A collection of projections of families onto the
α

final object X is a covering if every curve occurs in at least one of the families.
Loosely speaking, one forgets about automorphisms by using versal families

(instead of their bases up to automorphisms) as open sets. Notice that this is by
no means an ordinary topology, that is πg is not an ordinary topological space,
because morphisms of two objects are not required to unique be when they are
defined.

This topology for moduli problems comes together other properties, which are
the distinctive features of stacks. Among these, we want to recall that;
5. for any morphism φ\B' -+ B" and any family X" ->B'\ there is a unique pull-back
family φ*X"->B' over B'.
6. for any covering φfBj-tB' of B\ denote by

Bu = Bt xB>Bj=:{(bi9bjϊeBi x Bj\φfa) = φj(bj)}9

Then, there exist some family X'^B' and isomorphisms ΦψφfX'^φJX' over
Bψ satisfying an obvious cocycle condition over Bijk.

Notice that for susy-curves the "reduced" moduli stack is the stack Σg of smooth
spin curves, whose objects are families as in 1) above together with a choice if,
of a ^-characteristics on each of them [C]. Although this is not quite the datum
of an invertible sheaf over the stack, because of the presence of a Z2-ambiguity in
the notion of isomorphism of spin-curves, it induces as well as a class in the Picard
group P i c ( ^ ) (see [C] Sect. 7 for more details).

Finally we remark that a naive generalization of the supermanifold structure
would lead to defining the moduli "super-stack" at genus g as a "super-conformal"
sheaf si Σg over Σg, i.e.

a) for any family Xi^Bt of spin-curves, a susy-structure $4\ as in Definition 1.1,
b) for any commutative diagram

y Y

an isomorphism between φΓj1^] and s/k.
This isomorphism should be "natural" in a precise technical sense [Mu, DM]

to call srfΣg a sheaf on the stack; and here again the Z 2- a mbiguity of [LR] plays
a subtle role. Nonetheless, this Z2- a mbiguity is mild enough not to affect most of
the physical computations which involve even powers of the odd generators.
Accordingly, a study of the global aspects of this intersecting problem was not
even attempted here.
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