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Abstract. This completes our study of the equilibrium thermodynamics of the
Huang-Yang-Luttinger model of a boson gas with a hard-sphere repulsion.
In an earlier paper we obtained a lower bound on the pressure, but our proof
of an upper bound held only for a truncated version of the model. In this paper
we establish an upper bound on the pressure in the full model; the upper and
lower bounds coincide and provide a variational formula for the pressure. The
proof relies on recent second-level large deviation results for the occupation
measure of the free boson gas.

1. Introduction

Huang, Yang and Luttinger [1] introduced a model of a boson gas with a hard-
sphere repulsion which may be described thus: let Λί9Λ2,...be a sequence of
regions in Ud with Vh the volume of Λb tending to infinity with /; with each region
Λb we associate the sequence ε;(l) rg εz(2) ̂  ••• of ordered real numbers interpreting
εt(j) as the /* eigenvalue of the single-particle Hamiltonian of the non-interacting
system in the region Λl9 so that the free-gas Hamiltonian H® is given by

H?= Σ fiiOM/λ (LI)

where n£j) is the occupation number of the/* level; then the Huang-Yang-Luttinger
model is described by the Hamiltonian

\2Ni Σ"ti)}> (1.2)

where Nt = £ nι0") *s t n e t o t a ^ number of particles and a > 0. The physics of this

model was discussed by Huang, Yang and Luttinger [1] and by Thouless [2] and
reviewed in our recent paper [3]; we do not repeat the discussion here, except to
recall that in [1] the authors argued that the condensate, if any, would occupy
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the ground state and concluded that (1.2) could be replaced by

Hl=H? + £-{2Nf-nA\n (1-3)
zvι

this replacement leads to the following formula for the pressure:

iμx " ( 2 χ 2 - χ ? ) - / ( χ o - X l ) l (1.4)

where/(p) is the canonical free-energy density of the free boson gas at density p,
given in terms of the free boson gas pressure p(μ) by

/(p) = sup{αp-/?(α)}. (1.5)
α<0

In [3], we gave a rigorous proof that formula (1.4) remains valid for the Hamiltonian

H? = Hf + ~\2Nf - g n,(jΛ (1.6)

where {mz:ί = 1,2,...} is any sequence of positive integers satisfying

limmJV^O. (1.7)
l->ao

Condition (1.7) was imposed for technical reasons and has no physical significance.
Because of it, nagging doubts remained. Could it be that the striking behaviour
of the condensate (the Thouless effect, established rigorously in [3] on the basis of
formula (1.4)) disappears when the tail in the sum £ nt(j)2 is included in the

7 = 1

interaction? This is not the case. In this paper, we prove that formula (1.4) holds
good for the full HYL Hamiltonian (1.2).

The Hamiltonian H] is obviously an upper bound for the full HYL Hamiltonian
H*YL so that the result proved in [3] provides a lower bound for the pressure
corresponding to HfYL:

l i m i n f ^ Y L ( μ ) ^ sup \μx0 -*(2x2

0 -x\)-f{x0 - * i ) j . (1.8)

In this paper, we prove that

^ sup \μxo-^(2xl-x\)-f{xo-xύ\, (1-9)
l->oo J C O ^ X I ^ O I

thus establishing the result

p H Y L ( / / ) = l i m p f Y L ( μ ) = sup
l->ao xo^Xί^

The consequences of this formula have been discussed fully in [3]. The proof is
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accomplished by expressing the interaction term

A (1.11)

as a functional of the occupation measure introduced in [4]. This enables us to
write the partition function as an integral with respect to a probability measure
on the space of positive bounded measures on (R + . Next we apply Varadhan's
theorem [5] concerning the Laplacian asymptotics of integrals with respect to
probability measures on topological spaces. In this instance, the topological space
is the space of positive bounded measures on 1R+ equipped with the narrow
topology. The essential fact, proved in Sect. 3, is that the interaction term, regarded
as a functional on the space of positive bounded measures, is upper semicontinuous
in the narrow topology. Varadhan's theorem thus provides an upper bound to
the pressure which leads to the bound (1.9).

2. The Main Result

In the HYL model, the Hamiltonian is diagonal in the occupation number
operators; it follows that it is possible to regard the occupation numbers as random
variables rather than as operators. We shall do this. The probability space on
which we define our random variables is the countable set Ω of terminating
sequences of non-negative integers: an element ω of Ω is a sequence

{ω(j)eN:j = 1,2,...} satisfying ]Γ ω(j) < oo. The basic random variables are the

occupation numbers {σyj = 1,2,...}; they are the evaluation maps σ/.Ω-tN
defined by σ^ω) = ω(j) for each ω in Ω. The total number of particles N(ω) in the
configuration ω is defined by

N(ω)= £σ,(ω). (2.1)

Motivated by the discussion in Sect. 1, we define, for each integer I ̂  1, the free-gas
Hamiltonian H° by

Σ j\ (2.2)

where 0 = ,1,(1) ̂  ,1,(2) ̂  , and the HYL Hamiltonian tffYL by

- £ σ, (ω)2 j , (2.3)

where a is a strictly positive real number. Since Ω is a countable set, we may
specify a probability measure on Ω by giving its value at each point of Ω. The
free-gas grand canonical measure Pf[ ] is defined for all μ < 0 by

Pf[ω] = exp(β{μN(ω) - ff» - VιPι(μ)}\ (2.4)



234 M. van den Berg, T. C. Dorlas, J. T. Lewis, and J. V. Pule

provided Σ e~βλ^ i s finite for all β > 0. Here pt(μ) is the free-gas pressure given

in terms of the λt{j) by

Pι(μ) = (βVιΓι Σ ln(l - β * " - ^ " ) - 1 ; (2.5)

it satisfies

ePViPdμ) = £ e x p (^i μyv ( ω) _ //°(ω) })• (2.6)
ωeβ

The HYL pressure pfYL(μ) satisfies, for α < 0,

= Σ exp(^F^-αM)exp(^{αyV(ω) - * / » } ) , (2.7)
ωeΩ

where

using (2.4), we may re-write (2.7) as

exp(βVιP?
YL(μ)) = cxp(βVιPι(a)) £ exp( W « M ) P ? [ ω ] . (2.9)

ωeΩ

The next step is to make use of the occupation measure Lx introduced in [4]. For
each Borel subset A of [0, oo) and ω in Ω, put

L,[ωM] = i Σ ^M<5A/U)[Λ], (2.10)

where ^ x is the Dirac measure concentrated at x so that, for each ω in Ω, the map
A\-^Lι[ω; A~\ is a bounded positive measure. We denote by E = J{\(U +) the space
of bounded positive measures on [0, oo) equipped with the narrow topology (the
weak topology induced by ^\U+\ the bounded continuous functions on [0, oo)
equipped with the norm of uniform convergence); it is the weakest topology for
which the mapping

m κ ( m , / > = J f(λ)m(dλ)
[0,oo)

is continuous for every / in ̂ \U+\ The norm || m \\ of an element m of E is given
by || m || = J m(dλ); we note that the map m π || m || is continuous. Our aim is to

[0,00)

bound the interaction term gf~a(ω) by a functional of the occupation measure
Lί[ω; ]. To this end, we introduce the map S:E->U+ as follows: Let P be an
ordered subset of [0, oo), 0 = xo<x1<- , let Λn = [xn_vxn] and let
δ(P) = Ίni(xn - xn- x)\ ύδ{P) > 0 we say that P is a partition of [0, oo). Let 0> denote

n _

the set of all partitions of [0, oo); for each m in E, define S[m] by
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S[m]= inf SP[m], (2.11)

where

SP[m] = £ m [ Z U 2 . (2.12)

(Using closed intervals in the definition of SP[m] has the disadvantage that it may
introduce double counting of atoms in m; the disadvantage is outweighed by the
advantage that, as we prove in Sect. 3, mi—>SP[m] is upper semicontinuous. The
double counting disappears when we take the infimum over all partitions.) For a

r

m e a s u r e m w h o s e s u p p o r t is a finite set ax ^ a2 S ••• S ar> so t h a t m = £ α,A n , it

r

is clear that S[m] ^ ^ αn

2 with equality if and only if all the points an are distinct.
_ n= 1

Define Gμ~"[m] for each m in £ by

^ . (2.13)

Then

Gμ-'ίL,ίωJ; Ji]^gΐ-'(ω) (2.14)

with equality for all ω if and only if all the λ,(j) are distinct. Thus we have

tί*)) Σ exp(/JKlG^-"[LI[ωJ; ]])P?[ω]. (2.15)

Let (Kf be the probability measure induced on E by Lt:

I K ^ P ^ L " 1 . (2.16)

Then (2.15) may be written as

so that

P?YL(μ) S Pί(α) + — lnf expO8FzG
μ"α[m])IK;jf[έ/m]. (2.18)

Conditions on the double sequence {λt(j)} sufficient to ensure the existence of
the limit p(oή = lim pfa) were given in [6] and reviewed in [3]; for convenience,

I-oo

we restate them here. Define φ£β) for 0 < β < oo by

Φι(β)= f e-βλdFlλ) (2.19)
[O,oo)
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and introduce the conditions

(SI): φ(β) = lim φ^β) exist for all β in (0, oo).
/-OO

(S2): φ(β) is non-zero for at least one value of β in (0, oo).

When (SI) holds, there exists a unique distribution function F, the integrated density
of states, such that

φ(β)= \ e-»λdF(λ) (2.20)
[O,oo)

and F,(/l)->F(/l) at least at the points of continuity of F. When in addition (S2)
holds, the limit p(μ) = lim pt(μ) exists for μ < 0, and p(μ) is given by

/-oo

p(μ)= J p(μ\λ)dF{λ), (2.21)

[0,oo)

where

P{μ\λ) = β-Hn(\-e^λ)y\ (2.22)
It is necessary at this point to introduce a further condition on {λt(j)}:

(S3): The measure dF determined by the integrated density of states F is absolutely
continuous with respect to Lebesgue measure with a density which is strictly positive
almost everywhere on [0, oo). (In the standard example, where the single-particle
hamiltonian is a constant multiple of the Laplacian in Λt with Dirichlet boundary
conditions on dΛl9 ε,( 1) < ε,(2) ̂  are its eigenvalues, λt(j) = ε£j) - ε,( 1),
j= 1,2,..., and {Λf:/= 1,2,...} is a sequence of bounded convex open sets in Ud

which eventually fills out the whole of Ud, all three conditions are satisfied and
F(λ) = Cdλ

d/2, where d is the dimension of the ambient Euclidean space.)

The expression (2.18) suggests the use of Laplace's method to complete the
proof of the bound for lim sup pfYL(μ). Varadhan's theorem [5] provides an

/-•oo

efficient way of doing this; we use the following version of it:

Varadhan's Theorem [5]. Let {IK,:/ = 1,2,...} be a sequence of probability measures
on the Borel subsets of a regular topological space E satisfying the large deviation
principle with rate-function /:£->IR+ and constants {Vt}. Suppose that G'.E^U is
upper semicontinuous and bounded above, then

l i m s u p - l n jeVιG[m]Kι[dm'] ^sup{G[m] - / [ m ] } . (2.23)
/-•oo Vι E E

Suppose that G:E-+M is lower semicontinuous, then

lim i n f - l n J eVιG[m]Kιldm~] ^ sup [Glm] - /[m]}. (2.24)
hoo ^ | f E

In [4] we proved a large deviation result for the measures {ίKf} defined at
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(2.16). It is best stated in terms of the rate-function

7"α[m]=p(α)+/[m]-α||m||, (2.25)

where p(a) is the free-gas pressure and/[m] is the free-energy functional on £, by

/[m]= J λm(dλ)-β~1 J (so^\λ)dF(λ); (2.26)

[o,oo) [o,oo) \ at J

here s is the boson entropy function defined by

x, x > 0 , ( 1 2 7 )

and dm/dF is the Radon-Nikodym derivative of m with respect to the measure

dF so that the Lebesgue decomposition of m may be written

m{dλ) = ms(dλ) + —(λ)dF(λ) (2.28)
dF

with ms singular with respect to dF.
In the spirit of Laudau and Lifshitz [7], we may call/[m] the non-equilibrium

free-energy density of the free-boson gas; it is related to the equilibrium free-energy
density/(p), defined at (1.5), by the following result which we prove in Sect. 3:

Proposition 1. Suppose that (SI), (S2) and (S3) hold; then

f(x)= inf /[m]. (2.29)
{mabs.cts., ||m|| =x}

In [4], we proved the following theorem:

Theorem 1. Let {λt(j)} be a double sequence satisfying (SI), (S2) and (S3) and let F
be the corresponding integrated density of states; then the sequence {K* = P" 0 !^" 1 :
/ = 1,2,...} of probability measures on E satisfies the large deviation principle with
constants {Fj and rate-function

Γ[m]=p(α)+/[m]-α | |m | | . (2.30)

To apply (2.23), we must check that mι-»Gμ[m] is upper semicontinuous and
bounded above; to this end, we prove in Sect. 3 the following result:

Proposition 2. The functional S:E-+U+ has the following properties:

1. Let m = ms + mabe the Lebesgue decomposition of an element mofE into singular
part ms and absolutely continuous part ma; then

2. For each element m of £,

3. The map m\->5[m] is upper semicontinuous on E.
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Notice that it follows from (1) and (2) that

S [ m ] ^ i | m J 2 . (2.31)

Since m\-^\\m\\ is continuous in the narrow topology and a is strictly positive, it
now follows that m\-^Gμ[m\ is upper semicontinuous and bounded above for all
values of μ.

Applying (2.23) to (2.18), we have

rimsuppfYL(μ) ^ p((x) + sup {Gμ~alm] - 7[m]}
l-+oo E

E 2

We see from (2.26) that, using the Lebesgue decomposition m = ma + ms, we can
write /[m] as

/ [ > ] = J λms(dλ)+flma-]. (2.33)
[0,oo)

Thus (2.32) becomes

- α ( 2 | | m | | 2 - | | m s | | 2 ) - f λms{dλ)-f[m
, - v l l II I I S H / J S\ / J •-

/-•oo E L ^ [0,oo)

= sup {μ||m||-^(2||m||2-||ms||
2)-/[mj

{me£:suppms = {0}} L ^

= sup j μ X o - W - x 2 ) - inf /[m]l. (2.34)
xo^xi^O L 2 {||m||=xo-xi} J

By Proposition 1, this yields (1.9); putting it together with the lower bound (1.8),

proved in [3], we establish

Theorem 2. Under the hypotheses of Theorem 1, the limit

exists and is given by

pHYL(μ) = sup I μx0 - ^(2x2

0 - x\) -f(x0 - x,) [.

Perhaps it is worth pointing out that the final result is purely probabilistic in
character; there is no topology in sight. Factoring the function gμ :Ω-+ U through
the topology space E exploits the convergence of {K*} to the degenerate
distribution. In this connection, we describe briefly a second proof of the lower
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bound (1.8) based on a result announced in [8]: Let E be the positive cone

/+ = < Xj ̂  0: Σ Xj < oo > of the Banach space Z1 = < XJEU: Σ \χj\ < oo > equipped

with the weak*—topology; let X^Ω-^E be the map x 0 = Xt(0; ω) = (1/FZ) Σ σAω\

xn = Xt{n;ω) = σn{ω)/Vl9 n ̂  1, and let Gμ~a:E-• U be the functional

(2.35)

Then

gf~a(ω) = Gμ~a[Xι(ω)\ (2.36)

so that

P?YL(ri = Pi*) + τp:ln f exp(jSF^-α[x])K«[dx], (2.37)

where

IKf = P f o ^ " 1 . (2.38)

In [8], we stated the following

Theorem 3. Let {λij)} be a double sequence satisfying (SI), (S2) and (S3) and let F
be the corresponding integrated density of states; then the sequence {K"= P^Xf1:
/ = 1,2,...} of probability measures on E satisfies the large deviation principle with
constants {Vt} and rate-function

Σ | _ V > V Y

oo, otherwise.

To apply (2.24), we must check that xi—^Gμ[x] is lower semicontinuous; this
n

follows from the fact that x\-> Σ xj ^s continuous and
J = l

Σ x,2 = sup Σ χ2

r (2-40)
/ > 1 n j — 1

It then follows that the lower bound (1.8) holds:

liminfpfYL(μ) ^ p(α) + sup {G^"α[x] - /α[x]}
Z-̂ oo xeE

= sun lux --\2x2- y xΛ-flx - y x
c V Λ ) " ° o\ ° L xj J J \ xo 2-j xj
J P ^ ^ ( I Z \ j^l / \ 7^1
<xe£:x 0^ ^ Xj>
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^ sup

The strategy of the proof is summarized by the following diagram:

To prove the upper bound, the interaction gμ is factored as Gμ°Lι through the
space E while, to prove the lower bound, it is factored as Gμ°Lι through the space
£. These are technical devices introduced to deal with the estimates. Loosely
speaking, the phenomena reflected in the bounds occur on different "scales"; these
are picked up, not by the scaling which is the same in both cases, but by the
different topologies.

3. The Promised Proofs

In this section, we provide the proofs, deferred from Sect. 2, of the Propositions.

Proof of Proposition 1. We are seeking to minimize/[mj, where ma(dλ) = p(λ)dF(λ)
with p in L\(U+;dF). Defined pμ for μ ̂  0 by

pμ(λ) = ( ^ λ - ^ - l Γ 1 (3.1)

and ρc by

Γ J po{λ)dF(λ), wheneverpoeLViR + jdF),

Ή [ 0 > β )

 Λ

 (3 2)

I oo, otherwise.
We first prove that, for x g ρc, the infimum is attained by pμ(x), where μ(x) is

defined as the unique real root of

J Pμ(λ)dF(λ) = x. (3.3)
[0,oo)

By abuse of notation, we write / [ p ] for /[m] whenever m[dλ] = p(λ)dF(λ). Since
ρμ(x) satisfies the constraint, we have

inf fίplύflPμix)l (3.4)
{peLl

+(dF):\\ph=x}

To prove the reverse inequality, we write

/ ! > ] = ί (φλ°p)(λ)dF(λ), (3.5)
[0,oo)
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where

φλ{σ) = λσ-β-is(σ)9 (3.6)

and exploit the convexity of σ^φλ(<j) from which follows the inequality

Ψλ^i) ~ Ψλi^i) ^ <PfMi)(°2 ~ ^l). (3-7)

But

φ'λ(pμ(λ)) = μ, (3.8)

so that (3.7) yields

p(λ)dF(λ)- J pμ{λ)dF{λ)\. (3.9)
[O,oo) JUO.oo)

For x ^ pc, we choose μ = μ(x) to be the unique real root of

J Pμ(λ)dF(λ) = x. (3.10)
[0,oo)

It follows that

^.JϊL^™^^ (3-12)
combining this with (3.4), we have

inf fίp1=fίpμix)l xύPc (3.13)
{pεL\(dF):\\p\\ι=x}

In the case x > pc, the infimum is not attained; we construct a minimizing
sequence. Put, for n = 1,2,...,

hM(λ)9 (3.14)

where

so that

J p(">(AMF(A) = x. (3.16)
[0,oo)

Now (3.9) with μ = 0 yields

Again the convexity of σ\-+φλ(σ) yields the inequality

( 3 1 8 )
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but

φ'λ(σ2) = λ-β-1]n(l+jλ^λ9 (3.19)

so that

/[p ( π ) ]^/[Po]+ J λW\λ)dF(λ\ (3.20)
[O,oo)

since hin)(λ)^O for all λ in [0,oo). Combining (3.17) and (3.20) and using (3.15),
we have

/[Pol ^ / [ P w ] £ fίPo] + (*- PMβn)- '• (3.21)

Thus, for x > pc, we have proved that

inf / [p]=/[Po] (3.22)

A straightforward calculation establishes that /[pμ ( J C )] = f(x\ xύpc>
 a n < i

f f = f(x)>x>Pc- •

Proof of Proposition 2(1). Let m be an arbitrary element of £; given ε > 0, choose
L such that m[[L, oo)] < ε and let Xm be the set of atoms of m. Choose a sequence
{Pfe:/c = 1,2,...} of partitions such that

so that

For each fc, construct a new partition Pfc by adding points xux2,..ΛoPk according

to the following scheme: choose xx in (ί/2k,l/k)\(ΛmuPk)9 then choose x2 in

(xx 4- (1/2/cXx! + (l/k))\(AmuPk)9 and so on. This construction is possible because

the set AmuPk is countable so that, for each open interval /, the set I\(AmκjPk)

is non-empty. Denote the nth interval of Pk:0 = x(

o

fc) < x™ < by Δk

n. The partition

Pk has the following properties:

so that

(2)
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Now we have

0 S SlmJ S S[ni] ^ lim inf 5Fk[m]
fc-oo

= lim inf Σ {msίΔ
kJ + malΔ

kJ}2

S lim SpJmJ
fc^oo

( k+ 51| m || lim sup ( sup ma[Δk

n~\ ).

But

supma[Δk

n-] ^ ε + s u p m β [ ^ n [ 0 , L + 1]],
n n

so it is enough to prove that

lim sup ί sup ma\_Λk

n n [0, L + 1]] ) = 0
fc-00 \ II /

in order to conclude that S[m] = 5[ms] for all m in £.
Suppose that

lim sup ί s u p m f l [ ^ n [ 0 , L + 1]] ) = α > 0 ;

then, for k sufficiently large,

so that there exists nk such 4 j k c : [ 0 , L + 1 ] and m β [ 4 j J > α / 2 . Let xk be the
mid-point of Δk

nk; the sequence {xk:/c = 1,2,...} cz [0, L + 1] has at least one limit
point, x say. Without risk of confusion, we denote by {xk} a subsequence converging
to x. Given ε > 0, choose r such that xr is in [x — ε/2, x + ε/2] and d(Pr) < ε/2.
Then ^^ r c= [x — ε, x + ε] so that mα[[x — ε, x + ε]] > α/2 > 0. But ε is an arbitrary
positive number, hence ma is not absolutely continuous; contradiction. •

Proof of Proposition 2(2). Given ε > 0, choose a point of continuity L of m such
that m[[L, oo)] < ε. Let P be the partition 0 = x 0 < xx = L; then

Sp[m] = m[[0,L]] 2 + ml[L, oo)]2

= | |m | | 2 -2 | |m | |m[[L,oo)] + 2m[[L,oo)]2

Hence

5[m] g 5 P [ m ] ^ || m || 2 + 2ε2.
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Since ε is an arbitrary positive number, we have

Proof of Proposition 2(3). First notice that, for each closed bounded interval
A = [α, b\ the map mi—>m[zl] is upper semicontinuous. (This is a consequence of
the fact that the infimum of a family of continuous functions is upper
semicontinuous since, by Lebesgue's Dominated Convergence Theorem,

m\_Δ~\ = lim <m, tn > = inf <ra, tn >
π-> oo n

for a decreasing sequence {tn} of continuous "tent-functions" majorizing the
indicator function 1 Δ of the interval A) Now let P be a partition of [0, oo); for
each N, the map

is upper semicontinuous. If the partition is finite we have proved that m\-^SP[m]
is upper semicontinuous; suppose, therefore, that the partition is not finite so that

X w -»00.

Let {mr:r = 1,2,...} be a sequence in E converging to m. Given ε > 0, choose
a point of continuity ,4 of m such that m[[Λ, oo)] < ε. Then for /c large enough,
k^k0 say, mfc[[X, oo)] < 2ε and thus, for xN > A, we have

2 ^ ( Σ
1 \

Thus, for k ^ /c0, we have

so that

lim sup SplrπjJ ^ lim sup £ mk\_Δ J 2 + 16ε2

2^ Σ " Ί A ] 2 + 1 6 f i

It follows that mι-^5p[m] is upper semicontinuous, since ε is an arbitrary positive

number; hence mι->S[m] = infSP[nί] is upper semicontinuous. •
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