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Abstract The scaling of the total width of the band for the discrete Mathieu
equation is studied in the critical region near the transition between localized
and extended states, for the special case in which there is one period of the
modulation for p lattice spacings. A general expression for the bandwidth W in
the critical region is found. At the critical point an analytic expression for pW is
found which agrees to one part in 108 with the result deduced from numerical
work.

1. Introduction

In an earlier paper [1], which I refer to as BW, a study was made of the total band
width for the discrete Mathieu equation, which can be written as

V1aH-1 + 2V2cos(2πnφ + k2)an+V1an+1 = Ean; (1)

to simplify the subsequent discussion I take Vx and V2 to be positive. From the
work of Aubry and Andre [2] it was already known that this equation has a critical
point for Vx = V2, where, in the incommensurate limit with φ irrational, all
eigenfunctions become extended instead of localized, and the total bandwidth,
again in the incommensurate limit, appears to be equal to 4\V2 — F t |, so that the
bandwidth vanishes at the critical point. In BWI gave a derivation of this linear
behaviour of the bandwidth, and did some numerical studies of the way the
bandwidth behaves when the common period, p, of the sinusoidal term and the
lattice becomes large. In this commensurate case, with

Φ = q/P, (2)

the bandwidth is defined as the measure of the union over all values of the phase k2

of the spectrum of Eq. 1, which consists of a set of p bands which are generally
distinct, except at E = 0, where there are two bands touching for even values of p. I
found what appeared to be a scaling behavior of the bandwidth in the critical
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region; the deviation of the bandwidth from 4\V2 — V^\ is proportional to
iYJvifl2IP f o r Vι < V^ a n d at the critical point V1 = V2 the bandwidths converged
to 9.3300p~1. This limit appeared to be independent of the numerator q, although
the rate of approach to the limit depended strongly on q. The limit was approached
from above for even p and from below for odd p. An analogy was drawn with finite
size scaling theory of critical phenomena [3,4], but no argument for this
independence of q was presented, and no explanation of the numerical value of the
coefficient at the critical point was given.

In this paper I present a detailed study of the special case q = ί, which happens
to be the value of q for which the convergence of the bandwidth to its limit is
slowest, so slow that some uncertainty was expressed in BW as to whether there
was actually a common limit for odd and even values oΐp in that particular case. I
find that the bandwidth can be expressed in terms of an integral over the Green
functions (resolvents) of some finite matrices. For p large this can be approximated
by the Green function for a continuum problem, which is essentially the differential
equation satisfied by parabolic cylinder functions. This allows me to express the
integrand in terms of gamma functions, and the gamma functions can be
manipulated to obtain an expression, valid for large p and finite p(V2 — Vt), which is
an integral over a trigonometric function. This therefore gives a complete
description of the scaling behavior of the bandwidth for q = 1 in the critical region.
At the critical point Vγ = V2 the integral can be expressed in terms of Catalan's
constant, and its numerical value agrees to eight significant figures with the results
I obtained by further numerical work along the lines reported in BW. As a preface
to this analytical work I give a brief summary of some of the new numerical work.

2. Summary of Numerical Results

The positions of the band edges were obtained from Eqs. (2.3) and (2.4) of BW for
odd p and the corresponding equations for even p by using a NAG library
subroutine for finding the eigenvalues of a tridiagonal real symmetric matrix. The
complete set of band edges was found in this way, and they were then arranged in
ascending order so that band widths and band gaps could be found from the
differences between successive eigenvalues. For Vi = V2 the product pW of the
bandwidth W with p was studied in some detail, but no major differences were
discovered from the results reported in BW. In all cases the values of p W for odd p
were below those for even p. The convergence to a common limit was convincing
for all sequences that I examined except for the case q = \. The convergence was
particularly rapid for the cases q = 2 with p odd and q = p/2 — ί with p even, and
there the deviation from the limiting value seemed to go like p~2; it was also rapid
for even p and q close to p/4. For q = 1 the deviation from the common limit of the
other sequences seemed to decrease slower than p~ 1 / 3.

Two sequences I used were p = 249,499,999,1999 with q = 2, and p = 248,496,
992, 1984 with q=p/2-ί, which gave the results 9.32989645, 9.32993703,
9.32994593, 9.32994821 and 9.33004952, 9.32997407, 9.32995522, 9.32995058 for
pW/Vv Each of these sequences extrapolates to 9.3299490. Extrapolations I made
on other sequences of the same sort agree with this to one part in 108.
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3. Evaluation of the Scaling Function

For odd values of p the band edges are determined by the eigenvalues E+ +, E~ ~ of
Eqs. (3.1) and (3.2) of BW. These have the form

+Vίcn+1=E+±cn, (3)

with 0^nSs = (p —l)/2 and c_1=cl9 cs+1=0, and

+VicΛ+1=E-±cn9 (4)

with 0 < n ̂  s and co = 0,cs+ί=0. These two equations give half of the band edges,
and the other half are found by changing the signs of these eigenvalues.

A key observation for the subsequent work is that for q = 1, and only for q = 1
(or equivalent values of q such as p — 1), the positive eigenvalues E++ alternate
with the E~ ~, and so do the negative eigenvalues, although the order is reversed.
Thus the positive E++ and negative E~~ are at the tops of bands, while the
positive E~ " and negative E++ are at bottoms of bands. This is easy to show for
V2$>V1, where a perturbative argument can be used, and Mouche [5] has shown
that there are no degeneracies when VJV2 is varied, so this ordering is preserved for
Vx = V2. If the eigenvalues of these equations are numbered in ascending numerical
order the widths of the band gaps are given by

| £ - - | - | £ n

+ + | , (5)

while the highest band edge is at E*+\. The gaps and lowest band edge obtained by
changing the signs of these eigenvalues must also be taken into account. The
bandwidth can be found by subtracting the sum of band gaps from the separation
between the two extreme band edges, and this gives

W=2Σ\Er\-2Σ\Er\. (6)
n=ί n=ί

This relation can be written in terms of the Green functions for the problem,
using two contours that surround the spectrum on the negative and positive real
axes, as

W = - 7 {tr[G++(z)-G--(z)]z-l}rfz; (7)
n, — ioo

the constant term is inserted in the integrand because G++ and G" ~ are Green
functions for matrices whose orders differ by unity. Since the integrand is of order
z" 1 for large z the limits of integration on the imaginary axis must be taken to
infinite symmetrically. It is shown in the appendix that

tr[G + + ( Z )-G- + (z)]= - ^

d Z

tr[G- + (z)- G- -(z)] = -
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This allows Eq. (7) to be written as

W= - 7 ln[zG0VWO' +00/G--{z)]dz. (9)
71 - t o o

The Green functions can be written in terms of the solutions of Eq. (1) for arbitrary
E = z. If an(z) is the solution that satisfies as+ί = as, and bn(z) the solution satisfying
bo = Q, then Eq. (9) becomes

w = 2 i ^ Zao{bs+b )

So far this result is exact. To make further progress for p large I make
continuum approximations for ( — \)nan and bn, which should be valid in some
neighborhood of n = 0 or n = s for sufficiently small z and \V2 — Vγ\. To do this I
replace 2V1cosh(d/dn) and 2V2cos(2πnφ) in Eq. (1) by their quadratic approxi-
mations, and the resulting differential equation is then the equation for a parabolic
cylinder function. For simplicity in the subsequent work I take an energy scale in
which ¥^2 = 1. In the notation used by Abramowitz and Stegun [6] the
approximations are

(11)

From this point onwards the work is just an application of standard results
known for special functions. To evaluate Eq. (10) the logarithmic derivative at the
origin of the parabolic cylinder functions must be used, and this is given by an
expression involving gamma functions [6]. I define new variables by

v = p(V2-V1)/4n, (12)

and then substitution of Eq. (11) into Eq. (10) gives

J ^ 1 f ? 1

f e \ ^ (13)

The contributions to the integral of the gamma functions in the numerator and
denominator of the logarithm cancel over most of the range, so that this expression
can be written as

W= - — j^ln(2π)-T Γln[Γ(y)Γ(l ~y)¥y\ (14)
P I 2 i + iv )

The argument of the logarithm is equal to [7] π/sin(πy), so a complete expression
for the scaling behavior is given by

W=— 7 In[2(cos2πy + cosh2πt;)]dj;. (15)
P -1/4
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The scaling variable in this expression is v = p(V2 — Vί)/4π]/V1 V2, so the
crossover exponent is unity. For large v Eq. (15) gives

|/p + (32/πp)exp(-2|u|). (16)

The first term in this expression is just the result W~4\V2 — Vt\ which has been
known for a long time [2]. The second term is a correction for systems with finite
period. This general form was found in BW, but the value of the coefficient was
found to be variable and somewhat lower; this is probably because the numerical
work was carried out too far from the critical region.

Equation 15 can be more conveniently expressed in terms of an indefinite
integral. Differentiation of this equation with respect to v shows that W satisfies the
differential equation

dW/dv = (32/p) arctan [sinh(2πu)]. (17)

With a little further manipulation the integral of this equation can be written in the

form

32exp(-2πt;) <ft
pW= 16πtH j arctan ί—.

71 0 t

(18)

This can be expressed in terms of the dilogarithm function of imaginary argument.
The function is shown in Fig. 1.

0 2 4 6 8 10

Fig. 1. The scaling function of Eq. (18). The scaled bandwidth pW/V is shown as a function of the
scaled distance from the critical point plVj —

For v = 0 the integral can be reduced to a known result. If the integrand is
written as a power series in ί, then the integral is Catalan's constant β(2) [8]. This
gives

pW= 32j8(2)/π « 9.32994893,

in excellent agreement with the numerical results quoted in Sect. 2.

(19)
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4. Discussion

The precise agreement of the analytical expression for pW at the critical point for
q = 1 with the numerical estimates for this quantity obtained for other values of q is
very encouraging for a scaling theory of the transition between localized and
extended states in the one-dimensional quasiperiodic system. It shows that there
are features of the transition which have some degree of universality. The
analytical result suggests that a study of the effect of perturbations on this problem
might be practicable, so that one should be able to find a larger class of
quasiperiodic problems with the same behavior in the critical region.

I have not made any attempt to assess the validity of the approximations that
lead to Eq. (11), except in the formal sense that the terms neglected in the
differential equation vanish in the limit of p infinite.

Appendix

The Green function identities used to go from Eq. (7) to Eq. (8) are derived here.
The Green functions G++ and G~ + are resolvents for matrices that are of order
s + 1 and s respectively. The matrices differ only in the elements M o o and
Moι = MίO that connect the component 0 to the other components. From this
follows the result

Gΐj + -G^=G^M01G-,; for i,j>0, (Al)

which has the special case

GΓ/ = GiV/(H-Gίo+Λίol). (A2)

Also, because the matrix is tridiagonal, there are relations

Λf oiGiV = ( z - M00)G0V - 1 ,

M01G+ + =(z-M 0 0 )G£. + , for j 0

Substitution of Eqs. (A2) and (A3) in (Al) gives

G,ί + - G,7 + = G+ + GoV/GoV (A4)

Since the derivative of the resolvent operator with respect to z is minus the square
of the operator, this leads to the result

L
Tz'

t r [G + + (z)-G- + (z) ]=-- lnG o V(z) (A5)

Similar use can be made of the relation

G.7 + - G i Γ = 2 F 1 G r + G - - (A6)

and its special case

- + ) (A7)
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These give

tr[G~+(z)-G--(z)]=-^ln(l-f2F1G-+). (A 8)

Since Eq. (A 7) gives

ιZ + = GZ+/GZ-, (A9)

the result

tr[G" +{z)-G~ ~(z)] = - j-ln[G~ +(z)/G~ " » ] , (A10)

is obtained.
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