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Abstract. We consider the problem of reconstructing the correlation functions
of a conformal field theory on a surface Σ from the correlation functions on
a surface Σ' obtained from Σ by cutting along a closed curve. We show that
under quite general conditions, the correlation functions on the cut surface can
be "sewn" by integrating over appropriate boundary values of the fields.

1. Introduction

In quantum field theory, one ordinarily begins with a Lagrangian and derives a
perturbation expansion and Feynman rules. In string theory, this process has been
reversed. We have an elegant set of Feynman rules, given by the Polyakov path
integral; but despite numerous attempts to write down a field theory of closed
strings, a generally accepted formulation does not yet exist. It is thus natural to
ask whether information about a field theory can be obtained from the Polyakov
path integral.1 In particular, we may ask whether it is possible to derive higher
order terms in the perturbation expansion—path integrals over higher genus
surfaces—from lower order terms. This is the "sewing" problem.

The sewing problem consists of two distinct elements. The first may be called
sewing at a fixed conformal structure. We start with a string world sheet with a
given conformal structure, and cut it along a curve to form a new (possibly
disconnected) world sheet, which inherits a conformal structure from the original
surface. We can then attempt to reconstruct the Polyakov measure on the original
world sheet from the measure on the cut surface. If it is possible, such a
reconstruction will imply strong relationships between determinants and Greens
functions on the two surfaces. More generally, we may start with an arbitrary
conformal field theory, and attempt to reconstruct the partition function and
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correlation functions on the original surface from corresponding quantities on the
cut surface.

The second element of the sewing problem is the sewing of transition amplitudes.
We now start with the full (off-shell) Polyakov amplitude, already integrated over
moduli, for a surface with two or more boundary curves; our goal is to construct
the amplitude for the surface obtained by identifying a pair of boundaries. This
task is more difficult; the identification map between the two boundary curves is
no longer uniquely specified, and the relationship between the moduli spaces of
the cut and sewn surfaces must be understood. Nevertheless, if a closed string field
theory exists, it should be possible to find a procedure for sewing amplitudes.

In this paper, we address the first question of sewing at fixed conformal structure.
We demonstrate that it is possible to sew arbitrary correlation functions for a wide
variety of conformal field theories by functional integration over boundary values
of the fields. Sonoda [2] has given an indirect argument for this result; we take
the more direct approach of explicitly proving the required relationships among
determinants and Greens functions. A subsequent paper will discuss the second
aspect of sewing, the sewing of Polyakov amplitudes. A preliminary announcement
of this work has appeared in [3].

2. Sewing at Fixed Conformal Structure

We start with a Riemann surface Σ, and cut along a curve C to form a new,
possibly disconnected surface Σ' (see Fig. 1). Our goal is to show that correlation
functions for a conformal field theory on Σ can be obtained from the corresponding
correlation functions on Σ' by functional integration over the boundary values of
the fields on C: schematically,

In one sense, this relation is obvious. Correlation functions on Σ can be obtained

Fig. 1. The surface Σ is cut along the curve C to produce a new surface Σ' with boundaries
Cx and C2
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from a path integral, and it should be possible to evaluate such an integral by first
integrating over fields with specified boundary values on C, and then integrating
over those boundary values. On the other hand, this sewing process implies some
very unobvious relations between determinants and Green functions on Σ and Σf,
and a proof which does not depend directly on the path integral is clearly desirable.
This is especially true when there are zero modes present, since even the definition
of the path integral then becomes somewhat subtle.

To understand what is involved, consider the simplest case of a free scalar field
X, with an action

A OX. (2.1)

Suppose for simplicity that Σ is closed, so Σ' has two boundary components Cγ

and C2 (see Fig. 1), which are identified to form the curve C on Σ. The partition
function is

ZΣ.\χr\= ί idX-\e-s^\ (2.2)

where the X^i = 1,2) are the specified boundary values of X on C f.
The techniques for evaluating this integral are standard. We split X into a

classical piece X, satisfying AX = 0, X\Cι = Xh and a fluctuation X' which vanishes
on Cv X and X' decouple in the action S, and the Xf integral is Gaussian; hence

yi/2e-^\ (2.3)

where the determinant is evaluated for Dirichlet boundary conditions and

SίXt] = S[X] =\Σ ί dx J dx?Xt(x)dΛidHJ'G(x9xΊXjM. (2.4)
1 ij Ci Cj

Here G(x, x') is the Dirichlet Greens function, and dn denotes the normal derivative;
is the classical action for the boundary data Xt.

For sewing to hold, we must have

l (2.5)

By (2.3), this will be the case if

( \ (2.6)

Such a relation between determinants is far from obvious, but as we shall
demonstrate below, it is true.

To gain some feeling for the problem, let us first explicitly verify the
one-dimensional version of (2.6) for a simple example. Let Σ be an interval [0, /],
and cut at lγ to form a pair of intervals Σ' = [ O J J u ^ , ! ] . Choosing Dirichlet
boundary conditions X{0) = X(l) = 0 and X(11) = X for Σ\ we find the classical
solution

(2.7)

Y>/.

i-h
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giving

The determinants in (2.6) are

(Π^) (2-9)

Performing the integral in (2.5), we find that (2.6) now becomes

The infinite products may be regulated using zeta functions:

Π ^ = exP Σ l n ^ = explimί-|-Γf^)"SC(2S)l} = 2I) (2.11)
n>0 I n>0 I s-0 ( aS[_\ I J JJ

where we have used ζ(0) = —\ and ζ'(0) = -^In2π. Hence (2.10) is satisfied up to
factors of 2 which can be absorbed in the functional measure. Our aim is to
generalize this result to two dimensions with arbitrary topologies, operators, and
boundary conditions.

The kernel dndn,G(x9x') in (2.4) and (2.6) has an interpretation which will be
useful later. Imagine specifying X on dΣ', extending this Dirichlet boundary data
harmonically to the interior of Σ\ and then calculating the corresponding Neumann
data dnX for the harmonic extension. It is easy to see that dndn>G(x,x') maps the
original Dirichlet data to the corresponding Neumann data. Forman [5] calls such
a map between different boundary data a Poisson map; we will see that such a
map appears quite generally.

3. Action, Boundary Conditions, and Greens Functions

Rather than trying to show that the relation (2.6) directly, we will work in a more
general setting. We continue to assume that Σ is closed (the generalization to
bordered surfaces is not hard), but now consider a general Gaussian conformal
field theory with an action

(3.1)

where beV~ and ceV+ are sections of vector bundles over Σ and L: V+ -» V~ is
a linear differential operator of order n. In this section, we also assume that there
are no zero modes, i.e., that L has no kernel or cokernel; this assumption will be
relaxed in Sect. 6. The notation of (3.1) suggests a standard b-c system, but we do
not restrict ourselves to that case. For instance, we can take b~c = X,L= — \A, and
recover the scalar action (2.1), up to a boundary term which will be discussed below.

This general setting will simplify and broaden our proofs, but at the cost of
some extra notation. The main purpose of this section is to introduce notation;
the proof of (2.6) will be carried out in Sect. 4, with successive generalizations
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in Sects. 5-7. To minimize confusion, we will frequently refer to the scalar field as
an illustration.

As in the scalar case, we must first specify boundary data for b and c. We begin
with c. Let %>+ denote the Cauchy data for c (i.e., its boundary value and its first
n — 1 normal derivatives), and let π: V+ -+%> + be the projection of c onto its Cauchy
data. A suitable set of boundary data for c consists of half of its Cauchy data (e.g.,
Dirichlet or Neumann data for a scalar field, or the positive frequency part of a
spinor field for which L is a first order operator). We label a choice of boundary
data by a capital letter such as A, and define a new projection πA: V+ - > ^ + of c
onto its A boundary data.

More precisely, we can view A as a projection A:^+ - > ^ + from the Cauchy
data to the A boundary data; then πA = A°π. Observe that 1— A:^+ -^^+ is also
a projection onto half of the Cauchy data, so πί -A defines another set of boundary
data. For the scalar field, for instance, <£ = {(X, dnX)\c}9 Dirichlet data is given by
the projection A: (X, dnX)\c\->(X\C9 0), and Neumann data is given by the projection
1-A.

For a given choice of boundary data A, the corresponding boundary condition
on L is given by restricting L to fields lying in ker πA. In the scalar case, for instance,
Dirichlet boundary conditions correspond to restricting the Laplacian A to fields
which vanish at the boundary. For a scalar field, it is well known that a Greens
function for Dirichlet boundary conditions can be used to determine X from its
Dirichlet boundary data; a similar statement is true in general. We denote by LA

the operator obtained by restricting L to kerπ A .
Given a choice of boundary data for c, we must next determine suitable adjoint

boundary data for b. We again define a projection π: V~ -*%?' of b onto its Cauchy
data (€~ 9 and consider the bilinear functional

J (bLc - Ub c) = W(πb9 πc). (3.2)

DeWitt [4] calls W the Wronskian. We can now define the adjoint boundary data
jC by the requirement that

W{πb, πc) = W(πb, πAc) + W(πAώ, πc\ (3.3)

that is,

W(πΛώ9 πc) = W(πb9 πx _Ac). (3.4)

The data Af are adjoint to A in the sense that (U)AΪ = (LA)\ Observe that if the
fields b and c are identical, we must choose self-adjoint boundary data, A = A\
For a scalar field, for example, W(πX, π Y) = J ( - Xdn Y + YdnX), and both Dirichlet
and Neumann data are self-adjoint. c

As in the scalar case, we will need a Greens function for L. We assume that
LA is invertible, and define the Greens function GA: V~ -> V+ with A boundary
conditions by

LGA = l, GAL\ketπA = l\keτπA, πAGA = 0. (3.5)

Given such a Greens function, we can solve the boundary value problem

Lc = 0 with πAc — c.
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We will refer to the solution of such a boundary value problem as the extension
by L of the boundary data. We thus have a map PA: Im πA -» V+ which maps the
boundary data c to its extension by L; PA is determined by the requirement that

LPΛ = 0, πAPA = \. (3.6)

The solution of this equation is

ί-GAL, (3.7)

as may be verified by acting on the left with L and with πA. For a scalar field X,
(3.7) is the statement that j dx'G(x, x')ΔX(x') = (X- X)(x), where X is the harmonic
extension of X\c; this relation follows from Greens theorem.

Having introduced the required notation, let us return to the action (3.1). As
Birmingham and Torre [6] first pointed out for the bosonic string ghost action,
(3.1) is inadequate when Σ' has a boundary: solutions of the equations of motion
are not true extrema of S. Indeed, write b = b + b'9 c = c + c\ where b and c are
classical fields (Lc = 0 = Ub) and V and d are fluctuations with vanishing boundary
data (πAc

f = 0 = πAtb'). Then it is easy to check that S[6, c] = S[b\ c'] + W(πb, πc'\
and the classical fields fail to decouple from the fluctuations.

The presence of the cross term makes it impossible to use standard methods
to evaluate the path integral. To eliminate it, we must add to the action (3.1) a
boundary contribution of the form

-Λ (3.8)

We then find that

(S + SOP,c] = S[b\c'] - W{πAAn,-Ac\ (3.9)

so the classical fields and fluctuations now decouple. For the scalar field with
Dirichlet boundary data, for example, S = — ̂ XΔX, while S i = i j XdnX, so
S + Sx gives the standard action (2.1). _Σ dΣ

The extension map PA allows us to write b and c in (3.9) in terms of their
boundary values b = πAtb and c = πAc. We find that

(S + SJlb, c] = S[b'9 c'] - W{1,π, _APAc). (3.10)

The term involving W is the generalization of the classical action (2.4) for the scalar
field. The map π1 -APA is a Poisson map: it is the projection onto 1 — A boundary
data of the extension by L of A boundary data. If we denote the Poisson map
between two sets of boundary data A and B by

ΦB,A = ̂ BPA, (3.11)

we find that

ZΣ [5,c] = JIdb][rfφ-< s + S l>^ = (detL Σ ) ± ι exp{wφ 9 φ,- A , A c)l (3.12)

where the sign in the exponent of the determinant is negative if b and c are
commuting, positive if they are anticommuting.

Equation (3.12) is the generalization to Gaussian conformal theories of (2.3)
for the scalar field. To find the generalization of (2.6), we must integrate the partition
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function over boundary values of b and c. As in the scalar case, there is a contribution
from each of the boundary components Cx and C 2 . We can write the projection
π^as

where πA projects onto the A boundary data on the boundary C f. Similarly, since
L is linear, the extension map PA takes the form

PΛ = {P\ P2Λ), (3.14)

where PA extends the boundary data on C, with zero boundary data on CjΦi, that
is, LPA = 0, πAPA = δij. (Note that if i and j label boundaries on two distinct
surfaces, then rtBPA = 0 for any choice of boundary data A and B)

The functional integral for sewing is to be evaluated with the boundary values
on C1 and C 2 set equal; it is thus

J \_dhldc]Zrlb,c] = (detLx,)± 1K^][^exp{Σ^<A'/_^c)l (3.15)

where

φit-A,Λ = πi

1-APA. (3.16)

Now observe that W is a bilinear form, so the integral in (3.15) is Gaussian;
/ \

up to a constant factor, it will equal det £ φι(-A A . The desired generalization
V iJ ' /

of (2.6) is t h u s

^ Y (3.17)

If we can prove (3.17), we will shown that sewing holds for the partition function
ZΓ. By considering the generating functional for correlation functions, we will see
below that this also suffices to show sewing for arbitrary correlation functions.

4. Sewing without Zero Modes

We now turn to the proof of (3.17). Our approach is to examine arbitrary variations
of detL and det φ to show that an infinitesimal version of (3.17) holds; the finite
version will then be true up to an overall integration constant. The proof is
complicated by the fact that (3.17) compares determinants on two different surfaces.
We can avoid this difficulty, however, by considering the determinant on Σ to be
a determinant on the cut surface Σ\ but with "sewing boundary conditions": we
require that the entire Cauchy data of b and c be continuous across C. There is a
one-to-one correspondence between the eigenfunctions of L on Σ' with such sewing
boundary conditions and the eigenfunctions of L on Σ.

Some care is needed here, however, as may be seen most easily in the case of
the scalar field. It is certainly true that eigenfunctions of A on the sewn surface
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will have equal Dirichlet data on C. If the normal derivative is defined in terms
of an outward-pointing normal vector, however, we must have dnX\Cί = — dnX\C2,
since the normal changes direction between the two boundaries. Hence if A is the
projection onto Dirichlet data, we need πA = πA, but π\-A = —π\^A.

More generally, we must specify an identification of the Cauchy data on the
two boundary curves being sewn before we can describe sewing boundary
conditions. We have already implicitly made such an identification in the previous
section, where we asserted that the functional integral was to be performed over
equal boundary values b1=b2, cί=c2, i.e., πA = πA, πAi = πAf. It remains for
us to find the corresponding relations for πί-A and nι_Au

To do so, note that for sewing boundary conditions, the total Wronskian
W(πb,πc) must vanish. Indeed, W is a boundary term arising from partial
integration of L in equation (3.2), and there can be no such boundary term if there
is no boundary. But ϊoτb1=b2,cί=c2,

W(πb,πc) = W{π\_Aώ + π*_Λib92c) + W(2b,π\.Ac + π\_Ac\ (4.1)

which will vanish for arbitrary b and c only if πl_Atb = — πf_Atb and
π{ _Ac = —π\-Ac. The extra minus sign which we found for the scalar field is thus
a general phenomenon.

To proceed further, let A and B be two arbitrary choices of boundary data.
We first note that

ΦA,B = ΦB,A (4-2)

Indeed, by (3.7), ΦB,AΦA,B = ̂ BPA^APB = ̂ B(^ - GAL)PB = πBPB= 1. Hence an
arbitrary variation δ of det φBA is

δ log det φBiA = Tr φ^δφ^ = Tr πAPBπBδPA. (4.3)

We next observe that δ(LPA) = 0 = (δL)PA + L(δPA); acting on the left with GA,
and noting that δPA is in the kernel of πA (as can be seen by varying the equation
πAPA = 1), we see that

δPA=-GAδLPA. (4.4)

We also note that GA is the inverse of LA, so

(SlogdetL^TrG^L. (4.5)

Combining (4.3), (4.4), and (4.5), we find that

δ log (det φBfA det LA) = Tr [GAδL - πAPBπBGAδLPA~]

= ΎrlGA-PAπAPBπBGA-]δL

= Tr IGA - (1 - GAL){\ - GBL)GA-\δL (4.6)

= (5 log det Lβ,

where we have used cyclicity of the trace in the second line. Hence, up to a constant
factor,

det LB = det φBtA det LA, (4.7)
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a result first shown in a more special context by Forman [5]. This relation is the
key to our proof of sewing.

We now apply this general result to relate A boundary conditions to sewing
boundary conditions. As discussed above, sewing boundary conditions require that
πA = πA and π\ _A= —n\_A. This will be the case if we define our boundary data
by the projection

Utl}
LB then corresponds to L on Σ9 while LA is L on Σ' with A boundary conditions,
and the partition function on Σ is equivalent to the partition function on Σ' with
vanishing B boundary data. The Poisson map φB A is now

1 1

so

det φBA = det £</>'/_ ̂ . (4.10)

Comparing (4.7) and (4.10), we have succeeded in proving the sewing relation (3.17).

5. Sewing Correlation Functions

We have now demonstrated sewing for the partition function. Let us next investigate
the sewing of arbitrary correlation functions. We do so by adding sources for b
and c and studying the resulting generating functional.

Let

S2 = SbJ + Kc, (5.1)
Σ

where JeV~ and KeV+ are sources for b and c. Any correlation function on Σ'
can be obtained from the generating functional

ZΓtb, c, J, X] = J [db] [dc>-<s+Sl+^nb,c,j,K] ( 5 2 )

by functional differentiation with respect to J and K. To evaluate ZΣ>, we again
write b = b + b\ c = c + c\ where now

Ub + K = 09 πAib
r = 0, (5.3)

which implies that

c = PA^AC ~ GAJ, b = P^πβ - GAiK. (5.4)

A simple calculation shows that
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(S + S, + S2)lb, c, J, X] = Sib', c'] - W(πβ, φ^A,AπAc)

+ J i{PAmβ)J + K(PAπAc) - (GA,K)Jl (5.5)

and thus (again denoting the boundaries of Σ' by C x and C2)

= (det LΣ)
±ι exp {W(bh φ^^dj) - J [(P^J + K(I*Λcd - (GAtK)J]}. (5.6)

To sew Cί and C 2 , we must again set bι = b2 and cγ = c2 and integrate over
boundary values. The integral is still Gaussian, but the exponent in (5.6) now
contains terms linear in b and c, so the integral no longer simply gives a determinant.
As usual, however, we can eliminate the linear terms by shifting b and c. Let us
denote the shift in b by /?, where β = π\iβ = π^β for a function β which must
be determined. Naturally, β must have the same value on the two boundaries being
sewn, so π^β = 0, where πB is the projection onto sewing boundary conditions
given by (4.8). The remaining component of πβt will appear shortly.

To determine the effect of the shift of b, we consider the first term in the exponent
of (5.6). Now,

ft ΦΪ-A,AnAc) = W(π% π\_APAπAc)

= W(π%(πΨAπA-πAPiπi)c)

= - \{Uβ)P{πAc - W(π\ _Afβ9 πAc\ (5.7)

where we have used the definitions (3.2) and (3.3) and the relations πAP
J

A = dtj and
LPA = 0. But for sewing, πAc = πAc = c, so the last term in (5.7) will vanish if
πl-Aiβ + πι-Aτβ = 0, i.e., πβtβ = 0. The term in (5.6) linear in c will thus be
eliminated by the shift of b given by

Uβ=-K, πBφ = Q. (5.8)

Equation (5.8) is satisfied by β = — GBfK, and the generating functional (5.6) is thus

ZΓ[b, c, J, K] = (det L,^1 exp | w(φ - fa Σ ΦΪ-A,AZ\

j

But PAϊπAiβ = - ( 1 - G^L)GβtX = (G^t - GBήK, so

Z r [ϊ, c, J, K] = (det L^)*X exp j w((b - fa £ φ^^c)

- j KP^π^b - β)J - {GBtK)J-} 1. (5.10)

Having eliminated one of the linear terms, we can now perform the integral
over boundary values. (The term linear inb — β could also be absorbed by a shift
of c, but this is not necessary; by the rules of Gaussian integration, the integral is
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now independent of this linear piece.) We find that

J lS]ldc]ZΣ.$9c,J9K] = fdetL^detfχ0Y_^)Vexp(ίXGlϊJ). (5.11)

cx=c2

The correct Greens function for the sewn surface appears in the exponent, so the
relation (3.17) between determinants is again sufficient to show that the generating
functional for correlation functions sews correctly. Since any correlation function
can be obtained by functionally differentiating Z\_J, K]9 this implies that arbitrary
correlation functions sew correctly as well.

6. Sewing with Zero Modes

Our results are not yet adequate to prove sewing in string theory, since the string
ghost system involves operators with zero modes. As a next generalization, we
therefore consider the case in which L has a kernel or cokernel.

While our results are again quite general, it is useful to keep in mind the example
of the bosonic string ghosts, for which

(Lc)ab = Vacb + V V - gabVdc\ (Ub)a = - 2Ψbah. (6.1)

For a surface of genus two or higher, L has no kernel—there are no conformal
Killing vectors—but it does have a cokernel, the space of holomorphic quadratic
differentials. As boundary conditions, we can take those proposed by Alvarez [7],
bnt = 0 = cn, where n and t denote normal and tangential components; the
corresponding boundary data are {bnt9c

n}. It is easy to check that bnt and cn are
adjoint in the sense of Sect. 3. The surface term (3.8) for this example is
Sx = — W(πAτb,πί-Ac)= —2\bntc\ precisely the term proposed by Birmingham
and Torre [6]. c

More generally, let us assume an arbitrary action of the form (3.1), but let us
now allow LA to have a cokernel. In other words, we allow LA to have zero
modes. (The case of zero modes for LA can be treated similarly.) Let QA: V~ -• V~
denote the orthogonal projection onto the kernel of LA. LA no longer has an
inverse, but one can find a Greens function satisfying

LGΛ=l-QA9 GAL\kerπA = l\keτπA, πAGA = 0. (6.2)

For the string ghost system, for instance, these are the standard equations for the
Greens function Fa

aΎ.
An extension map PA satisfying (3.6) also no longer exists. Indeed, let

hekevLA; then jhLPAc = W(πί_A\h9c)φ0, so we cannot require that LPA = 0.
Instead, (3.6) must be replaced by

(l-QA)LPA = 09 πAPA=l (6.3)

which is again satisfied by (3.7).
The extension map PAt for b boundary data, in contrast, exists but is no longer

unique; it is determined only up to elements of kerL^. To specify PA<t uniquely,
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we can require that

ΛPλf = 0. (6.4)

For A* boundary data, Eq. (3.7) must then be replaced by

QA. (6.5)

As in the previous section, we can evaluate the generating functional
Z Γ [δ,c, J,K] by splitting b and c into classical pieces and fluctuations. We again
write c = c-fc', where c is given by (5.4) and πAc' = 0. For b, the situation is
complicated by the existence of zero modes. If we let {hA} denote an orthonormal
basis for the kernel of LA, we can write b = b + V + λahA, where b is given by
(5.4) and πA\b' = 0 = QAb'. For the string ghost system, for example, the hA

are the quadratic differentials satisfying Alvarez boundary conditions, and V is a
fluctuation orthogonal to these differentials. The generalization of (5.5) is then

(S + Sx + S2)[&,c9 J,Kl = S[b\c'] - W{πAAΦI-Λ.Λ*AC) + KW0w*i,π^")

+ J [(Pxtπ^tϊ + A.ΛJ)J + ^ ( ^ π ^ c ) - (GjK)J]. (6.6)

Since fer is orthogonal to the kernel of L^, the integral over b' and cr automatically
gives the determinant of L with the zero eigenvalues omitted. The generating
functional is thus

ZΓ[b, c, J,X] = (def L^1JdAβexp {W&, ^ - ^ ^ c ^ ) - A.W(π\_AihA, ct)

5 (6.7)

To perform the integration over boundary values required for sewing, we must
again absorb the terms linear in c by shifting b. In place of (5.7), we find that

\-QA)β^Ac). (6.8)

We can therefore eliminate both terms linear in c by choosing

β=-GB,K + μah%, (6-9)

where μα is determined by the condition QAβ = λahA. This condition will be satisfied
if M*pμβ = λa + δa, where

(6.10)

As in the previous section, Gβt is the Greens function for the sewing boundary
conditions given by the projection πB of (4.8), while the hB are the zero modes for
these boundary conditions.

Equation (6.9) can be solved for μ only if the matrix M is invertible. In particular,
the number of B zero modes must equal the number of A zero modes. We will
assume for now that this is the case, and discuss the generalization in the next
section. A simple calculation then shows that the generating functional is

- β) + μJfB)J - {GjK)J-\ J. (6.11)
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We can now integrate over boundary values, to find that

J lS]ldc]ZΓ$9c9J9K]

c\=c2

2

( ( \ \±i r Λ

= ί det'L^detl ΣΦ'I-AΛ j d e t M " 1 j Jdμαexp< jlKGBJ-μahBJ] >. (6.12)

The exponent is the correct one for ZΣ\J,K\ and sewing will hold if
d e t M ' 1 , (6.13)

which is the generalization of (3.17) in the presence of an equal number of A and
B zero modes.

We devote the remainder of this section to the proof of (6.13), which parallels
that of (3.17) with a few added complications from the zero modes. It is somewhat
easier to work with the Poisson map φB^ = πjPj. Let us introduce the projection

RBA = hBM^hA (6.14)

(that is, (RBAb)(x) = h&xlM'β1 jhβ

Ab). R satisfies

QB&BA = RβA> RBAQB = δβ>

*BΛQΛ = RBΛ, QARBA = QA (6.15)

In place of (4.2), the inverse of the Poisson map is now

Φ?ϊt = M l - RBA)PBΪ' (6.16)

Indeed, for the right inverse,

ΦBU^A^ ~ RBA)PBI = M l - GA,U - β J ( l - RBA)PBi

= πBt(l - RBA)PBi = M l - QB*BA)PBI = L

since πBtQB = 0, while for the left inverse

M l - RBΛ)PBIΦBU* = M l ~ KJM)(1 - GBtU - QB)PAt

= M l - *BΛ)PΛ* = π ^ ( l - RBAQA)PJ = 1,

since QAPAΪ = 0.

Equation (4.4) must also be modified to take the zero modes into account. It
is still true that (δU)PAi + U(δPAή = 0, but now when we act on the left with G t̂
and use (6.5), we find

- (δQA)PAu (6.17)

Then in analogy to (4.6), we have

δ log (det φBUi det Lit) = Tr \GA,δU - M l " RBA)PB^(GA^U + δQA)PA^

- Tr [/VM1 " RBA)PB^QA1 (6.18)
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Using (6.5) and (6.15), we can reduce the first term in (6.18) to

Tr [GAt - (1 - Gjϋ - QA)(ί - RBA){1 - Gjll - QB)GA^δU

= Tr \GAi - (1 - RBJd(Gλf - Gβt)] δϋ = Tr GB,δϋ - Tr GB,δURBA,

where the RBAGAi term drops out because RBAGAi = RBAQAGAi = 0. Further,

- GBiδURBA = GB,ϋδRBA = (1 - P B t π B t - QB)δRBA = (1 - QB)δRBA,

since URBA = 0 and nBiRBA = 0.

The second term in (6.18) can also be simplified. It becomes

- Tr [(1 - Gjti - QA)(l - RBΛ)(l - GBiti - QB)δQA

= - T r [(1 -RBA)(l -GBiti)δQ J = - Tr (1 - RBA)δQA - Tr (1 - RBA)GB,δϋQA,
and the last term vanishes by cyclicity of the trace, since QA(1 — RBA) = 0. Combining
these results, we have

51og(det0B UtdetLt t) = a i o g t a ^ (6.19)

To evaluate the final trace, we first observe that Tr RBA and Tr QA are constants,
since R and Q are projections. Further, QBδRBA = QB<>(RBAQA) = QB(<>RBA)QA +
RBAδQA. Finally, by (6.14),

rTτQB(δRBA)QA = Tr QB(hBSM^hA)QA = TvMdM~\ (6.20)

(We have used the fact that δhAQA = QBδhB = 0, which follows from the ortho-
normality of the Λ's.)

Combining (6.19) and (6.20), we have

δ log (det φBUi det UAή = δ log det L^ - δ log det M " \ (6.21)

which is the generalization of (4.7) needed to prove (6.13). Indeed, if B boundary
conditions are the sewing boundary conditions (4.8) of Sect. 4, we have det φBtAt =

Σ[j

AϊAt. But it is easily checked from the definition of W that

AUώ9 c)=- W(b, φx__AAc). (6.22)

Hence detYJΦ
i^A\A^ = detΣΦΫ-A,A, and (6.13) follows directly.

7. Zeros of the Poisson Map

In the analysis of the previous section we assumed that the matrix

M*e = μAhB (7.1)

of inner products of the sewing zero modes hB with the zero modes hA was invertible.
In particular, this requires that the number of B zero modes equal the number of
A zero modes. For the case of the bosonic string ghosts with Alvarez boundary
conditions, this is easily seen to be the case. In general, however, the matrix M
need not be invertible, or even square. In this section we will prove sewing with
less stringent restrictions on M.
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We begin by recalling the generating functions (6.7) evaluated at b1 = b2 = b

and cί=c2 = c:

, c, λa, J] = (^Y ^ j

+ f[(^it + P2t)5 + Aβfc;]J, (7.2)

where we have used Eq. (6.22) to move the Poisson map from c to b. We have
also set the source K which couples to the c fields to zero for simplicity; the
argument below can be extended to non-vanishing K at the expense of a bit more
algebra.

We are interested in evaluating the functional integral of ZΓ[b9c, J ,K = 0]
over the boundary values b and c. To do so, it turns out to be convenient to enlarge
the space of fields slightly. We introduce additional fields V and c' analogous to
b and c with an action

S'[b\ c\ S, c, J] = W(b\ cf) + W((φ\iAUi + φ£AUi - φ\lAUτ - Φϊ*ΛU$'9 S)

\ 2 (7.3)

The field c' lies in the image of πx _A9 and the field b' lies in the image of πA\. It is
evident that

f | W ] [d?] exp { - S'\b\ c\ b9 c, J ] } = 1. (7.4)

Thus, the integral we are interested in can be written as

= j [<#'] [dS~\ [dϊ] ίdc]dλa exp {- (S + 5') [5, c, 5', c', 2α, J ] }. (7.5)

The reason for the apparently ad hoc introduction of the fields V and c' becomes
clear upon changing variables in the right-hand side of (7.5) to

b1 = g + S' b2 = b-b\

Ci = ic', c2 = c.

In terms of the fields b, and cf the action S + Sf takes the form

('•')+ί(('J

Here we have used π t̂/z^ = π t̂/z^ = 0. In this expression we recognize the

projection πBt = l 1

 A* Al I of (4.8) and the extension map PΔ = (
\ π i - ^ + π r i 4 t/

of (3.14). The integral thus takes the compact form
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J [dδ] ίdc]ZΓ[b, c,Jl = $ [db] [dc]dλ. exp { - S"[b, c, A,, J]},

S"[b, c, 1,, J] = WWίP^tb + λjήd, c) + j (iVb + W J, (7.8)

with

(£> -(:;)•
We now turn to the evaluation of (7.8). The integration over b and c can be
performed by shifting b and c so as to eliminate the linear terms. This clearly
requires a Greens function for the Poisson map φB\A\ = πBtPAτ. Our previous
assumption of an invertible matrix M of inner products between the A zero modes
and the B zero modes was equivalent to the assumption that φBt^ was invertible;
in fact, we wrote down the explicit inverse in (6.16). Let us now make the weaker
assumption that φBi At has a kernel, but no cokernel. Equivalently we assume that
the matrix M of (7.1) has a right inverse, but no left inverse. There is thus a
Green's function Gφ for φBi At satisfying

1~QΦ> ( 7 1 0 )

where Qφ is the orthogonal projection onto the zero modes of φB\A\.
If we now shift the fields by

C K C + GφPAiJ, bh+b + GφπBihΛ9 (7.11)

a little algebra then shows that

(S + S')[b,c,λ»Jl^W(φBUf(l - Qφ)b,c) + $SBφQφbJ + λΛ\RBAh\J (7.12)

with

SBφ = PAiQφ. (7.13)

Let us consider the maps RBA and SBφ more carefully. It is easy to check that
RBA is a projection satisfying

In particular, RBA maps the kernel of L t̂ into the kernel of LBt. The projection
RBA also satisfies QARBA = QA Thus RBA satisfies all the conditions (6.15) of the
projection RBA of the previous section, except that now RBAQB Φ QB.

The map SBφ satisfies

The first of these equations is obvious, while the second is a consequence of the
facts that

nBtSBφ = πBτPA,Qφ = φBUiQφ = 0, L%φ = UPA,Qφ = 0. (7.16)

Equation (7.15) means in particular that SBφ maps the kernel of φβt>i4t into the
kernel of UBt. SBφ also satisfies QASBφ = 0 (since QAPAt = 0).

Let us now define
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^ ] (7.17)

It may be checked that MBA is invertible, with

) ( 7 1 S )

In particular, this means that

dim ker LAt + dim ker φBttAt = dim ker LBt. (7.19)

That is, the number of zero modes of φBi At is the difference between the number
of zero modes of L^ and those of L^t.

Using &BA, we can now easily give the result of integrating Zr over the
boundary values b and c. We find

f [db\ Ldc]ZΓ[b,c, J ,K = 0] = (def 4 t det' .0B Ut detΛA i l)± Jdμβexp { -\μJι*BJ).

(7.20)

The μ integral is the correct one for ZΣ[J, K = 0], so sewing will hold if

det' L]A, = det' L*t det' φB,A, det ΛBi4. (7.21)

This is the generalization of (6.13) in the presence of more zero modes for B than
for A

The proof that (7.21) is valid is similar to the proof of (6.16), and involves
verifying the infinitesimal relation

Tr 0tB\ b0tBA = Tr GBtδU - Tr GA^δU - Tr GφδφBUt. (7.22)

We omit the details.
Let us now briefly discuss the geometric interpretation of the determinant

formula (7.21). For this, we need some notions from the theory of determinant line
bundles (see [8]). Let V± be Hubert spaces and Dp: V+ -+V~,pe0>, be a family
of linear operators depending smoothly on a parameter space &>. Under suitable
conditions [8], the family D determines a natural line bundle DetD over SP whose
fiber at p is canonically isomorphic to

(Det D)p = (Det ker Dp)'ι ® Det ker D\. (7.23)

Here Det (X) denotes the highest exterior power of the finite dimensional vector
space X, and X " 1 the dual space of X.

The bundle Det D is called the determinant line bundle. It comes equipped with
a natural covariant derivative defined as follows. We consider V± x ^ as trivial
bundles over 0> with trivial flat covariant derivatives. These allow us to define the
co variant derivative VD of D as a map from V+ to V~. Moreover, as sub-bundles
of V± x ^ , the bundles kerD and ker D f inherit covariant derivatives, and by linear
algebra there are induced covariant derivatives on Det ker D and Det ker D\ The
covariant derivative on Det D is then defined as

VDet2> = - VDetkerD + VD e t k e r ί )t + TτkerD,D ~ ' VD, (7.24)

where TτkeτD± denotes the trace restricted to the orthogonal complement of kerD.
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Since DetD is a line bundle, it has a unique inner product compatible with
VDetD. This is given by

lDeU> = (l iDetkeΓflΓHl UkerDt) det D% (7.25)

where | |DetkerD a n < i I bet ker Dt are the inner products on Det ker D and Det ker Z)f

induced from those on V±.
With these notions understood, we may now describe the geometric meaning

of Eq. (7.21). By linear algebra, the isomorphism 0tBA gives an isomorphism

Det 0tBA: Det ker UAt ® Det ker φ β t ^ -* Det ker L^t. (7.26)

Since kerL^, kerL β and ktτφBA are all empty, this may be considered as a map

Det mBA: Det LA ® Det φBA -> Det LB. (7.27)

Suppose now that the operators L depend smoothly on some parameter space 0>.
If the determinant lines DetL^, DetL β and D e t 0 β κ over 0* are given the natural
covariant derivatives (7.24), the determinant formulas in the infinitesimal form
(7.22) and the integrated form (7.21) imply respectively

V Det 0tBA = 0, I Det 01BA \ = constant. (7.28)

ΌQt&BA is thus a natural geometric quantity: it is a covariantly constant
trivialization of the line Det LA ® Det φBA ® (Det LB) ~1.

8. Conclusion

We have now demonstrated quite generally that Gaussian conformal field theories
"sew," that is, that correlation functions on a surface Σ can be obtained from
correlation functions on a corresponding cut surfaces Σ' by integrating over
appropriate boundary data. Our proof does not apply directly to more complicated
theories with nonquadratic interactions, for which correlation functions have no
simple expression in terms of determinants. However, correlation functions for
such theories can be expressed perturbatively in terms of correlation functions for
Gaussian theories; our results thus apply at least perturbatively to any conformal
field theory which can be derived from a path integral.

Several straightforward generalizations of this work are possible. For simplicity,
we restricted our attention in this paper to sewn surfaces Σ with no remaining
unsewn boundaries, but the same methods can be used to show that sewing also
holds when Σ has boundaries. Further, although our examples were all two-
dimensional, our proofs made no use of that fact; our techniques can be used to
demonstrate sewing in arbitrary dimensions.

As a further extension, we may consider a sewing problem in which different
choices of boundary data, say A and A\ are made for the two boundaries being
sewn. Such a situation naturally arises when one imposes APS-type boundary
conditions [9], in which positive frequency components of fields are specified at
the boundary: one should then equate positive frequency (outgoing) data at one
boundary with negative frequency (incoming) data at the other. This type of problem
is most easily handled by first sewing to one boundary an infinitesimal cylinder
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with A boundary data on one end and A boundary data on the other, thus reducing
the problem to the type already considered. We can then make contact with the
operator formalism of Alvarez-Gaume et al. [10]: the positive frequency compo-
nents of fields on a circle \z\ = 1 can be extended to z = 0 to give data corresponding
to a punctured surface, and our intermediate infinitesimal cylinder corresponds to
their "sewing state" |S>.

To apply these results to string theory, we must still understand how to construct
the moduli space for the sewn surface Σ from the moduli space for the cut surface
Σ'. This will be the subject of a future paper.
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