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Abstract. We show that the anomalous finite gauge transformations can be
realized as linear operators acting on sections of the bundle of fermionic Fock
spaces parametrized by vector potentials, and more generally, by splittings of
the fermionic one-particle space into a pair of complementary subspaces. On
the Lie algebra level we show that the construction leads to the standard
formula for the relevant commutator anomalies.

1. Introduction

We shall study the structure of the Fock bundle arising from a system of massless
Weyl fermions coupled to an external non-Abelian Yang-Mills field in Hamiltonian
framework. Let M be the physical space of odd dimension. We are mainly concerned
with the case dim M = 3 but we shall make some remarks about the (easier) case
dimM=l; our discussion of the case dimM = 3 can, without essential
complications, be generalized to higher dimensions. We shall assume that M is an
oriented compact spin manifold with a given spin structure. Let si be the space
of smooth g valued vector potentials on M, where g is the Lie algebra of a compact
Lie group G.

Let E be the tensor product (with a fixed inner product in the fibers) of the
Dirac spin bundle and a trivial vector bundle over M, with a unitary representation
p of the gauge group G in the fibers of the latter bundle. Let H be the Hubert
space obtained as a completion from the space of smooth sections of £ with respect
to the inner product

0A,f)=ί<<A(4^*)Mvoi) (l.i)
M

defined by a given volume form on M.
For each Aesί denote by WAλ the plane in H spanned by eigenvectors of the

chiral massless Dirac (Weyl) operator DA corresponding to eigenvalues greater or
equal to λeU. Each plane W=W(A,λ) determines a fermionic Fock space
!FW. The Fock space is generated from the vacuum by creation operators af
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corresponding to an orthonormal basis in W labelled by integers i > 0, and by
annihilation operators ai corresponding to an orthonormal basis in the complement
W1 labelled by integers ί ^ 0.

Note that in this way we obtain a bundle of Fock spaces labelled by the pairs
(A, λ) and not by the vector potentials A. But, since si is a vector space, we can
always choose a plane W(A) as a smooth function of Aesi such that W(A) does
not differ too much from any of the planes W(A9λ), λeU; we shal explain this
more precisely in the next section, but essentially "not too much" means that the
different Fock representations of the canonical anticommutation relations are
equivalent. However, it should be noted that there is no natural way to choose
the function W(A). On the other hand, the Fock representations corresponding
to given A but different λ's are naturally isomorphic up to a phase, [Se].

An important property of the planes W(A9λ) is that they belong to an
infinite-dimensional Grassmannian manifold Grp modelled by Schatten ideals L2 p,
where 2p = 1 + dim M. Thus we are lead to examine the structure of a Fock bundle
over the manifold Grp. The Fock bundle over si is then obtained as a pull-back
with respect to a chosen map A\-^W(A). However, we shall see that there is a
better way to define the Fock bundle over si which makes the construction
independent of the choice of W(A).

The action of the group ^ of gauge transformations on Dirac spinor field
defines an action of $ on the Grassmannian G r r The question is this: Can the
action be lifted to the Fock bundle 3F over Grp? We shall see in fact that there
are two different natural candidates for the Fock bundle; the difference is that one
of the bundles contains an everywhere nonvanishing vacuum section whereas the
vacuum sector of the second bundle is twisted and there is no everywhere
nonvanishing vacuum section. The origin for "commutator anomalies", or
Schwinger terms, is the twisting of the vacuum section, [NA], in the second bundle:
The group ^ acts only through a nontrivial Abelian extension # in the Fock bundle.
The Lie algebra of the extension in the case dim M = 1 is essentially an affine
Kac-Moody algebra (central extension of the loop algebra Lg) whereas in higher
dimensions one has operator valued Sch winger terms, [JJ, Ml, F, Si].

The structure and consequences of the Sch winger terms in non- Abelian gauge
theory in 3 + 1 dimensions has been discussed, after the revival of the subject in
[Ml, F], in several papers in both space-time and Hamilton formulation; see, e.g.,
[BG, CS, DT, FHK, HS, J, NS, R, RSF, Se, Y], and references in those papers.
The existence of this type of Schwinger terms was indicated in perturbative
calculations already in [JJ].

The novel aspects of the present paper as compared to other discussions in
the literature are the following. As already mentioned, we show that the appearance
of the Schwinger terms can be understood in a simple "universal way" using the
theory of infinite-dimensional Grassmannian manifolds. One might as well-study
Fock space parametrized by other fields (e.g., a Higgs field) as long as the
one-particle spaces are "comparable" (they are elements of the same Grassmannian
Grp). The second important feature is that we are able to show that the gague
transformations, including the Schwinger terms, really act as well-defined
operators between different fibers of a Fock bundle. In the earlier approaches the
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(generators of the) gauge transformations are well-defined in some chosen
regularization and the Schwinger terms remain finite when the regularization is
removed; however, the gauge operators themselves have not been defined as true
Hubert space transformations. Finally, we stress that our method is completely
unperturbative.

We shall use the machinery of determinant bundles over infinite-dimensional
Grassmannians developed in [PS] and later generalized in [MR] for discussing
the commutator anomalies in 3 + 1 space-time dimensions. Generalized Fock
bundles were introduced in [M2] using the determinant bundle formalism for
discussing the gauge group action; however, the Fock spaces studied in [M2] were
not the standard ones of the canonical formalism. In this paper we want to show
that essentially the same results can be obtained using the canonical formalism.

2. Fock Bundle from Determinant Bundles

Let H be a complex separable Hubert space (the one-particle space) and
H = H+(&H_ a splitting into a pair of closed infinite-dimensional subspaces. Fix
an orthonormal basis {en}neZ of H such that eneH+ for n > 0 and eneH_ for n ^ 0.
Denote by Gr p ( p = l , 2 , . . . ) the Grassmannian consisting of closed infinite-
dimensional subspaces W aH such that

1. the projection prH+:W-+H + is a Fredholm operator,
2. the projection prH_:W^>H_ belongs to the Schatten ideal L2p.

The Schatten ideal L2p consists by definition of those bounded operators A for
which (A*A)P has a converging trace.

The manifold Gr p is an union of disjoint connected components Gr^fc) (fceZ)
consisting of planes W such that the Fredholm index dim ker-dim coker of the
projection pr H + is equal to k.

Each linear operator g in H can be written in the block form

with respect to the splitting H = H+®H_. Let GLP be the group of continuous
invertible operators g such that b, c are in L2p. The group GLp acts in a natural
way in Gvp; we can write Gr p = GLp/B+, where B+ consists of the operators g
which c = 0.

A basis w = {wπ}n = 1 2 of WGGTP

0} is said to be p-admissίble (with respect to
thebasis{eπ}π > 0of/f + )ifw+ — 1 eLp, where w+ is the infinite matrix defined by

P Γ H + W * = Σ K ) , A . (2.2)

The set of all 1-admissible basis of all the planes WeGr ( 0 ) forms an
infinite-dimensional manifold St^0). Any WeGvp

0) has such a basis, since a Fredholm
operator of index zero is of the form invertible + finite rank operator. For the
other components Gr<J° the set of admissible basis is defined similarly except that
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H+ is replaced by the plane spanned by the vectors en, n > — k. (The manifold Stp

defined here is different from the Stp employed in [MR].)
We recall from [PS] the geometric construction of the fermionic Fock space

as the space of holomorphic sections of a complex line bundle DET* over Gr^
Let GL1 be the group of invertible N x N matrices of the type 1 + Lx. A section
of DET* is by definition of a map i/^St1 -* C such that ψ(wt) = ψ(w)-det t for each
teGL1. The vacuum is represented by the holomorphic section φ0 which is nonzero
only on S t ^ and is there given by ^0(w) = detw + . A Fock basis is obtained as
follows. Let S = {iί9i29 "} be an increasing sequence of integers such that
in — n= — k for n » 0 . Denote by φs the section which is zero on S t ^ for m Φ k
and on Stf* it is given by φs(w) = det ws, where ws is the matrix obtained from
the matrix wtj = <w</ ,eί> by selecting rows labelled by the integers S. The inner
product is defined such that the φs's form an orthonormal basis. In a more standard
language

Ψs = a* ' a*ah ' ' air I vac >, (2.3)

where7 l5..., j s are missing positive integers and i l 5 . . . , ir are the nonpositive integers
inS.

We generalize the discussion above. Each plane WeGτp(p ^ 1) determines a
Grassmannian Gv^W) consisting of planes W such that

1. the projection of W to WL is a Hilbert-Schmidt operator,
2. the projection of W to W is a Fredholm operator.

We define the Stiefel manifold St^VF) for WeGvp as follows. Choose a basis w of
W such that weStp. A basis W of a plane WΈGτγ{W) belongs to St^W) if it is
1-admissible with respect to w; this property does not depend on the choice of w.

The Fock space &w consists of complex valued holomorphic functions φ on
Sti (W) transforming φ(wt) = ^(w) det t under a change teGL1 of basis. The different
Fock spaces form a Fock bundle # over the base Grp. A section of this bundle
is a smooth map Grp3\V\-^φweβ'w, that is, φ is a function of WGGTP and
feSt^W) such that φw(ft) = ΦwU1'det t for teGL1. However, as we shall see, this
is not the correct "physical" Fock bundle. The physical Fock bundle 3F is a tensor
product of # with a line bundle DETp over Grp, to be defined below.

Given an admissible basis w of WeGrp the Fock vacuum in βw is the
holomorphic section φ(f) = det f(w\ feStψ^W), where f(w) is the matrix represent-
ing the projection of/ to the basis w,

The construction of the vacuum depends on the choice of the basis w by
a multiplicative factor = det t ~ \ where t is a transformation of basis. This means
that, although we have a well-defined vacuum line bundle Vac over Grp, there is
no everywhere nonvanishing global section of Vac.

The total space of the determinant bundle DETP consists of all pairs
(w,λ)eStp x C modulo the right action of the group GL1 defined by

1). (2.4)
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A section is a complex valued function on Stp satisfying ψ(wt) = ^(w) det ί"1. The
projection to the base Gτp is given by (w,/ί)ι—•π(w), where π : S t p ^ G r p is the
canonical projection.

Let 3F = # (x) DET p . A section of $F is then a complex valued function φ(f, w)
of weStp and /eSt^WO, where W is the linear span of w, such that

ί') = tfr(/, w) det ί det t'~x (2.5)

for £, t'eGL1, and which is holomorphic in the variable /. <F is the "physical" Fock
bundle over Gr p . It has an everywhere nonvanishing vacuum section given by

Let us now return to the problem of defining the Fock bundle over the space
si of vector potentials. We set 2p = 1 + dim M. Let now W = W(A9 λ) and
W' = W(A,λ') for a given Aestf and for some λ9λ'eU. We claim that

Let w, W be 1-admissible basis of W, W\ respectively. Since a product of operators
of type 1 + L X is again in 1 + Ll9 it is sufficient to show that w' is 1-admissible
relative to w. Suppose for example that λ>λ'. Then W = W®V, where V is
finite-dimensional. It follows that

where w1 is a basis of W1 and j8 is a matrix of finite rank.
Let —k,—k' be the Fredholm indices of the planes W9 W\ respectively.

Then

wi= Σ ajiej+ Σ hep wi= Σ a'aej+ Σ ftii^
j>k j^k j>k' j^k'

The matrices a,a' belong to 1 -\-Lί and b,b'eL2p. On the other hand, from (2.7)
it follows that

a' = oca + a finite rank matrix.

Since both α' and α are in 1 + Lx it follows that αel + Lγ.
Thus we have a well-defined Stiefel manifold St1(y4) = St1(W^(yl,λ)) for each

Aestf which does not depend on the choice of λ. The Fock space 3FA is now
defined as the space of holomorphic functions ψ: St x (A) -> C with ^ (wί) = ι̂ (vv) det ί,
teGL1, in the same way as the Fock spaces &w previously.

Given a map A\-^W(A)eGrp we can pull back the determinant bundle over
Gr p to a line bundle over s&\ taking a tensor product of this line bundle with the
bundle of Fock spaces βFA we obtain a bundle of "physical" Fock spaces # ' A over
sί\ however, as already mentioned in the introduction, there is no natural way to
choose the function

3. Gauge Group Action in Fock Bundles

The group GLp does not act in ΌEΎp: If weStp then in general g w is not in St^.
However, we can always find a transformation q = q(W) (W = π(w)) of the basis
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such that gwq'^^eStp. If p = 1 then q(W) can be chosen such that it depends only
on g and not on W. When p > 1 q(W) depends on W also. If q' is another matrix
with the same property as q then q' = qt for some teGL1. Let (g,q,λ) be a triple
consisting of geGLp, of a function q^qiW) such that gfw^(ίF)~1eStp for each

and a function Λ,: Gτp-• C x . We define an action of (g,q,λ) on DET p by

to, q, A) (w, μ) = tow*(Wr S M W ) , (3.1)

where W is the plane spanned by w. These transformations form a group with the
multiplication rule

(g,q,λy(g\q\λ) = (gg\q",n (3.2)

where q"(W) = q{g'W)q'(W) and Γ(fΓ) = % W μ W ) . τ h e normal subgroup ΛΓ
consisting of triples (l9q(W),detq(W)), with g:Grp-•GL1, acts trivially on DET p

and therefore the group GLp obtained by taking the quotient of the whole group
by N acts on DET p .

The group GLp is a principal bundle over GLp with fiber Map(Gr p ,C x ) . The
projection into the base is the mapping (g,q, λ)\->g. GLp acts in # as follows. On
the base Gr p we have the natural action of GLp. Let ψeβw for some WeGrp. If
weSt^W) then gwq(W)~1eSt1(gW) for any (g,q,λ)eGLp and therefore we can
define an element φfeβ'gW by

(g-1WΓ\ (3.3)

where w'eSt^gW). This formula gives a homomorphism of (JLP into the group of
invertible bundle maps in # \

Let us compute explicitly the commutation relations of the Lie algebra extension
glp corresponding to the group GLp in the case p = 2, dim M = 3. For that we need
a more explicit form of the group law near the identity element. If geGL2 is near
1 then the block a has an inverse α " 1 . For WeGr2 let F.H-+H be the linear
operator such that

F\w=+U F\w,= -L (3.4)

Writing

with respect to the decomposition H = H+® i/_, the off-diagonal blocks belong
to L 4 whereas Fn — leL 2 , ^22 + l e L 2 , [MR].

Lemma 3.6. Lei weSt^W), ^ = ( I, F ίΛe operator describing the plane

V dJV J
, and q = a-\-^bF21 Then for g in a small neighborhood of 1 (which does

not depend on W,w) the operator q is invertible and gwq'1 belongs to St^

Proof Since F is unitary, the operator norm of F2ί is smaller or equal to one.
Since || A \\ ^ || A \\p for p ^ 1, the operator norm of bF21 is small when b is near
zero in L 4 norm; on the other hand, a is near 1 when g is in a small neighborhood
of the unity, and therefore a + ̂ bF2X is invertible when g is near unity.
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For proving the second statement let us assume first that w is an admissible
basis of W. Now we have

(gwq-1)+=(aw++bw-)q-ί=a(w++a-1bw_)(l+±a-1bF21)-1a-1. (3.7)

This operator is in 1 + Lγ iff the operator (1 + a~1bwJ)(\ +^a~xbF21)~ί is 1 + a
trace class operator. When b is small we can expand the second factor as a power
series in b,

where the rest is a trace class operator, since bF21 is a Hilbert-Schmidt operator.
Thus, modulo a trace class operator,

The last term is in Lx since w _ , b , F 2 1 e L 4 . In the second term b(w_ — 2F21)eLί

by a result in [MR].
Let then w'εSt^W) be arbitrary. Let α be the matrix representing the projection

of W to the admissible basis w of W. We have to show that gWq~x is admissible
relative to gwq'1. But the matrix representing the projection of the former to
the latter is equal to qaq'1. Since α— l e L l 5 we have qoLq~1el+L1, and so

From the lemma follows especially that (g, q, 1) belongs to GLp when g is near
1 and q = q{W) is given by the lemma. Let g1,g2eGL2 and denote by q12 the
operator valued function corresponding to the product gγg2. We can write

(0i > <7i, 1)(#2> 42> 1) = (#i#2> 4,1) = (0i02> 4i2> ™(d l, Qi)) mod N, (3.8)

where q(W) = q1(g2~
1W)q2(W) and ω(g1,g2), a /oca/ 2-cocyc/e on GL2, is a C x

valued function on Gr 2 , given by

= det {[α±α2 + biC2 + \(aγb2 + &!d2)F2 1]

•(fl2 + τb2F21y
12(2aί + V 2 ^ i i^2 + b1c2F12y2

1}, (3.9)

where

For any Lie group the commutator of a pair X, 7 of Lie algebra elements is
obtained from

ίXi>X2]=ί2jLe'XiesX2e~'x'e~sX2is= =°' (3 io)

and therefore the Lie algebra cocycle is

^(e'x\e°x%=t = 0. (3.11)
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When Xt = (a* bf), we obtain
Vi dj

c(X1, X2) = tr(b γc2 - b2cί + \b2cγFx ί - jb1c2F1 x + hcφ^F^ - \cγb2F22)

ε)[[e,X 1 ],[ε,X 2 ]] (3.12)

where ε = I ). This cocycle was derived earlier in [MR] using a different

approach. We have now proven the following theorem:

Theorem 3.13. The group GL2 acts in the bundle DET 2 over Gr 2 such that the action
on the base Gr 2 is the natural action oj GL2. The Lie algebra gΓ2 of GL2, which as
a vector space is the direct sum o/gl2 with the Abelian Lie algebra Map(Gr 2,C),
is defined by the commutator

where Xλ is the Lie derivative of the function λ in the direction of the vector field
X on the manifold Gr 2 (with respect to the canonical action of GL2 on Gr 2.)

The cocycle (3.12) is a "universal cocycle" corresponding to the 2-cocycle

co(X, Y,A) = const.- J tτ(XdY- YdX) Λ dA (3.14)
M

in three space dimensions, where X, 7:M-»g are infinitesimal gauge transforma-
tions and ;4e.β/, see [ M l ] and [F].

In the case p = 1, corresponding to d i m M = 1, we can set q(W) = a in the
computations above and the cocycle is in that case simply

which was derived in [L], [PS].
We are now able to discuss the action of GL2 in the Fock bundles ^ and # .

Let ι// = φ(f w) be a section of J*\ For geGL2 define ψ' = T(g)φ by

(3.15)

where W = π(w) and q is chosen such that g~λwq is admissible. The section ιj/f does
not depend on the choice of q by the formula (2.5). Thus GL2 acts properly, without
any projective factors, in <F. However, this is not so for the bundle # . By definition
of #", # = !F (x) DETf, and therefore we have a natural action of GL2, not of GL2,
in the bundle # .

Theorem 3.16. The group GL2 acts in the Fock bundle β such that the action on
the base is the canonical action of GL2 and the corresponding Lie algebra cocycle
(Schwίnger term) is ( — 1) x the cocycle (3.12).

Finally we shall discuss the action of the gauge group 0 in the Fock bundle
# over efl/, as defined in the Sect. 2. The group & acts in H through pointwise
multiplication of spinor fields. It is known that ^ c GL2, when the space M is
three-dimensional, see, e.g., [MR]. The extension GL2 of GL2 defines thus also an
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Abelian extension # of 0. The action in the Fock bundle is defined in a similar

way as was done in the case of Fock spaces parametrized by elements of Gr 2 .

Let ge$. For Aestf we can choose an infinite matrix q(A) such that

gwq(A)~ίeStί(Ag~ι) for weSt^A), where Aβ = g~1Ag + g~1dg. The action of a

triple (g,q,λ\ where λ'.stf->CX, on sections φ(A9w) of the Fock bundle is then

given by

[Tfo, q, λ)ψl (A, w) = λiAη-'ψWg-'wqiA)). (3.17)

The normal subgroup consisting of triples (l9q,detq)9 where q-.s/^GL1, acts

trivially in β and therefore we have an action of the quotient group § in # . The

group # is a principal bundle with fiber Map (sf, C x ) over ^ . The group

Map (<£/, C x ) is an Abelian normal subgroup of Φ.

Of course, the action of ^ in the bundle 3F over srf does not involve any

commutator anomally, but, moving from # to 3F requires a choice of the function

W(A).

References

[BG] Banerjee, R., Ghosh, S.: The Gauss operator in anomalous gauge theories: A Hamiltonian
formulation. Modern Phys. Lett. A4, 855 (1989)

[CS] Cabra, D., Schaposnik, F. A.: On regularization ambiguities in fermionic models. J. Math.
Phys. 30, 816 (1989)

[DT] Dunne, G. V., Trugenberg, C. A.: Kinetic normal ordering and the Hamiltonian structure of
1/(1) Chiral anomalies in 3 + 1 dimensions. Preprint CTP-1708, M.I.T., Mass., 1989

[F] Faddeev, L.: Operator anomaly for the Gauss law. Phys. Lett. 145B, 81 (1984); Faddeev, L.,
Shatasvili, S. L.: Theor. Math. Phys. 60, 770 (1984)

[FHK] Fujiwara, T., Hosono, S., Kitakado, S.: Chirally Gauged Wess-Zumino-Witten models as
constraint system. Modern Phys. Lett. A3, 1585 (1988)

[HS] Hosono, S., Seo, K.: Derivation of chiral anomalies and commutator anomalies in a fixed time
regularization method. Phys. Rev. D38, 1296 (1988)

[HT] Harada, K., Tsutsui, I.: A consistent Gauss law in anomalous gauge theory. Progr. Theor. Phys.
78, 675 (1987)

[J] Jo, S.-C: Commutator of gauge generators in non-Abelian chiral theory. Nucl. Phys. B256,
616 (1985)

[JJ] Jackiw, R., Johnson, K.: Anomalies of the axial vector current. Phys. Rev. 182, 1459 (1969)
[KY] Kolokolov, I. V., Yelkhovsky, A. S.: Schwinger terms as a source of gauge anomaly in

Hamiltonian approach. Preprint, Inst. of Nuclear Physics, Novosibirsk 1987
[L] Lundberg, Lars-Erik: Quasi-Free Second Quantization. Commun. Math. Phys. 50, 103 (1976)

[Ml] Mickelsson, J.: Chiral anomalies in even and odd dimensions. Commun. Math. Phys. 97, 361
(185); On a relation between massive Yang-Mills theories and dual string models. Lett. Math.
Phys. 7, 45 (1983); Kac-Moody groups, topology of the Dirac determinant bundle, and
fermionization. Commun. Math. Phys. 110, 173 (1987)

[M2] Mickelsson, J.: Current Algebras and Groups. London, New York: Plenum Press (in press);
current algebra representation for the 3 + 1 dimensional Dirac-Yang-Mills theory. Commun.
Math. Phys. 117, 261 (1988)

[MR] Mickelsson, J., Rajeev, S.: Current algebras in d + 1 dimensions and determinant bundles over
infinite-dimensional Grassmannians. Commun. Math. Phys. 116, 365 (1988)

[NA] Nelson, P., Alvarez-Gaume, L.: Hamiltonian Interpretation of Anomalies. Commun. Math.
Phys. 99, 103 (1985)

[NS] Niemi, A., Semenoff, G.: Quantum holonomy and the chiral gauge anomaly. Phys. Rev. Lett.
55, 927 (1985)



294 J. Mickelsson

[PS] Pressley, A., Segal, G.: Loop Groups. Oxford: Clarendon Press 1986
[R] Rajeev, S.: Fermions from bosons in 3 -I-1 dimensions through anomalous commutators. Phys.

Rev. D29, 2944 (1984)
[RSF] Reiman, A. C, Semenov-Tyan-Shanskii, M. A., Faddeev, L. D.: Quantum anomalies and

cocycles on gauge groups. J. Funct. Anal. Appl. 18, 319 (1985)
[Se] Segal, G.: Faddeev's anomaly in Gauss' law. Preprint (unpublished). Department of Math.,

Oxford University 1985
[Si] Singer, I.: Families of Dirac operators with applications to physics. Asterisque 323, 1985
[Y] Yamagishi, H.: A space-time approach to chiral anomalies. Preprint, Department of Physics,

State University of New York at Stony Brook 1987

Communicated by L. Alvarez-Gaume

Received May 17, 1989




