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Abstract. Given a connection ω in a G-bundle over S2, then a process called
radial trivialization from the poles gives a unique clutching function, i.e., an
element γ of the loop group ΩG. Up to gauge equivalence, ω is completely
determined by γ and a map / : S2->g into the Lie algebra. Moreover, the Yang-
Mills functional of ω is the sum of the energy of γ and the square of a certain
norm of/ In particular, the Yang-Mills functional has the same Morse theory
as the energy functional on ΩG. There is a similar description of connections in
a G-bundle over an arbitrary Riemann surface, but so far not of the Yang-Mills
functional.

1. Introduction

The purpose of this paper is to point out that the Yang-Mills functional on S2 with
gauge group G essentially is the same as the energy functional on the loop group
ΩG. More precisely, I prove that up to gauge equivalence, a connection in a
G-bundle P over S2 is completely described by a loop γ e ΩG and a map / : S2->g,
where cj is the Lie algebra of G. Furthermore, the Yang-Mills functional <3L0(ω) is
the sum nδ{y) + </, />, of the energy of γ and a certain inner product of/ with itself
(Theorem 2.6).

In [1] Atiyah and Bott mentioned that the Yang-Mills functional on S2 and the
energy functional on ΩG have the same Morse theory and in [2] Friedrich and
Habermann prove it in all details, but it is of course a trivial consequence of the
above description of the Yang-Mills functional.

One consequence is that the space of solutions to the Yang-Mills equations on
S2 is the same as the space of homomorphisms S1 ->G. There are similar results in
higher dimensions: the space of instantons on R 4 is the same as the space of
holomorphic maps S2-+ΩG and the space of monopoles on R 3 is the same as the
space of holomorphic maps S2->G/T, where T is a maximal torus. In both cases
there are suitable boundary conditions at infinity. But the proofs of these results
are done in a very roundabout way and the connection between Yang-Mills theory
and mapping spaces are not fully understood. The Yang-Mills equation on the
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sphere is the simplest example and here the present paper explains why solutions to
equations in the "Yang-Mills family" can be identified with certain mapping
spaces.

The radial trivialization works on any Sn and gives a map <€(P)-^Ωn~ 1G, so one
could hope to explain the higher dimensional results by methods similar to the
present, but so far this has not been possible.

It seems to be more likely that one can generalize the result to an arbitrary
Riemann surface. In Sect. 4 it is shown that connections over any Riemann surface
X can be described in a manner similar to the one for the sphere. The loop γ is
replaced by an element of an infinite Grassmannian Gr x which like ΩG has an
energy functional. In fact both spaces are subsets of a larger Grassmannian Gr, and
the functional are the restriction of an energy functional defined on all of Gr, see
[4].

Let <̂ (P) be the space of connections on P. The definition of the map <g(P)->ΩG
uses a process which I call radial trivialization and which was told to me by
G. Segal. It is the lift of the great circles through the poles to horizontal curves in P,
and the loop is the difference on the equator between the lift from the south pole
and the lift from the north pole. Friedrich and Habermann use the same
construction, but the rest of their proof is different.

After the completion of this work I learned that Nahm and Uhlenbeck too
have compared the Yang-Mills functional and the energy functional and have
arrived at the same result and even use the same method, see [3].

2. The Yang-Mills Functional on the Sphere

Consider the two dimensional unit sphere

Denote (0,0,1) by oo (the North Pole), (0,0,-1) by 0 (the South Pole), the
complement of 0 by U^, the complement of oo by Uθ9 the part of S2 where z > 0 by
D^ (the northern hemisphere) and the part of S2 where z<0 by Do (the southern
hemisphere). Finally let θ e [0, π] and φ e [0,2π] be spherical coordinates on S2.

Let G be a compact Lie group with Lie algebra g and let P be a principal
G-bundle over S2 with a connection ω. Choose a base point p^ in the fiber over oo.

By lifting the curves 0ι-»(0, φ) for φ e [0,2π] to horizontal curves in P starting
at Poo, we get a section σ^ in P over U^ and by lifting the curves 0h->(π —0, φ) to
horizontal curves in P starting at some point p0 in the fiber over 0, we get a section
σ0 in P over Uo. We say that σ0 and σ^ are obtained by radial trivialization from
the poles. Henceforth; denotes either 0 or oo.

Lemma 2.1. The sections σ0 and σ^ in P are smooth.

Proof. Use the connection on P to combine the metric on S2 and the biinvariant
metric on G to give a metric on P. Obviously a horizontal lift of a geodesic in S2

gives a geodesic in P. Hence σ^exppoπ" 1 °exp^21, where π# is the projection
from the horizontal space in P to TS2 and expM is the exponential map from TM
to M. •
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The transition function y: UonU^->G is defined by

σo = σaoy. (2-2)

As the curve θh->σj(θ, φ) is horizontal, θι—>y(0, φ) is constant for all φ, hence 7 can be
regarded as a smooth map γ:S1->G, i.e. as an element of LG.

As p 0 is arbitrary, σ0, and hence 7 is only determined up to multiplication by an
element of G, but we have a well-defined element of LG/G = ΩG. Alternatively we
can put po= lim σ^^O).

We put

ωj = σf(ω) e Ω\EQ\V) * C°°( Λ 1 (UP 8 ) ) , (2.3)

where EQ = PXGQ.

Lemma 2.4. The loop y and the forms ω 0 , ω^ are gauge invariant.

Proof. Let g be a based gauge transformation, i.e. an automorphism g.P^P with
g(Poo) = Pσo' Then σj = g~1oσj is the section induced by the gauge transformed
connection ώ = g*(ω). We can write dj = σjgj9 then g0 = 'y~1goo7>

and

^ ίY(ω) = σf(ω) = ωj. D

The curve θ)-^σj(θ, φ) is horizontal, hence ω0(0) = ωoo(oo) = 0 and ωj = fjdφ. As
y 1 / . we can put

^ ^ ) ^ , (2.5)

and obtain a well-defined map /:S 2 ->g.
As ω 0 has zero dθ component, [ω 0 , ω 0 ] =0, so the curvature Rω has on Uo the

local expression

and

The Yang-Mills functional of the connection ω is given by

<&M(ω)=\l | | i ? Ί 2 = \ ί <*Rω,*Rω>dΩ,
λ s2 2 s2

where * is the Hodge star operator, dΩ = sin(θ)dθ A dφ is the standard volume form
on S2 and the bracket is the usual bi-invariant inner product on the Lie algebra g.
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We have *(dθ A dφ) = . ._., so
sin(y)

o o dθ sin(0)
sin(θ)dθdφ

1 2π π

Z 0 0 sin(0)

2 π π

~ 2 5 5
v „-..; dθdφ

We have

and

0 0

2π π

ίί
0 0

Γ VII2 sinin(θ)dθdφ= }sin(θ)dθ2{
o o

= 2

where is the of the loop γ. Finally

! f / J d f i

is an inner product on the vector space {/ e C 0 0 ^ 2 , g) | /(0)=/(oo) = 0}. If we let jf
be the completion, then we have proved

Theorem 2.6. Let <£ be the space of connections, <g0 the group of based gauge
transformations and £& = ̂ I^Q the orbit space. Then the map ωι-»(y, /) is an injection

such that

The image of 0& is not a product of ΩG and a subspace of Jf, but consists of
pairs (y,f) such that f0 and /^ defined by (2.5) are smooth on Uo and 17^
respectively. So / is smooth outside {0,00}, but will in general have singularities at
0 and 00. None the less all of the fibres of M^ΩG are dense in Jf7 and this gives us

Corollary 2.7. The map SS^ΩG gives a one to one correspondence between the
critical points for the Yang-Mills functional on S2 and the critical points for the
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energy functional on ΩG. Moreover, at corresponding critical points the Morse-
indices are equal

We could replace (2.5) with

-1)y, (2.8)

where h(θ) is a smooth function, which is 0 in a neighbourhood of π and 1 in a
neighbourhood of 0. Then ώ is a smooth one form on <S2 with values in g and with

ώ ( —-1 = 0 at all points. Conversely, given y e ΩG and such a one form ώ, then (2.8)
\oθj

gives a pair ω 0 , ω^, which in turn defines a connection in the bundle defined by y.
I.e., we have

Theorem 2.9. The map &^>ΩG is a trivial vector bundle.

But we do not have the nice formula for the Yang-Mills functional, because if
we try to use (2.8) in the calculation, then the mixed term J<dώ, h'y~ιy'} does not
necessarily vanish.

3. Holomorphic Trivialization

If G€ is the complexifϊcation of G and LG€ is the space of free smooth loops in Gc,
then ΩG = LG€/L

+ Gc, where L+ Gc is the space of loops which are the boundary
values of holomorphic maps D ^ G C and D is the unit disk in <C, see [4]. We can use
this description of ΩG to get a different map Ή^ΩG.

Using stereographic projection, we identify S2 with Cu{oo}. Then Uo

corresponds to <C, Do corresponds to the unit disk, and the meaning of 0 and 00 are
unchanged.

The connection ω on P induces a holomorphic structure on the complexified
bundle P<£ = PxGG& see [1], and the base point p^ in P is also a base point in P c .
We still let σ^ be obtained by radial trivialization from the North Pole, but now σ 0

shall be any holomorphic section over Do (i.e., σ0 is smooth on Do and
holomorphic on Do). As before y e LG€ is defined by σ0 = σ^y, and clearly σ0, and
hence y is well-defined up to multiplication with an element of L+ Gc, i.e. we have a
well-defined element ly]eLG<c/L+G(C = ΩG.

Let σ 0 denote the section over Do and y the loop in G obtained by radial
trivialization. We want to find a holomorphic section of P c over Do. Such a section
has the form σog, where g\D0^G^ and then y = fg.

In the trivialization defined by the section σ0, the covariant derivative induced

by ω is V = d + fodθ. We have z = cot( %- )eiθ, so

dz = d ίcot (Λ) eiθ + cot (^\ ieiθdθ,

dθ=

2 c o t V27
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and the operator dω: C00(S2)-*CCO( Λ1 S2) is on Uo given by

iz

If g Do-^Gβ, then (ίog:Z)o-»Pc is holomorphic if and only if

In general we have [7] + [7] because equality holds if and only if g|si eL + G c

and this need not be the case. Choose for example 7 = 1 and f(z) = 4ί\z\2zA on Do

with A eg, then (3.1) becomes

A solution is g(z) = exp(zz2^!), but g(eiθ) = Qxp(e~iθA) so g\sιφL+G€.
But, if ω is a solution to the Yang-Mills equations, i.e., a critical point for the

Yang-Mills functional, then / = 0 and y = εxp(ΘA) for some A eg, hence

So (3.1) becomes

and g(z) = exp ί — -log(l + |z|2)^4 I is a solution. As g(eί0) = exp ί — A ) is
V 2 / \ 2 /

constant, geL+G^ and [7] = [fg] = [7].

4. The General Case

The process described in Sect. 3 makes sense on any closed Riemann surface X.
Choose a point x ^ o n l and a local parameter around x^. We shall write the local
parameter as z~ \ thus z is a holomorphic map from a neighbourhood of x^ to a
neighbourhood of 00 in the Riemann sphere. We may assume that z(xo0) = 00, and
that z is an isomorphism between a neighbourhood U^ of x^ and the region \z\ >\
on the Riemann sphere. The standard circle S1 can then be identified with the circle
\z\ = 1 around x^ on X. We denote the part of X, where \z\ > 1 by X^, and the
complement of the region where \z\ ^ 1 by Xo. Thus

The space of smooth loops y:S1^>G(C, which are the boundary values of
holomorphic maps XO->GC, is denoted L^G^. Both ΩG = LG<C/L+G(C and the
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quotient Grx = LG<C/L^G€ are sub varieties of an infinite dimensional Grass-
mannian Gr, see [4].

Let P be a principal G-bundle over X with a connection ω and choose a base
point p^ in the fiber over x^. Let θ e [0,2π] and r e (£, oo] be polar coordinates on

l/oo and lift the curves f I-H -, 0 j , with ί e [0,1] and 0 e [0,2π], to horizontal curves

in P starting at p^. As for S2, we get a smooth section σ^ in P over ϊ ^ .
Let σ0 be a holomorphic section in the complexified bundle P€ over Xo. The

transition function y:51^G(C is defined by

σolsi = σJsiy. (4.1)

As the section σ0 is only determined up to multiplication by a holomorphic
map XO->GC, the loop γ is only determined up to multiplication by an element of
L^G^ but we have a well-defined element [y']ELG(C/L^Gc = Grx. We put

Not any triple (7,(^0,0^) can be obtained this way. At least we must have
ω0 e C°°( Λ1' °(X0, gc)) a n d ωoo = foo^θ with /^ : X-+Q. Given such a triple let us try
to construct a G-bundle with a connection.

Using the connection ω0 on Xo x Gc, we extend y by radial trivialization from
S1 and obtain a smooth map γ:XonU^-•Gc, which satisfies

- ) and ?|Si=y. (4.2)

We can now use γ as the transition function in a smooth Gc-bundle P€. Next we
must extend ω^ to a one form ώ^ =J^dθ with J^: t/oo^g, such that

In view of (4.2) this is equivalent to

d\-~-i~ fd\~ - l

or

We can get such an extension if and only if on S1 we have that

/oo = ̂  I —) = γω0 I —) γ~' + ^ γ~' to all orders. (4.3)

If (4.3) is satisfied, then we get a connection on P c . Finally, as ω^ has values in g we
have a G-structure over X^. And over Xo the complex structure together with the
connection give a G-structure. So all in all we get a G-bundle with a connection.

Furthermore, given (7, ω0) such that the right-hand side of (4.3) lies in g at S1,
then by [5] we can find ω^ satisfying (4.3), and ω^ can be chosen such that it
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depends continuously on (y, ω0). Let

ί - id
Ωjβ(A'oo,g)=jαeΩ1(ZQO,g) αl —

JΓ = {(y,ωo,ωjGLGcxί21 '°(JPo,9^x^X^,9)1(4.3) is satisfied}

and

We let ^ denote the space of connections, ^ 0 the group of based gauge
transformations and 38 the orbit space #/^0-

The group L\G^ acts on J2f (and Jf) by (y, ωo)g = (yg, g" ^og + g"~ ̂ g), and we
have well defined maps

Gr*.

The map Jf/L^G^-^^/L^G^ is an affine bundle, and the vector space of
translations is in each fibre

, g) | ω^ vanishes to all orders on S1}.

Likewise ^/L\G^-^Gvx is an affine bundle with fibre

Hence we have

(4.4) Theorem. The map J*-»Gr* is a homotopy equivalence.

It is already known that Map(X, BG) is homotopy equivalent to both 01, see
[1], and Gr*, see [4]. We have now shown the third homotopy equivalence
directly.

It would be nice if one could get a result like Theorem 2.6 for a general
Riemann surface. In Sect. 3 we saw that the map we get by radial trivialization is
different from the map given by holomorphic trivialization, so perhaps
Theorem 2.6 is too much to ask for. But the two maps agree on the moduli space of
instantons, so we could look for a function 3F: Gr*->IR, such that the moduli space
of instantons is mapped bijectively to the critical points of J*\

The energy-function on ΩG is the restriction of a function defined on all of Gr,
see [4], so the restriction to Gr x could be a candidate for $F.

Acknowledgement. I am indebted to G. Segal for explaining the radial trivalίzation to me, and
telling me that solutions to the Yang-Mills equations should produce loops which are
homomorphisms.
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