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L2-Index Formulae for Perturbed Dirac Operators
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Abstract. The Callias index theorem is generalized from the Euclidean case to
certain spin manifolds with warped ends, making use of certain index-preserving
deformations.

0. Introduction

Physical considerations led C. Callias to the following open space index theorem
(cf. [C]):

Theorem 0.1. Let Σ be the spίnor space over Un,n odd, and D the Dirac operator

on C°°([R",i:®Cm). Let L be the perturbation of D by ^f^Ίld®Φ, where
ΦEC°°([R", End(Cm)) is Hermitian, asymptotically homogeneous of degree 0, and Φ2

is positive outside some compact set. Then L is a Fredholm elliptic differential operator,
and if U is the unitarizatίon of Φ at infinity, i.e., U= Φ\~1Φ outside a compact
set, one has

2-"- 1

1 / /HTM"-1)/2

r-^ - lim f trt/^t/)11"1. (0.2)
-\\\ 8π J *->-,,-!

In (0.2), §κ * stands for the sphere centered at the origin and of radius R in R".
As remarked by H. Moscovici, the formula (0.2) can be rewritten as follows:

ίΛindex (L) = ch (V+)l^1]. (0.3)

The right-hand side of (0.3) represents the evaluation on S^~ *, the sphere at infinity
in R", of the Chern character of the subbundle V+ of Cm over §^~1 given by
K+ = {l/ = Id}.

While Callias' result and method of proof attracted a lot of interest (see [Bo-S],
[S]), there is no direct generalization of (0.1) that we know of. In this paper
we attempt a generalization of Theorem 0.1 based on the observation (0.3) to a
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class of perturbed Dirac operators on spinor bundles over odd dimensional
spin-manifolds with warped ends.

We work with manifolds M which outside some compact set are geometrically
isometric to warped products (ε, oo) x fN, εe(R. Here N is some compact manifold
and /eC°°((ε, oo)), / > 0. In Callias' case, ίR"\{0} = (0, oo) x y§Γ \ f(r) = r, re(0, oo).
Our perturbed Dirac operators are operators L of type L = D + A, where D is a
(generalized) Dirac operator on some Dirac bundle S, as defined by M. Gromov
and H. B. Lawson in [G-L], and A is a bundle morphism. Our main result can
then be stated as follows:

Theorem 0.4. Let M be an odd dimensional Riemannian spin manifold with a warped
end W = (ε, oo) x fN, /eC°°((ε, oo)), f>Qand f(r)->aoifr-κχ).LetS = Σ®Vbe
the spinor-type bundle over M obtained by twisting the spinor bundle Σ on M with
a trivial Hermitian bundle V. //y4eC°°(M, End(F)) is a skew-Hermitian endo-
morphism such that A\w is independent of the radial direction r, for r^.R, RE(C, oo),
and —A2 is positive at infinity, then the perturbed Dirac operator D + A, where D
is the Dirac operator on S, is a Fredholm operator and

ίΛindex (D + A) = [ A(N) A ch (V R ) +.
N

Here A(N) stands for the total A-class of N, (VR)+ is the bundle over N = {R} x N,

given by (VR}+ = {υ€VR=V\{R}xN:l/^ϊ(-A2Γί/2Aυ = υ}, and ch(VR) + is the
Chern character of(VR)+.

The proof is based on a series of index-preserving deformations of L. One key
deformation rests on an odd-dimensional variant of Gromov-Lawson's relative
index theorem [G-L].

1. Perturbed Dirac Operators

The generalized Dirac operators and their perturbations form a broad class of first
order elliptic differential operators. Their importance in global geometry and
mathematical physics is fundamental. Since they are basic in our approach and in
order to establish necessary notations we recall briefly here their main properties.
For details and proofs we refer to the beautiful references [G-L] and [L-M].

Let (M, g) be a complete Riemannian manifold of dimension n. Let Cl(M) be
the Clifford bundle of algebras induced by the tangent bundle TM and the
Riemannian metric g. There is a canonical embedding TM -> C/(M), and then the
Riemannian metric and Levi-Civita connection extended from TM to C/(M). The
connection VLC on Cl(M) preserves the metric and acts as a derivation.

A bundle of left modules over the bundle of algebras C/(M), say S -* M, will
be called a (generalized) Dirac bundle if 5 is furnished with a Hermitian metric
<>> and a metric connection V5 such that

The action on S by unit vectors in TM c C7(M) is a pointwise isometry. (1.1)

V f ( φ o s ) = Vlc(φ)°s + φ°Vs

e(s) for all eeC°°(TM), 0eC°°(C7(M)), seC°°(S).

(1.2)

The "°" indicates the Clifford multiplication on S. Equation (1.2) is simply
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saying that Vs acts as a derivation with respect to the Clifford action on S.

There are two categories of Dirac bundles:

a) The fundamental ones, like Cl(M] itself, or the spinor bundle Σ, if M happens
to be a spin manifold. To be more specific in this second case, in order that M be
a spin manifold, the principal 5Ό(n)-bundle PSO(M) of oriented frames of TM must
lift to a principal Spin (n)-bundle PSpin(M) equivariantly with respect to Spin(n)->
SO(n). The spinor bundle is then the fibre product Σ = SSpin(M) x μΔ9 of Pspin(M)
with a n-dimensional spinor space (Δ9μ). Recall that the pair (Δ9μ) is a spinor
space if the complex vector space Δ is an irreducible module over the algebra
C/((R")®C and μ is the unitary representation μ:Spin(n)—>> U(Δ) induced by the
left multiplication with elements of Spin(rc) c C7(IRw)(χ)C. When n is odd there are
two inequivalent irreducible C/(IRn)®C-modules, but they induce the same group
representation μ, which is also irreducible [L-M].

Lifting the Riemannian connection on PSO(M) to PSpin(M) via the Lie algebra
isomorphism so(n) = Spin(π), we get the canonical connection V Σ of Σ. In fact, any
local section e = {eί9...9en} of PSO(M) can be lifted up to Pspιn(M) an<^ trιen

embedded into the PΓ—the principal SO(N)-bundle, N = 2("~1)/2, of orthonormal
bases in Σ—. Doing so we get a local section s = {s1,..., SN} in PΣ9 called a spinor
basis. Then

Vίsα = iΣ#(v^C^)^05α eeC°°(TM) α = l , 2 , . . . , Λ T . (1.3)
i<j

b) The generated ones, by algebraic operations, out of old ones. For example, if
S is a Dirac bundle and £->M is any complex vector bundle with Hermitian
connection V£, then the tensor product S ® E is again a Dirac bundle with respect
to the tensor product metric and connection

VS®E = vs ® Id + Id ® V£ (1.4)

Another example, which will be used later, is End (S), the bundle of endomorphisms
of a given Dirac bundle S. Here

= Vs

e(As)- A(Vs

es\ eεC™(TM\ 5eC°°(S), A6C°°(End(S)). (1.5)

We could have considered the Dirac bundle S* dual to S and then view End (S)
as 5*® S. Finally the spinor bundle in a) can be generalized, giving up the
irreducibility of Δ. The connection formula (1.3) is preserved. Such a bundle will
be referred to as a spinor-type bundle and denoted by S.

Any Dirac bundle S generates a distinguished first order differential operator
DS = D:CCO(S)^CCO(S)9 called the (generalized) Dirac operator. Locally it can be
expressed by

D=ΣetoVs

βl. (1.6)
i = l

Equation (1.6) is clearly independent of the local frame {el9...9en}. DEnd(S) will be
denoted shortly by 3. D is elliptic. In fact the principal symbol σξ(D)eEnd(S),
£eT*M, is the Clifford multiplication by the tangent vector metric equivalent to
ξ. This can be seen from the following obvious formula:

S). (1.7)
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Let Ω <= M be any open subset of M . The usual inner product in C°°(f2, S) will
be denoted by (,)β, i.e.,

s1,s2eC°°(fl,S). (1.8)

If ί2 = M, we will write (,) instead of (,)M . The Dirac operator is then seen to be
formally selfadjoint, i.e.,

(Dsl9s2) = (sl9Ds2)9 for any sί9s2eCao(S)9 one of them
compactly supported (1.9)

Equation (1.9) is a consequence of the following integration by parts formula for
Dirac operators

(Dsl9s2)Ω = (sl9Ds2)Ω+(*°sl9s2)dΩ9 sl9s2eC«(S). (1.10)

In (1.10) Ω is assumed to be any relatively compact open subset of M with piecewise
smooth boundary dΩ and n denotes the outward unit normal vector field to dΩ.
The integration on dΩ is carried out with respect to the measure induced from Ω.

We will be interested in the class of perturbed Dirac operators.

Definition 1.11. An operator L:Cco(S)-^Cΰ°(S\S any Dirac bundle, will be called
a perturbed Dirac operator if L = D + A9 where D is the Dirac operator associated
to 5 and A is a 0th order differential operator on S, i.e., ΛeC°°(End(S)).

The properties (1.7), (1.9), and (1.10) can be adjusted to perturbed Dirac
operators. To this end we introduce for any s1,s2eC°°(S), the vector field KS l > S 2 on
M defined by

<K S 1 > S 2 ,X> - <Xo S l , s 2 >, for any tangent vector field X, (1.12)

and div FSliS2, its divergence.

Proposition 1.13. The following statements are equivalent:

(i) L is a perturbed Dirac operator.
(ii) L satisfies (1.7).

(in) The formal adjoint Lf of L is a perturbed Dirac operator.
(iv) Pointwise, for sl9s2eC°°(S)9 <Ls^s2y = <s1,Ls2> + div FSl>S2.
(v) (Lsί9s2)Ω=(sί9Ls2)Ω + (n°sί9s2)dΩ9 under the assumptions of (1.10).

Proof. The proof is identical to the one for Dirac operators (see [G-L] and
[Ch]). Π

We now consider extensions of perturbed Dirac operators to L2-sections. Let
CQ(S) c C°°(S) denote the space of C^-sections of S with compact support, and
let L2(S) denote the Hubert space completion of CQ (S) in the nom ( , ). The
operator L0 = L|C«(S) has two natural extensions to an unbounded operator to
L2(S): a minimal one, L0, obtained by taking the L2-closure of the graph of L0,
and a maximal one obtained by taking the domain to be all seL2(S) such that the
distributional image Ls is also in L2(5). In order words, the maximal extension
equals (Lj)*, the Hubert space adjoint of (L\. By definition these two extensions
are closed. Clearly the maximal extension contains the minimal one, and any other
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closed extension lies in between. The remarkable fact is that they coincide for
complete manifolds M [G-L].

Our manifolds will be complete and so there will be no ambiguity when talking
about closed extensions of various operators.

Let L = D + A be a perturbed Dirac operator on a complete manifold M, as
introduced in Definition 1.11. Let Lr'2(S) be the rth-Sobolev space, defined as the
completion of C£(S) in the norm

\\S\\2 =

We will be interested in the C°°- and L2-solution spaces of L and Lf. Let us denote
these kernel spaces by

ker (L) = {seC°°(S)|Ls = 0}, L2-ker(L) - {seLli2(S)|Ls = 0}).

They relate nicely if we make the following assumption on A:

Assumption 1.14. a) A is pointwise skew-Hermitian i.e., A* = —A, and A and 2 (A)
are uniformly bounded on M in the pointwise norm.

b) A commutes with the Clifford multiplication on 5, i.e., A(m)φ° = φ°A(m)
for any wεM and any φeClm(M).

Assumption 1.14 is motivated by the following proposition:

Proposition 1.15. Let L be a perturbed Dirac operator satisfying Assumption 1.14.
Then

a) The domain of the unique closed extension of L to L2(S) is L1>2(5) and
L:L1'2(S)^ L2(S) is a bounded operator.
b) The commutator [D, A] is a 0th order differential operator, i.e., [D, A] eC°°(End (5)).
Moreover, [D, A] is seen to be equal to @(A); recall that Q) was the generalized Dirac
operator on C°°(End(5)).
c) tiL = D2 + @(A)-A2.
d) ker (L) n L2 (S) - L2-ker (L) - ker (Lf L) n L2 (S).

Proof, a) The domain of the closed extension of L to the L2-space consists of
sections seL2(S) such that LseL2(S). But if A is uniformly bounded on M,LseL2(S)
if and only if DseL2(S). M being complete, seL1>2(S). The continuity of this extension
is obvious.
b) The claim amounts to the linearity of [A A] with respect to functions

. If seC°°(S), [D,A](fs) = DA(fs)-AD(fs) = D(fAs)
+ fDAs-ffadf°As-fADs=JlD,A']. Moreover,

AeΛ) = Σ

c) tfL
d) If seker(L)nL2(S), then Ds = - AseL2(S), i.e., seL2-ker(L). The opposite
inclusion follows from the regularity property of any elliptic system. Obviously
ker^cker^L). Let s6ker(LfL)nL2(5). M being complete, we can choose
compactly supported bump functions /eC°°(M),0^/^ !,/= 1 on any prescribed

compact subset of M, such that | grad / 1 «, = sup < grafm /, gradm / > is as small as we
meΛf
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wish [G-L]. Then || Ls \\ 2 = lim || fLs \\ 2 = lim (ll(fLs), 5) - lim 2(grad /°/Ls, s) ̂

l im| grad/U||/Ls| | 2+||Ls| | 2) = 0. D
/

Remark 1.16. In Proposition 1.15 we can replace L by Lf. In view of the
skew-symmetry of A, any statement about Lf can be obtained from the cor-
responding statement for L, simply by replacing A with — A.

We now proceed to describe sufficient conditions for L:Ll'2(S)-+L2(S) to be a
Fredholm operator. Let us denote by R^ the Hermitian, uniformly bounded
(on M), bundle morphism @(A) — A2. 1.1 5c) becomes then

llL = D2 + RA (1.17)

on C°°(S). Notice that

||Ls||2 = \\Ds\\2 + (RχS,s), 5EL1'2(5). (1.18)

Certainly (1.18) holds for seC^S), from (1.17). However, any element seL1>2(S) is

a L2-limit of some sequence snεCo(S) such that Dsn^Ds. The claim follows.

Remark 1.19. The following positivity assumption on R^ ensures that as a bounded
operator L has finite dimensional kernel and closed range. Thus L is a semi-
Fredholm operator. The proof of this fact can be fashioned out after the similar
one in [G-L]. We will not repeat the details here.

Assumption 1.20. There exists a compact subset K c c M and a constant c>0
such that R^ ̂  c Id on M — K, i.e.,

<R^ι;,t;>OT^c<ι;,t;>m, weM-K, ι;eSm.

Assumption (1.20) will be referred to as the positivity at infinity of RA.

Proposition 1.21. a) If R±A is positive at infinity, then L is a Fredholm operator.
b) // — A2 is positive at infinity (assumption 1.20 for —A2 instead of RA) and

)--»0 as w-> oo, then L is a Fredholm operator.

Proof, a) L is a semi-Fredholm operator, by Remark 1.19. If R_^ is also positive
at infinity, L2-ker(Lf) is finite dimensional as well, thus L is a Fredholm operator.
b) The hypotheses in b) obviously suffice for R±A to be positive at infinity, since
R±A=±@(A)-A2. D

The size of the L2-solution spaces for an operator is usually difficult to compute.
The correct object to look to is their analytic or Fredholm index, when interested
in solution spaces.

Definition 1.22. Let L be a Fredholm operator of the type described in
Proposition 1.21. We define the analytic or Fredholm L2-index of L by the formula

L2-index (L) = dim L2-ker (L) - dim L2-coker (L)

= dim L2-ker (L) - dim L2-ker (Lf).

Our goal in the next sections well be to evaluate this index for particular classes
of perturbed Dirac operators.
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Remark 1.24. So far, we viewed LfL and LLf as acting on CCO(S) only. Just as with
L, we can consider their closed extensions to the L2-space. For operators satisfying
the assumption 1.14, it is an exercise to see that they admit a unique closed extension
to L2(S), with domain L2'2(S). Alternatively, if L* is the Hubert space adjoint of
L\C$(S)> these unique extensions equal L*L, respectively LL*. It is a fact [G] that
L is a Fredholm operator if and only if L*L is so.

2. Index-Preserving Deformations

Using deformation theory, in this section we move toward evaluating the L2-index
of a perturbed Dirac operator L = D + A. We "unitarize" A outside a compact
set and then "diagonalize" L with respect to the bundle splitting induced by the
unitarization U of A, without changing the index.

Definition 2.1. The problem of evaluating the L2-index of a perturbed Dirac
operator L = D + A, A being subject to Assumption 1.14 and to the hypotheses of
Proposition 1.21 will be more simply referred to as a Callias-type index problem.
The operator L itself will be called a Callias-type operator.

The basic result in index preserving deformation theory is the following [G]:

(2.2) The Homotopy Invariance. If 7),0^ί5Π, is a continuous homotopy of
Fredholm operators between two Hubert spaces, then

index (Γ0) = index (7\).

(2.3) The Invariance Under Compact Deformations. If T is a Fredholm operator
and C is a T-compact operator, i.e., C is compact in the graph norm || || + || T ||,
then T + C is a Fredholm operator and

index (T) = index (T+C).

Notice that for our operator L, the L-compactness is equivalent to the
Z)-compactness.

Remark 2.4. The Callias type index problem is uninteresting if the manifold M is
a) compact, or b) even dimensional.

a) For M compact, D itself is a Fredholm operator and by Rellich's Lemma, A is
Z)-compact. Thus index (L) = index (D) = 0, since D is selfadjoint.

b) For M even dimensional, the "volume form" on M given by e = (^/ — \)nl2e± --en£
C°°(C/(M)) anticommutes with D and commutes with A. As a result Le= — eύ.
Thus e is an isometry from L2-ker(L) to L2-ker(Lf), which implies L2-index(L) = 0.

The next proposition shows that only the behavior of A at infinity matters for
a Callias-type index problem.

Proposition 2.5. Let L be a Callias-type operator and ΨeC£(End(S)) such that
ψ* = — ψ and Ψ commutes with the Clifford multiplication. Then L + Ψ is a
Callias-type operator and

L2-index (L) = L2-index (L + Ψ).
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Proof. It is clear that if A satisfies the requirements of Definition 2.1, so does
A + Ψ. In order to prove the index invariance we could use either (2.2) or (2.3).
For instance, Lt = L + t Ψ, 0 ̂  t ̂  1, is obviously seen to be a continuous homotopy
of Fredholm operators linking L and L+ Ψ. Π

We can simplify A at infinity by unitarizing it. To this end let us consider
the polar decomposition of the skew-Hermitian endomorphism A outside the
compat set X, where — A2 is strictly positive. Thus on M — K,A = PU, with
P,l/eC°°(M-K,S),P uniformly positive, and U unitary. Clearly, P = (-A2)112

and U = (-A2Γ1/2A.

Proposition 2.6. Let L = D + A be a Callias-type operator and χeC°°(M) a bump
function which vanishes on K and is identically 1 outside some relatively compact
set Ω. Then D + χU is a Callias-type operator and

L2-index (L) - L2-index (D + χU)

Proof. χU must satisfy the requirements of Definition 2.1. All of them, except one,
are immediate. In particular χU commutes with the Clifford multiplication because
any power of A does so, and — (χU)2 = ld, outside some compact set. Not so
obvious is the fact that ^(χ[/)(w)->0 as w->oo, or equivalently ^(I0(m)->0 as
w-> oo. It is clear that Q) acts as a derivation on the subspace of bundle morphisms
of S commuting with the Clifford multiplication, i.e., for V, WeC°°(End(S)),
commuting with the Clifford multiplication, @(VW) = @(V)W+ V@(W}. There-
fore, at infinity, &(U) = ®((- Λ2)~1 / 2M + A9((-A2ΓW)\ and thus 3>(υ) has
the required decay property if 3)(( — A2)~ 1/2) does so. Now a variant of Cauchy's

integral formula [K] gives (-A2)'112 = (l/π) J λ~1 / 2(- A2 + λΓldλ and so

®((- A2)"1'2) = (1/π) J λ'ίl2@((- A2 + λ)~l)dλ. Using again the derivation pro-

perty we get @((-A2 + λΓl) = (-A2 + λΓl@(-A2 + λ)(-A2 + λ)"1. Thus point-
wise, outside some compact set where || — A2 \\ ̂  c, we have || ̂ (( — A2 + λ)~ 1 ) \\ ̂
const. \\(-A2+λΓl II 2 x||^(X)||^const.(c + A)-2||^(/l)||. FinaUy \\@((-A2Γ1/2)\\ g

const. J λ~1/2(c + λ)~2dλ x || ̂ (-4) || shows that @((-A2Γ1/2) vanishes at infinity.

Now we consider the continuous homotopy At = tA + (l — t)χU, O ^ f ^ l , in
C°°(End(S)). 3ι(At) clearly vanishes at infinity. In order to prove positivity for
— A2, notice that

λ2 ^ c for any 1

- A2(m) ^ c Ido { (pure imaginary) eigenvalue j .

-Uof A(m)

Then At(m) has eigenvalues ^-ltλ + ̂ /(l-t)(λ/\λ\)9 so the elementary
inequality



L2-Index Formulae for Perturbed Dirac Operators 85

proves that — A? ^min(l,c), outside some compact set. Now (2.2) applied to the
homotopy Lt = D + At yields the desired result. Π

The Dirac bundle S\M-K splits into a direct sum S+ 05_ of Dirac subbundles
over M — K. L| M _ X can then be written in a 2 x 2 matrix form whose off-diagonal
terms are bundle morphisms. Another deformation will wipe out the off diagonal
terms and so facilitate, in the next section, a separation of variables on manifolds
with warped ends.

Lemma 2.7. Let U = (-A2)'1'2 A on M - K, with A as in Definition 2.1. Then the
bundles S+ over M — K,

def
(S±)m={ΌeSm\UΌ=±J-lυ}9 meM-K

are in a canonical way Dirac bundles.

Proof. Clearly S+ = (Id + V -IU)S\M-K and the splitting S|M_X = S+0S_ is

orthogonal. The functions m -> rank ((Id + ̂ /—W)(m)9 meM — K are upper semi-

continuous and rank ((Id + v/ — lU)(m) + rank ((Id — ̂ /— lC/)(m) = dim Sm (constant).
Thus these functions must be locally constant on M — K and this ensures (cf. [A])

that S+ are bundles. Since S± = (Id + x/--ϊί/)S, and U commutes with the Clifford
multiplication, S± are invariant C/(M)-modules. They inherit a Hermitian scalar
product from S and, as already noticed, S+ 1 5_ . The condition 1.1 in the definition
of a Dirac bundles is trivially satisfied. We endow S+ with the connection

V?s± = proj s ±(Vf5±) =

eeC°°(T(M - K)l s± eC°°(M - K,S±).

The check that V± satisfies Eq. 1.2 is immediate. It involves the basic properties
of V5 and U. D

Let us denote now by D± the corresponding Dirac operators on (M — K,S + ).

Proposition 2.8. Relative to the orthogonal decomposition S\M_K = S+®S_ we have
the following matrix representations associated with L = D + χU:

L\M- Ω —
D++J-\

'-1
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Proof. Let s±eC°°(M-ί2,S±). Locally,

i

Now we are ready to prove our main deformation result:

Theorem 2.9. Let L = D + χU,K, and Ω be as in Proposition 2.6. There exists a
Fredholm perturbed Dirac operator T:L1'2(5)->L2(SI) such that

T\M- Ω —

and ίΛindex (L) = ίΛindex (T).

P^/.αear,, f.^.( , « <V-'/2«%-, Wongs

to C00 (M, SymmEnd(S)). Set T=L-χ2(U). Tis obviously a perturbed Dirac
operator and by Proposition 2.8, T and Tf have the stated matrix representations
on M — β. We can use a slight variant of Proposition 1.21 to prove that T is a
Fredholm operator. In fact the arguments in [G-L], Theorem 3.2 ff., carry through
if we can write Γ fΓ as a sum of a positive operator and a bundle morphism which
is positive at infinity. In our case Γ fT = (D- χS>(U))2 + ([£> - χ@(U), χU~] + χ2).
Now (D — χ@(U))2 is a positive operator and [D — χ@(U)9χU] + χ2 is positive at
infinity, since on M - β, [D - χ0(t/), *t/] + *2 = ̂ (C/) - [̂ (V), 17] + Id, and 0(17)
vanishes at infinity. The two indices are seen to be equal, by applying (2.2) to the
homotopy Tt = L- tγβ(U\ 0 ̂  t ̂  1. Π

We conclude this section with the following corollary:

Corollary 2.10. Let ws assume that globally on M we have U2 = — Id and ®([7)(m)->0
as m -> oo. T/zen L2-index (L) = ίΛindex (D + 17) = 0.

Proof. By Theorem 2.9, ίΛindex (L) = ίΛindex ( + ^ j . As self-
\ *J_ * / 1 /

adjoint operators D ± admit only real eigenvalues. Thus 0 cannot be an eigenvalue

. /£>. + ,/^T o \ . .,. /£»,+,ΓΛ o \ . _

3. Separation of Variables on Warped Ends

In this section we will study Dirac bundles and Dirac operators defined on a
special class of manifolds: the warped products of type (ε,ao)xfN. Using parallel
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transport along the radial geodesies, any Dirac bundle can be viewed as a
one-parameter family of Dirac bundles over N. Accordingly, for any Dirac operator
the variables can be separated; this is particularly insightful for spinor-type bundles
and Clifford bundles.

Definition 3.1. Let (N,ds2) be a compact Riemannian manifold and /eC°°((ε, oo)),
εeIR, a positive function. The product (ε, oo) x N, equipped with the Riemannian
metric dr2 +f2(r)ds2, r being the coordinate in (ε, oo), will be called a warped product
and denoted by W = (ε, co)xfN.

A basic example of a warped product of this type is (IRΠ — {0}, Euclidean
metric) = (0, oo) x f §"~ *; here/(r) = r, and §"~ * is the standard (n — l)-dimensional
unit sphere in Un.

Let S be any Dirac bundle over a warped product W. Fix an Re(ε, oo) and
denote by SR the restriction of S to {R} x N. Changing the metric on N from ds2

to f2(R)ds2, we can assume that f ( R ) = 1 and then identify metrically N and
{R} x N. The bundle SR-+N inherits a canonical structure of Dirac bundle, under
a mild restriction on the curvature tensor on S, which we describe next.

For any section seC°°(Ar,SK), define s~ in C°°(W,S), as being the parallel
transport of s along the radial geodesies i.e., s~ is the unique section in C°°(W9S)9

subject to

Note tίiat for the bundle TW, we have TN^(TW)R and if e^CCG(N,TN\ then
e~ = E/f, where E is the standard lift of e from TN to TW. Also (d/dr)~\N = d/dr.
These are immediate consequences of the properties of the Levi-Civita connection
on warped products [O]. Another important fact is: (e°s)~ = e~°s~.

We assume now that there exists a real valued function 0eC°°((ε, oo)), g(R) = 1
such that the curvature tensor 0i of S satisfies the equation:

Γιβsr, eeC*>(TN), seC°°(ΛΓ, SR). (3.2)

Proposition 3.3. If the above assumption (3.2) holds, then g(r) must satisfy the equation

<3 4)

Remark 3.5. Equation (3.4) makes sense only if f"(R) Φ 0; this is unnecessarily
restrictive and artificial. In fact, for the metric cone (f(r) = r\ it never holds. As we
shall see, however, in many examples of interest (in particular the geometric Dirac
bundles) we have &d/dr.ίes = f"(R)^e, where <$tfe is another tensor having the same
properties as ffld/drfg (i.e., it is antisymmetric, a derivation with respect to the Clifford
multiplication, etc.). Thus the assumption (3.2) shall be broadened to accommodate
a formal cancellation of f"(R\ but we prefer it that way for esthetic reasons.

Proof of Proposition 3.3. Assume (3.2), and f"(R) Φ 0. We will evaluate $djdr eJ(e~°s~)
in two different ways using the derivation property of the curvature tensor @t. On
one hand
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where n = d/dr. On the other hand

Comparing the two results we get the desired identity (3.4). Π

Example 3.6. S = Cl(W\ the Clifford bundle of exterior algebras of W.

For Cl(W) we have [L-M], @d/dr,e~s~ = ̂ (f'\r)}lf(r)*ά^s^ where adnoe-s~ =

n°e~°s~ — s~°n°e~. Thus Cl(W) satisfies the assumption (3.2) since

R s~-ir(r)ίad sΓKd/dr,e-S ~ '

Example 3.7. S = Spin(W), the spinor bundle of W. Again, for Spin(W) the
assumption (3.2) holds since

xTΛ ~ *• J V / •*• ~ /"} o\

Formula (3.8) remains true for any spinor-type bundle S.

Theorem 3.9. Let W, 5, and SR be as above and assume that (3.2) holds. Then SR^N
admits a canonical structure of Dirac bundle, and the associated Dirac operator on
S admits the following separation of variables

'N,SR)9 (3.10)R y

where $R is the Dirac operator on SR and ΞR is an element of C°°(JV, End (SR)). If
f"(R)*0,then

dim J

Here (ej,- is a local orthonormal basis in TN.

Proof. SR^>N will be given the induced structure of C/(ΛΓ)-module, as Cl(N) c Cl(W)
and SR c S. Thus (1.1) holds trivially. The key point in the proof is the definition
of the connection on SR. A careful analysis of Vf / a r Vfs~ suggests how such
a connection comes around and why assumption (3.2) is necessary.

- - 4- /

Assume for convenience that /"(K) ̂  0. Then from (3.2) and Proposition 3.3 we get
= (f"/f"(R))(®a/e,,esΓ or equivalently

~ - JLβ^s)") = 0. (3.12)
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Define the connection VR on SR by

def
v. N_

Equation (3.12) merely says that

The verification that V* is a metric connection compatible with the Clifford action
is a simple exercise. We will check only property (1.2) i.e.,

Indeed (V*ί0°s)f= /V?-(4>°s)~ - (f'lf"(R)}(^eβre(Φ°s)Y = f(V?φ~)°s~ +
fφ~°Vs

e.s~ - (f'/f"(

It remains to be checked that

Since V^, ̂ N, and VN are derivations with respect to the Clifford multiplication,
it suffices to check (3.14) on elements φeTN only. There, it follows because [O],

Now we prove the separation of variables formula (3.10). For s in CCG(N,SR)

D dimN I dimN f'

dr r i = ι e* f i = ι βl ff"(R)

/*'

Jj
+ (ΞRsΓ, where ΞRs = -

dimN

• X e,«>Λa/are.s on C^N.S,,). D
i= 1

It is interesting to trace down the Dirac bundle on (N, SR) and the corresponding
endomorphism ΞR, when S = Cl(W) or S = Spin(VK).

(3.15) a) S = Spin (W). This situation is worked out by Chou [Ch], when W is
even dimensional. If dim W is odd, then SR = Spin (N), @R is the classical Dirac
operator on N, and from (3.8) and (3.11) we get ΞR = (dimN/N)n°.

(3.15) b) S = Cl(W). In this case SR = Cl(N)®Cl(N), under the identification
SR3ω = ω0 + ω1 Λ (d/dr)-+(ω()9ω1)€Cl(N)®Cl(N). The connection VR is simply
the (direct sum of) Levi-Civita connection(s) and @R is a direct sum of two copies

dimN
of the Gauss-Bonnet operator on N. ΞR then becomes \ Y βι°adnoe,. If ωp is a
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Clifford section of degree p on JV, then

0 if e$cop'

Thus ΞRωp = pn°ωp. Similarly ΞR(n°ωp) = (dimN — p)n°(n°ωp). Closely related
formulas appear also in [B].

The parallel transport introduced before allows us to trivialize S in the radial
direction. Precisely, if π:(ε, oo) x N -^N is the projection, then π*(Sκ) is canonically
isomorphic to S. When S is viewed as π*(SΛ), any section in C°°(W, S) can be viewed
as an element in C°°((ε, oo), C°°(N,SR)) and the separation of variables formula
(3.10) extends to

Ds = n°s'(r) -f ^~- + γΞRs, seC°°((ε, oo), C°°(N, SR)). (3.16)

An easy consequence of (3.13) is that n and <βR anticommute.

4. Index Formulae

In this paragraph we will solve the Callias-type index problem for a triple (M, S, L)
consisting in an odd dimensional Riemannian spin manifold M with a warped
end, a spinor-type bundle S, and a perturbed Dirac operator L = D -f A, for which
the potential A is independent of the radial direction on the warped end.

Definition 4.1. The Riemannian manifold M is said to have a warped end if there
is a compact set K c c M and a warped product W, such that M — K and W are
isometric as Riemannian manifolds. Thereafter we will identify M — K and W. Any
such manifold is complete [O].

For the rest of the section we assume that M is a (n + l)-dimensional spin
manifold, n even, with a warped end W and S is a spinor-type bundle over M. As
shown in the previous section, S|M_X ΞΞ π*(5R), with SR = S|W X N also a spinor-type
bundle—afortiori N is spin too—. The separation of variables for the Dirac
operator restricted to sections in C™(M — K,S) yields ΞR = (n/2)n° (see 3Λ5a).
We also assume that A is skew-Hermitian, commutes with the Clifford action and
is independent of the radial direction r, i.e., A(r, x) = A(R, x) = A(x\ r^R, xεN.
Then — A2 is positive at infinity if and only if — A2(R, •) is positive on N, which
will also be assumed.

Proposition 4.2. Under the above hypotheses the operator L = D + A is a Fredholm
operator if the warping function f on M — K=W has the property that /(r)->oo, if
r-> oo.

Proof. According to Proposition 1.21b), it is enough to show that 2(A) = [A A]
goes to zero point wise, as we approach the end of the manifold. Since D = n°(d/dr) +
(fa/n + (/7/)(n/2)no on M - K, we see that [D, A](r, x) = (l//(r))[0Λ, A](x), r ̂  R,
xeN. Thus [D, A](r, x) -> 0 as r -> oo, if /(r) -> oo as r -> oo. Π

We will need a variant of the relative index theorem of Gromov and Lawson
([G-L]). This theorem is proved in [G-L] for generalized Dirac operators on
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even dimensional manifolds only. However the proof goes through mutatis
mutandis for more general differential operators, for example those whose principle
symbol is given by the Clifford multiplication. This allows us to consider odd
dimensional manifolds as well, in which case the theorem really amounts to an
index-preserving deformation theorem. We also notice that the manfolds involved
need not be connected.

(4.3) The Relative Index Theorem. Let (M^S^L,), i = 0, 1, be two Callias-type
operators which coincide outside compact sets, where manifolds and bundles are
assumed to be compatibly isometric ([G-L], Assumption III, 4.1). Suppose that
Lf Lt and L t L f 9 i = 0, 1, are strictly positive at infinity (i.e., Assumption 1.20 holds)
Then LI is a Fredholm operator and

L2-index(L0) - LMndexiLJ - indf (Lo.LJ. (4.4)

D

In Eq. (4.4) ind^Lo,!^) is the relative topological index. One way to define it is
the following: let ω£ , i = 0, 1, be the Atiyah-Singer index form on Mt associated to
Li [A-B-P], i.e., ωf is the coefficient of t° in the local asymptotic expansion of the

heat kernel tr[e~ίL' ^(m,-) — e~lLlLl (mf)]5 m^eM,-, as f->0. ω0 = ω1 on the common

portion of Mi9 and so J ω0 — J ω^ ^ind^Lo,/^) makes sense.
Mo Mi

Proposition 4.5. In the above relative index theorem assume that dim M0 =
dim Ml = odd number. Then

L2-index (L0) = L2-index (L1 )

Proof. It is well-known that ω f,ί = 0, 1, vanishes on odd dimensional manifolds.
(see [A-B-P]) Π

We now return to the L2-index for the Callias-type operator L considered in
this chapter. The basic idea is to link, via the relative index theorem, two copies
of M with their respective Callias-type operators to an operator (Mί9Sί9Lί) on a
manifold with two ends and whose index is easily computable. Next we describe
in detail this (M^S^LJ.

Let us take M R x ^ J V , where /^C^ίRλ/^Oand lim f^t) = oo. Assume
|ί|-»oo

that the portion (ε, co) xfίN of Ml is the end of a manifold M equipped with a
spinor-type bundle S, and f1(t) = f ( \ t \ ) for \t\^R. If π:R x JV-»{K} x N = N9

π(ί,x) = (R,x) is the projection on N, we take S1 = π*(SR).

Proposition 4.6. S^^^M can be made a Dirac bundle in a canonical way.

Proof. The proof is of course similar to the corresponding part in Theorem 3.9.
We only sketch it. Fix (ί,x)eM1 and let {el9...,en} be a local orthonormal basis
in TXN. Then {d/dt^l/fje^...^//^} is a local orthonormal basis in T^MJ
and we define the Clifford multiplication in S1 by

cliff ( — ) = n°, cliff (—^ ) = ̂ °, i= l,...,n.
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Also define the connection V f 1 by the formulas:

V*,s~ =0, Vfi / / l ) / e is~ =^ΦSe?sΓ+~(n°ei<>sr.
Jl L J1

Here 5 is a local section in Sκ and s~ is its parallel lift to π*(SΛ) = S{. Now the
necessary verifications are identical to those in Theorem 3.9. Π

Let D1 be the Dirac operator associated to Sί^>M1 and L1=D1+Ψ,

ψ(t9x) = χ(t)A(x)9 χeC°°([R), χ(ί) = < We can write L t =[ — 1 π ί s — K
n°d/dr +ίR//1 4- (/Ί//ι)(w/2)n° 4- χΛ on C°°(M^SJ. Since lim /^ί) = OO,L! is a

Fredholm operator (Proposition 4.2). The notations being those of Lemma 2.7,
Theorem 2.9, and (3.16), L t is homotopic to the operator

I

(4.7)T -
'~

r ' r /•»"<)"
/i /i 2

0
/

globally defined on C^ίM^SjΞC^ίM^ίSJ+ΘίS!)-). In writing out (4.7) we

used the fact (Sl)±=π*((SR)±)9 where (SΛ)± ={l/(Λ, )= ±v/ΓTld} cιSΛ. (^)±

is the Dirac operator associated to (SR)+ -> N and therefore (^Λ)± = i(Id+ ^/— 117) x

ΦR\(SR)+ ^et now (^Λ)+ = (SE(SR)+ |n°s = ± ̂ /- Is} and let (^Λ)ί be the restriction

of ($R)+ to (SΛ)ΐ. Similarly define (0Λ)ί and (SΛ)ί.

Theorem 4.8. // (Ml9Sί9Lί) is as above, then

L2-index(L1) = index ($R)+ + index ($R) I.

Proof. Clearly L2-index(L1) = L2-index(Γ1) = L2-index(noδ/δί + ($R)+/fl + (/Ί//Ί)

(n/2)no + y^Tχ) + L2-index (n ° 3/δί +(9R)-/fl +(/'1//1)(n/2)no - y^Tχ). We
concentrate next on the L2 -index of the operator n°3/δί + ($Λ)+//ι +(/ι//ι)

(n/2)n° + y/— lχ defined on C^ίM^ π*(Sκ)+). The obvious Hubert space isometry

\L2(Ml9π*(SR)+)-+L2(R x N,π*(5Λ) + )

takes the operator n°δ/δί + ($R)+/fΐ + (/Ί//ι)(w/2)n° + ̂ 7- lχ into the operator

n°3/δί+ (^Λ)+//1 +y^Tχ defined on C°°(ίR x N,π*(SΛ)+). Let us denote by β

the closure of the operator n°<3/<5ί+ (^)+//1 + χ/^TχinL2(IR x ΛΓ,π*(SΛ)+).Then

Q* = n°d/dt + (j)R)+/f1-^/Ξΐχ9 and the task reduced to that of finding L2-
index(β).

As a selfadjoint differential operator on a compact manifold, ($R)+ has a discrete
spectrum located on the real line. Since ($κ)+n° = — n°($Λ) + , if Λ ^ O is an
eigenvalue corresponding to the eigenvector sΛeC00(J/V,(SΛ) + ), then ( —λ) is also
an eigenvalue corresponding to the eigenvector n°sλ. Let then {(λ9sλ)\λ>0}λu
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{( — A,n°sλ)}λu{(0,sα)}α be the spectral decomposition of ($R) + . {sA,n°sΛ,5α}
is then a Hubert basis for L2(N,(SR) + ), (sα}α generates the finite dimensional
space ker($κ)+ and {sλ,n°sλ}λ is a Hubert basis for [ker($Λ) + ]1, the orthogonal
complement of ker($R) + in L2(N,(SR) + ). Moreover, in the decomposition
L 2 (Mx7V, πnSJJ^L2(R,L2(Λ^(S*MH^^
L2([R,ker(^) + ) and L2([R,[ker(^) + ]±) are left invariant by Q and β*. Thus

L2-index(0 = L2-index(β|c»(iUer(^)+)) + L2-index(β|cco(R>[ker(^)+]1)). (4.9)

It is easily seen that the L2-isometry of [ker (^R) + ]
1 into itself given by < λ λ

[n°sλ-+sλ

induces an isometry on L2(IR, [ker(^Λ) + ]1) which identifies L2-ker(β|c<B(Rί[kerWjι)+]±))
and L2-ker(β*|cαo(^[ker(^)+]1)). Equation (4.9) becomes then L2-index(β) = L2-index

(βlc«(R.kcr(^)+ ))
 We can choose sαeC°°(JV,(SΛ)+), (9R) + sΛ = 09 such that sαeC°°

(N,(SR) + ) or sαeC°°(Λf,(SΛ)+). This is always possible since n preserves ker(^R) + .
Then

fil-* = ± ^1" + -^

Any solution σeC°°([R,ker(^)+) of the equation J - lσ' + J - Iχσ = 0 is of the
/ f \

form σ(ί,x) = exp -\χ(τ)dτ s(x),seker(^R) + , thus always in L2([R,ker(^R) + ),
\ ° /

and any solution σeC°°([R,ker(^);) of the equation - J - \σ' + J — Iχσ = 0 is

G \
χ(τ)dτ js(x),seker(^)+, thus never in L2([R,ker(^) + ).

™ a, i^uit /

dim L2-ker (β |c-(R,ker(^)+)) - dim ker (0R)+ .

Similarly

.e.,

Cl Jl Jl Z

The whole argument can be repeated for the operator n°d/dt + (0Λ)-//ι + (/Ί//ι)
- χ a n d gives

index (^R)I. Theorem 4.8 follows. Π

Corollary 4.10. Let L1 be the Fredholm operator considered in Theorem 4.8. Then

L2-index (L1 ) = 2 index ($R)$ .

Proof. According to Theorem 4.8, it is enough to show that index ($R) + =
index ($R) I . The operator ($R) + : C°° (N, (SR) + ) -> C°° (N, (SR)~) is cobordant to 0 (cf.

[A-S]). Thus (loc.cit.) index(^)+ = 0. Now (^)+ and + ) are
\ 0 (fR)-J

homotopic (a compact version of Theorem 2.9). As a result, 0 = index ($R) + =
index ($R)$ +indδx(^)ί = index ($R)+ - index (0R) I. Π
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Let us now introduce the manifold M0 = MjjM, the disjoint union of two

copies of M and the Dirac bundle S0 = S[JS. The operator L0 = L]J( — L) is
clearly a Fredholm operator and L2-index (L0) = L2-index (L) + L2 -index ( — L) =
2L2-index (L). If we define T0 = T{J(— T) on S0, where T is as in Theorem 2.9,
we also have L2-index(T0) = 2L2-index (L).

Proposition 4.11. The operators (M0,S0, T0) and (Mi,Si, 7\) introduced above are
isometric outside compact sets i.e., there are compact sets K0 c M0 and K^ c Ml

and a manifold isometry ^ 1 :M 0 |M o_K o^M 1 |M l_X l covered by a bundle isometry

T^FΓoίF)-1. (4.12)

Proof. The obvious isometry F between CK0 = {(r,x)eM\r>R}l]L{(r,x)eM\r>R} c

M and CX = ί

f(r,x) if w e l s t M i n M 0 and m = (r,x)

r,x) if m e 2 n d M i n M 0 and m = (r,x)

is covered by the bundle isometry F defined by the formula

if m e l s t M i n M 0 and \>msS>R = (S<>}m = (Sum

ϋw if m e 2 n d M i n M 0 and rMeSJl = (So)M = (S1)F(m)'

Equation (4.12) is obvious for sections in C°°({(ί,x)|ί > R}^^, since F = Id there.
Consider now a section 5 in C°°({(f,x)|ί < — R}^^. For simplicity we assume that

$!) + ). Then(F~1s)(r,x)= - n°s(- r,x) and

n o σ(r, x) - ^ϊσ(r, x),

where σ = F~1s. Thus

+ TY ( - r, x) + y^Tn o S( - r, x).
y 1 1 "~ r j 2-

Finally

, ,

= (ΓlS)(t,x). Π

We summarize the results obtained in Proposition 4.5, Theorem 4.8, Corollary
4.10, and Proposition 4.11 in the following main theorem:
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Theorem 4.13. Let M be an odd dimensional Riemannian spin manifold with a warped
end W = (ε,ao)xfN, /eC°°((ε, oo)), />0 and /(r)->oo if r-+ao. Let S be a
spinor-type bundle over M and let AeC°°(M, End(S)) be a skew-Hermitian endo-
morphism such that A commutes with the Clifford action on S,A\W is independent of
the radial direction r, and —A2 is positive at infinity. Then the perturbed Dirac
operator D + A, where D is the Dirac operator on S, is a Fredholm operator and

L2-index (D + A) = index ($R)+.

Here ($R)+ :C°°(N,(SΛ)ί )->C°°(Λr,(SΛ);) is the Dirac operator on the bundle

(SΛ)ί = {sES\{R}xNΞN\(-A2Γ1/2As = ̂ ϊs, cliff (d/dr)s = V^Ts} over the com-
pact even dimensional spin manifold {R} x N = N. Π

Theorem 4.13 indicates that the L2-index depends only on the spin geometry
of the cross section of the manifold M, and on the spectral properties of the
potential A at infinity. This fact is even better outlined by the following particular
case which also leads to an elegant derivation of Callias' index formula (0.2).

Corollary 4.14. a) In Theorem 4.13 assume in addition that S = Σ (x) V9 where Σ is
the spίnor bundle on M, V is a trivial bundle over M, and /teC°°(M, End(K)). Then

I — 1 /Id 4- Φ\
L2-index(D + A) = J A(N) Λ ch(VR) + = f A(N) Λ trexp^ - — ̂ — )(dΦ)2,

N N 2π \ 8 )
(4.15)

where A(N) is the total A-class ofN9Φ= l/^/— 1( — A2)~l/2A,(VR)+ is the bundle
over N given by (VR)+ = {veVR= V\{R}xN\Φv = v}, and ch(VR)+ is the Chern
character of (VR}+.
b) If A(N) = 1, then (4.15) can be written:

L2-index (D + A) = — ̂ - -̂ — f tr Φ(dΦ)\
N

Proof. Since U = ^/ - 1Φ, we have (SR)+ = Σ ®(VR) + . We prefer to work with Φ
instead of U here for esthetical reasons. The first half of Eq. (4.15) follows now
from Theorem 4.13 and the Atiyah-Singer index theorem for twisted Dirac
operators on compact manifolds [A-S]. The second half is a consequence of the
following lemma:

Lemma 4.16. Let ξ^-N be a trivial bundle equipped with the flat connection with
respect to a fixed trivialization. //PeC°°(ΛΓ, End (£)) is a projection then the curvature
associated to the induced connection on the subbundle ξ+ = {P = Id} is given by P-
(dP)2.

Proof of Lemma 4.16. Let V denote the flat connection on ξ. Then PV is the induced
connection on ξ+ whose curvature r+ is given for any X, YeTN, by

r+(X, Y) = [PVx,PVy] - pV[X,n = PVXPVV - PVrPVx - PVIX,Y] = PX(P)Vγ

- ^2VχV y - PY(P)VX + P 2 V y V x - PVμr.n
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since V is flat and P is a projection. On the other hand

PX(P)VY -PY(P)VX = PX(P)VYP - PY(P)VXP = PX(P)Y(P) + PX(P)PVY

-PY(P)X(P) - PY(P)PVX + P(dP)2(X, Y)

+ PX(P)PVY - PY(P)PVX = P(dP)2(X, Y),

since PX(P)P and PY(P)P are 0,P being a projection. Π

Proo/ of Corollary 4.14 continued. Put now ξ = VR and P = (Id + Φ)/2 in
Lemma 4.16. Then ξ+=(VR) + , and a representative for the Chern character

ch(VR)+ is trexp((y^T/2π)r + ) = exp(y^T/2π)((Id

b) If A(N) = 1 then L2-index (D 4- X) - f ch (V R ) + = f tr exp
ΛΓ N

Since only the component of top degree of ch (VR}+ matters in the above integration

and trexp ^/— l/2π((Id -f Φ)β)(dΦ)2 is a form of degree 2, we get

n\\ 8π

2,

1 Λ/-1Y' 2, Id

« Y \ 8π
2.

21 "
v ^

since tr(dΦ)n is an exact form. Taking M = Rn,n odd, and A = ̂ f^\Φ outside
some compact set, we recover Callias' index formula, since AΓ^S"" 1 and

4(S"Γ1)=1 D
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