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Abstract. We continue our analysis of unbounded spin systems with nearest
neighbor interaction W and a single spin potential V which has N deep and
widely separated minima. In this second part we show that all translation
invariant phases obeying a certain regularity condition are convex combina-
tions of the stable phases determined in the first part of this paper. For periodic
boundary conditions each stable phase contributes with the same weight in
the infinite volume limit.

1. Introduction

In the first part [1] of this work we have shown that for an unbounded spin model
with Hamiltonian

H = ΣV{RX)+ Σ W(RX9Ry), (1.1)
<*y>

where V has N deep and widely separated minima and W is a kinetic energy type
interaction (see Sect. 1 of [1] for the precise assumptions), the stable phases1 are
characterized by the condition that the free energy, h'q, of a certain truncated model
is minimal. As we have seen this is enough to construct translation invariant states,
< }q, which are small perturbations of the corresponding Gaussian approximations.
Furthermore these states show exponential clustering and hence are, in the usual
langauge of statistical mechanics, pure states of the sytem (1.1).

The goal of this paper is to show that these are in fact all pure states, i.e. that
any translation invariant equilibrium state, <•>, is a convex combination of the
stable states, < >g, constructed in [1]. To be more precise assume that V and W
obey assumption A.O through A.3 of [1] (guaranteeing the convergence of the
cluster expansions developed in [1] and hence the existence of <•)«)• Assume in
addition the following

1 Throughout this paper we will use letters q,q', etc. to denote stable phases, while the letters m,m',

etc. denote arbitrary (stable or unstable) phases



484 C. Borgs and R. Waxier

Assumption R (Regularity of W). Let

oc(R) = V(R) - min V(R'). (1.2)
K'eR

Then there is a constant k1 < oo, possibility depending on β, such that

For a configuration R:ZV-+R we set

IIK11= sup - i - Σ α(ΛJ, (1.3)

where Λ(j) is the set of all points which have distance ^j from the origin2.
Generalising a little bit the notion of temperedness from [2,4], we define

Definition 1.1. An equilibrium state <•) is called tempered3, if | | l ? | | < o o with

probability one, that is, if ( χ( [j {R\ \\R\\ <k} ) \ = 1, where χ(E) denotes the
\ VfeeN / /

characteristic function of the event E.
The main result of this paper is the following theorem. We recall that V depends

on N — 1 parameters μ = (μi)i=li N_ί9 and that all the results of [1] were derived
under the assumption that μ lies in a certain neighborhood ir

1

Theorem A. There is a constant jS* < oo such that all translation invariant tempered
equilibrium states <•) are convex combinations of the stable states <•)$> provided
β^β* and μerx.

The proof of Theorem A is based on an idea of [5], where the corresponding
theorem is shown for the Ising model at low temperatures. To explain the
underlying idea consider an observable A which depends only on one spin variable.
Using the DLR-equations [6,7] together with the translation invariance of the
state < > we may rewrite the expectation value of A as

<A)=μP(seΛcKA)Λ,SdΛc, (1.4)

where A is an arbitrary finite sub volume of Z v ; A denotes the average of A over
all translations in A and < ) Λ SdΛc denotes the finite volume expectations in A with
boundary conditions sdΛc. Choosing 0 < δ < 1/v and fixing all contours in the low
temperature expansion of (A}ΛsδΛc which touch the boundary of A (we call their
union the outer contour network), one then shows that the size of this outer
contour network is smaller than |3/t c |1 + < 5 with probability 1 — ε(Λ), where ε(Λ)-+0
as/i->Z v .

On the other hand, for a given outer contour network, Out, with total size
smaller than \dAc\1 +δ, and a single term in the average A, the translated observable

2 We recall that we usually use the /^ distance dist(x,j;) = |JC — y\^, except for the notion of nearest
neighbors, where \x — y\ = 1 denotes the /t distance
3 The definition of "tempered" in the sense of [2,4] is obtained by substituting the norm

R2

χ for | |R | |
xe Λ(j)
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tx(Λ) is typically far away from the outer contour network. Therefore its
conditional expectation value <ίx(^4)|Out> is well approximated by either
(tx(A)}+ ={A}+ or (tx(A)}_ = <^>_, depending on whether tx(A) lies in a +
or in a — region of Out. Summing over Out and over the translations in A one
obtains the theorem by a 3ε argument.

In our context two main difficulties arise when one tries to generalize this
argument. The first one, the existence of unstable phases, already had to be faced
in [8], where general finite range spin models with bounded, discrete spins were
considered. The second is due to the fact that we are dealing with unbounded spins.

This difficulty arises at two different stages. First, the boundary conditions
RdΛc arising in the analog of (1.4) may be arbitrarily large. This spoils the proba-
bility estimates on the existence of outer contour networks, Out, of size larger than
|3/lc |1+<5. Secondly the conditional expectation values, < |Out>, for a fixed outer
contour network, Out, still involve boundary conditions in the whole neigh-
borhoods Wq of the minimas Rq of V; while these boundary conditions are
bounded for any fixed β, they are still too large4 to guarantee the convergence of
the cluster expansion for ('}ΛRdΛc which we would like to use to control the
difference between <ί x (^) |Out> and (A)q.

We will solve these problems as follows: First we use the arguments of [2-4]
to show that with probability 1 — ε^Λ), where ε ^ / l ) - ^ as /1->ZV, the boundary
conditions appearing in the analog of (1.4) do not grow faster than log j with j if
A = A(j). For such boundary conditions the desired probability estimates on the
size of the outer contour network, Out, can be proven by a combination of the
methods developed in [1] and [8]. Concerning the second problem we will in fact
avoid boundary conditions growing like τ(β)1'2 in the conditional expectation
values < | Out > by adding a partition into small and large fields to the expansion
into contours before defining the notion of an outer contour network, see Sect. 2
for details.

The organization of this paper is as follows: In Sect. 2 we recall the definition
of a general equilibrium state and define the notion of an outer contour network.
Assuming the validity of the probability estimates for large boundary conditions
(Lemma 2.3) and those for large outer contour networks (Lemma 2.4), we well as
a lemma (Lemma 2.5) which controls the difference between (A}ΛRδΛc and (A}q

for boundary conditions RdΛC in a small neighborhood of Rq we then prove
Theorem A. Lemma 2.3 is proven in the appendix, using the methods of [2-4],
and Lemma 2.4 is proven in Sect. 3. In Sect. 4 we prove Lemma 2.5 using the
cluster expansion developed in [1], Sect. 7. Finally Sect. 5 is devoted to the study
of periodic boundary conditions. The main result of this last section will be the
following:

Theorem B. Assume that V and Wobey the conditions A.O through A3 of [1]. Then,
for μeir

1 and for β large enough, the limit

< > p e r = l ™ < >P

Λ

eΓ>
Λ-» ZV

They grow with β like τ(β)1/2; see Sect. 1 of [1] for the definition of τ(β)
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where <">T" denotes expectations in the volume A with periodic boundary
conditions, is well defined and is a convex combination of the stable states, <•>«»
with equal weight for each of them.

2. The Translation Invariant Equilibrium States

In this section we present the main steps of the proof of Theorem A. The technical
details of some auxiliary estimates are deferred to Sect. 3, Sect. 4 and Appendix A.
For the convenience of the reader we recall some basic notations.

We denote by Ω the set of all functions R: ZV->R, and by RΛ the restriction
of R to a bounded set A c Zv. A local observable is a complex valued, Borel
measurable function on Ω which, for a suitable bounded set Λ c Z v , depend only
on RA. One says that A is an observable in A, or also "A has support in Λ," in
this case. Finite volume expectation values with boundary conditions RdΛc are
defined as

with
H(RΛ\RδΛc)=ΣV(Rx)+ Σ W(Rx,Ry) (2-2)

xeΛ (

and the obvious definition of Zq(Λ\RdΛc). One says, a measure dP on Ω obeys the
DLR-equations [6,7] if, for any bounded set A and all bounded observables A in A5

\dPA = \dP(RKAyχRdM. (2.3)

A Borel measure on Ω obeying the DLR-equations is called an equilibrium
measure, and the corresponding linear functional < > = j dP is called an
equilibrium state. If an equilibrium state <•> fulfils the condition that \\R\\ < oo
with probability 1 (see Def. 1.1 of Sect. 1) it is called tempered.

We now fix a translation invariant, tempered equilibrium state < > = \dP. Our
goal is to show that it is a convex combination of the stable states < >β constructed
in [1]. We therefore have to show that for certain nonnegative numbers ccq9 where
£ α β = 1, and all bounded local observables A9

Σ ^ \ (2-4)

We recall that we introduced the convention that a sum or product over q always
denotes a sum or product, respectively, over all stable values of q, whereas sums
or products over m, m', etc. are sums or products, respectively, over all m e {1,..., N}.

Consider a volume A of the form A = A(j) = {xGZv|dist(O,x>) ^j} which is a
union of L-blocks centered in LZV, and a bounded observable A with support in

5 In a more probabilistic language this is often formulated as: The conditional probability P(dRΛ\RΛC)

is given by the Gibbs measure {
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A. We denote by A the set of all xeZv such that the translate tx(Λ) has support
in A and define

A = ~l-Ytx(A). (2.5)
\A\xeΛ

Using the translation in variance of <•> (which implies that {A) = <A>) together
with the DLR-equations we may rewrite <A> as

<A)=$dP(RKA>ARdΛ, (2-6)

In order to analyse the expectation values (A)ΛJldΛc we introduce the notation

of an outer contour network. We first rewrite the partition function Z(A\RdΛc)

using the same partition of unity as in [1], Sect. 2:

Z(Λ\RdΛc) = ΣίdRΛU Ux){K)e~mARdΛ\ (2.7)
ω xeΛ

where the sum goes over all ω:/l->{0, l,...,ΛΓ} and χω(R) is the characteristic

function of the set ^ ω I we recall that %l9..., <%N are certain neighborhoods of the

minima, Rl9...,RN, of the potential V, with growing diameter 2τ(β)1/2 as the
N \

inverse temperature /?-• oo, and that <W0 = R\ \J (JUm 1.
m=l /

Differing a little bit from the notation introduced in [1] we define: a block
Π(x') in A is m-correct, if •(*') does not touch dAc and if ω(x) = mVx with
dist(x, Π(x'))^ l If •(*') is ^-correct for some stable q we say that Π(x') is a
sίαb/e book. As before the union of all incorrect blocks is denoted B(ώ).

Let ZsmaiiĈ  •(*')) ^ e ^ e characteristic function of the event that
\RX — Rm\ ^ B V x e D W w i ώ some constant B to be chosen later. We define

N

#small(^ •(*')) = 2 J ^smallV^Π^')^'
m=l

^large^D(x')^ = #smallV^Π (*')*'

and indroduce the notation

for a union, X, of L-blocks in A, and similarly for Z l a rge(^χ) Introducing the above
partition of unity for all stable blocks we rewrite Z(Λ\RdΛc) as

Z(Λ\RdΛe) = Σ idRAxlatJRx)XsmM(RXc)Y\ x^RJe-"™™, (2.8)
ω,X xeΛ

where the sum goes over pairs (ω,X) consisting of a function ω:/l->{0,...,iV}
and a union of stable blocks (stable with respect to ω). Given X and ω, Xc denotes
the union of all stable blocks which are not in X.

We now define the outer contour network of a configuration (ω, X). We consider
the union, Irr = X u B(ω), and define: The connected component, E, of Irr which
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touches dΛc is called the boundary component of Irr. A component, C, of Irr is
called an m-component of Irr if C does not touch dΛc and if ω = m on
deC. A m-component, C, of Irr is called large, if α m diamC>τ/3 (with am

as defined in [1], Sect. 3), and small otherwise. Finally, a component, C,
of Irr is called a canonical component of Irr, if C is large and if there is
no small component, C, of Irr for which C lies in the interior of C". We
define the outer contour network of the configuration (ω,X) as the triple
Out = (Out, ω O u t , Jf (Out)), where Out is the union of the boundary component
with all canonical components of Irr, ω O u t is the restriction of ω to Out and
X(Out) = XnOut; for m = 1,..., N; Vm denotes the union of all components, C, of
Λ\Out for which ω = m on dC.

Resumming all (ω, X) which lead to the same outer contour network we rewrite

Z(A\RdΛe)= Σ [dR v (R ) Π 1 (R )e~H{R°utlRdΛc)

xeOut

(2.9)

where the product f\' runs over all unstable m, and the product over q runs over
all stable q. Zs™n is the partition function obtained from Z^ 1 by restricting the
sum over ω in the definition of Z^11 (see Sect. 2 of [1]) to a sum over all
configurations containing only small external contours, and Zq(Vq\ ) is obtained
from Zq

ύ(Vq\ ) by inserting an additional characteristic function Xsman(RUixΊ) for
each block touching dVq.

Remark 2.1. We recall that aq = 0 for stable q; therefore all canonical components
of Irr must be m-components for some unstable m. It follows that the volumes Vq

in (2.9) are always volumes without holes, while Vm may have holes if m is unstable.
We define approximations ocq(A) to aq by

aq(A) = jdP(R) Σ P(0\xt\RdΛc)ocq(Out\ (2.10)
Out

with

α β (Out) = - x I Vq\ (2.11)

and

P(Out\RdΛc)= 1 f^θutZlaree(^X(Out)) Π XωίxM
xeOut

RdvC)\\Zf\Vq\RdvC). (2.12)

We want to show that the limits ocq = lim aα(Λ) exist and satisfy Eq. (2.4) for all
Λ-+zv

bounded local observables A. Both statements, and hence Theorem A, are an
immediate corollary of the following Proposition 2.1. We denote by A s Z v a
sequence of volumes A(j\ j ? oo, which are unions of L-cubes. /fr

1 c R^" 1 is the
region defined in Lemma 3.1 of [1].
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Proposition 2.1. There is a constant β* < oo such that, for μei^Ί and β ^ /}*, and
a suitable choice of L and B,

• 0 (2.13)

as A s1 Z v , for all bounded, local observables, A.

Corollary 2.2. For μ,β,B and L as in Proposition 2.1, the limits

lim a.q{A) = a.q (2.14)
A ? Zv

exist, andfullfill Eq. (2.4) for all bounded local observables A.

Proof of Corollary 2.2. We only have to prove (2.14). Consider the observables
Aq = χq(Rx\ where x is some fixed point in Z v (e.g. the origin) and q is stable. For
β large,

~ 1where δMqq. ->0 as β-• oo. Therefore M is invertible for β large enough, and M
is bounded. Using (2.13) it follows that

goes to zero as A /* Zv. This proves (2.14) and hence the corollary. •

We are now going to prove the proposition. The proof is based on three
technical lemmas which will be proved in separate sections. For a volume A
without holes (that is, a volume A such that Ac is connected) we denote

(2.15)

with the obvious definition of Zq(A\RdΛc).

Lemma 2.3. There is a constant a < oo, and a function ε x( j)->0 as j-+oo9 such that

with probability 1 — s^j), provided the equilibrium measure P is tempered.

Lemma 2.4. Denote by £ " the sum over all outer contour networks such that

(2.16)

Assume that RdΛc is chosen in such a way that u(Rx) S alogjfor all xedAc = dA(j)c,
and let L^.L0, where Lo is the constant from Theorem 3.3 o / [ l ] . Then there are
constants β1 = βι{L) and Bλ = B^L) such that

provided β^βl9 μeir

1 and B^.B1. ε2(Λ) is a constant going to zero as A ^ Z v .
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Lemma 2.5. There are constants L o < oo and β2 = β2(L,B) such that, for B< oo,
L ^ Lo, μei^i, β ^ β2(L, B) and all volumes A which are unions ofLrblocks centered
in LZV

provided q is stable and \RX — Rq\ f^BVxedAc. M>0 andK < oo are constants not
depending on A or A.

Proof of Proposition 2.1. The proof relies on two facts:

i) outer contour networks for which

pressed as A s Z v (Lemma 2.4);

Λ\{JVq is larger than |dΛc| are sup-

ii) for a given outer contour network with Λ\[)Vq ^ \dAc\1+δ most terms tx(A)

in the average A lie deep inside a region Vq; therefore their conditional expectation
values < tx(A) | Out }ΛίRδΛc are well approximatized by < tx(A) }q = (A}q (Lemma 2.5).

Summing over Out and integrating over the boundary conditions RdΛc we will
obtain the proposition by a 4ε-argument.

We fix L^L0 according to Lemmas 2.4 and 2.5 and choose B^B^L^β^
max {β1(L),β2(L,B)}. We fix a according to Lemma 2.3 and δ < 1/v. Given ε and
a bounded local observable A, we will show that the left-hand side of (2.13) can
be made smaller than 4ε by choosing A large enough.

Given A and ε, we choose d0 so large that

For an outer contour network Out with Λ\[jVq f^\dAc\1+δ, let Dq denote the
q

union of all cubes, Π(x')> i n Vq which touch the outer contour network, and set
Vq = Vq\Dq. By the definition of an outer contour network, all fields Rx with xeDq

obey the condition \RX — Rq\^B. Therefore the conditional expectation value
{tx(A)\Out}ΛRdΛc can be rewritten as

provided tx(A) has support in Vq; dP is a probability measure with support in the

set of all fields Repc which obey the condition \RX — Rq\ ^B Vx6δVc

q. Applying

Lemma 2.5 we obtain that

provided xeλq, where Λq is defined as the set of all xeZv such that tx(A) has
support in Vq and dist(ίx(,4), δVq) ^ d0. On the other hand,

\Λq

\Λ\

\Λq

\Λ\
<0

do)\dΛ C\ί+δ

\Λ\

provided \Out\S\dAc\1+δ. Using the fact that | < tx(A) \ Out > to bound
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the terms for which xφ\J Άq we obtain that
q

provided A = A(j) is large enough and

identity

^\3Λc\1+δ. We finally use the

^ (2.18)

together with Lemma 2.4 and Lemma 2.5 to conclude that

(2.19)

provided A = A(j) is chosen so large that 21| A \\ε2(Λ) ̂  ε and 21| A Wε^j) ^ ε. This
completes the proof of Proposition 2.1. •

3. The Suppression of Unstable Phases

In this section we prove Lemma 2.4. We first bound P(Out 1 RdΛc) for a given outer
contour network; this will reduce us to an ordinary contour model with hard core
interaction. The sum ^"over Out can then be estimated by the methods of [8].
Throughout this section we will assume that μeir

1 with /V1 as defined in
Lemma 3.1 of [1].

We start with a lower bound on Z(A\RdΛc). We choose a stable value of q and
use the fact that 1 ̂  χq to bound, for A = A(j),

where k1 is the constant from Assumption R (see Sect. 1) and k2 = max oc(R).

Choosing L^L0 and β ^ β2(L) as in Theorem 3.3 of [1] we may bound Z*ύ(Λ)
from below by β-*;w-cil0*i = ^ I Λ I - C ^ Λ - I

On the other hand Zs™n(Vm\RdvcJ and Zf{Vq\RdγC) may be bounded by

Zr

m(Vm) and Zf{Vq) = Z'q{Vq), respectively6. We use Lemma 3.2 of [1] together

with the bound Σ \dVc

m | ^ |Out | to estimate the product of these

partition functions. Inserting the resulting bounds into the definition (2.12) of
P(Out\RdΛc) we obtain

^

o»t}) Π
xeOut

6 We recall that the truncated partition functions Z'm(Λ) were obtained from Z^\Λ) by truncating the
activities of the unstable contours, see [1], Sect 3, Definition 3 1
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To bound the integral in (3.1) we use the fact that all blocks Π(x') in Out which
do not touch dΛc are either incorrect or contain a large field. If Π M contains a
large field, ω(x) takes a constant value q on •(*') which is stable. We therefore
may bound H(RΠ(χl)) by

by our assumption A.I, [1]. Using the definition of χlargQ(RΠ(xΊ) and bounding
the integrals

f
\R\^B - o o

one easily finds the estimate

with e0 = m i n e r Continuing as in the proof of Lemma 3.1 of [1] to bound the

remaining integrals we obtain the bound

g ί ) ( )
xeOut

with
e~τ> = mαx{e-\2(2π/η)1/2e-{ηl2)B2L~d} (3.2)

and k3 =L(τf + logC0). τ and Co are the constants from Lemma 3.1 of [1]; the
factor /c3|<Mc| arises because we defined the outer contour network in such a way
that it contains the blocks Π(x') touching dA\ even if none of these blocks
contributes a small factor. Using Lemma 3.2 of [1] a second time to bound
h ^ e0 + Cί we finally obtain the estimate

- ( τ ' - 2 C l ) | O u t | e " ^ m l F m l , (3.3)

with K = Cx + /q(l + k2) + fc3.
We are now ready to bound the sum Σ" over Out. We extract a factor

with K = min {V, min {αm: αm φ 0}}, resum all outer contour networks which differ
only by X(Out), and finally relax the condition (2.16) in the sum £"• We obtain
the bound

Y" F{O\x\\R )<e(
κ+αkiι°sJ-

Out

(Out, ωout)

where the sum £ r goes over all sets Out c A which are unions of L-blocks and
over all functions ω O u t : Out -• {0,1,..., N} such that
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i) Out contains all blocks Π(x') in A which touch dA\
ii) ω O u t takes a constant value m φ 0 on dCc for each component C of A \Out and
iii) all components C of Out which do not touch dAc obey the condition
diam C > τβam if ω = m on δeC.

The sets Vm, m = 1,..., N9 are defined as before, see Sect. 2.
Lemma 2.4 now follows immediately from (3.4), the observation that τ' can be

made arbitrarily large by choosing β and B large, and the following

Lemma 3.1. There is a constant τ 0 , depending only on N and v, such that

(3.5)
(Out, ωout)

provided τ ^ τ ^ τ 0 .

Remark 3.1. Lemma 3.1 can actually be proven by the methods of [8], Sect. 2.3
to Sect. 3.3. We give an alternative proof below.

Proof. We introduce an auxiliary contour model as follows: A pair y = (supp y, ωγ)
where supp y is a connected union of L-blocks centered in LZV and ωγ is a function
from supp y into {0,1,..., N} is called a contour, if ωγ takes a constant value m # 0
on dCc for each connected component of Zv\suppy. The sets Exty and Intmy,
m = 1,..., AT, are defined as usual as the infinite component of Zv\supp y and as
the union of those components C for which ωy = m on <9CC, respectively, y is called
an m-contour if ωy = m on δ(Ext y)c.

The activity of an m-contour y is defined as

\0 if diamy ^τ/3am

-̂τΊsupp.i if diamy > τ/3αm

and the partition function, 2£^d, is defined as

{yi. .yn} m' = l ΐ = i

As usual the sum goes over sets of pairwise compatible contours yγ =
(suppy^ωj,. . . , yπ = (supp yπ, ωπ) such that ω can be extended to a function on
A which is constant on CudCc for all connected components C of Λ\usuppy i 5

and which takes the value m on dA. Vm> denotes the union of all those components
C for which ω = m' on dC. We only allow "dilute configurations," y1?...,yM, i.e.
we require that dist (Λc, supp yi u Int yt) > L for all ί = 1,..., n. Note that z(y) = 0
for all stable contours y; therefore ^f\A) = 1 if aq = 0.

With the help of these definitions we rewrite the left-hand side of (3.5) as

E\ (3.7)
(E,COE) m

where the sum goes over all boundary contours (£, ωE), that is over all connected
unions, £, of L-blocks in A and all functions, ωE, from E into {0,1,..., AT} such
that E contains all blocks touching dAc and such that ωE is constant on dCc for
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each component C of Λ\E. We will bound the partition functions, Jf d l l (Int w £),
in (3.7) by the analog of Theorem 3.3 ([1], Sect. 3) for 2£™.

As usual (see, for example, [8], Sect. 1 or [9], Sect. 2) one may rewrite 2?^\Λ)
as a sum over pairwise compatible m-contours y™,...,'y™:

with

We also introduce a truncated partition function, £"m(Λ)9 by replacing p(y) by

For τ large enough, depending only on v and JV, 2£'m(Λ) can be analysed by a
convergent cluster expansion. One obtains that

where f'm is the free energy of the truncated model. Since all contours contributing
to f'm are larger than τ/3αw, we may bound

' 2
) x (τ/3βM)

provided τ is large enough and τ ̂  τ. We conclude that / ' = min /'m ̂  0. Using
the analog of Theorem 3.3 of [1] (see also Theorem 1.7 of [8]) this shows that

provided τ ̂  τ ̂  τ 0 , where τ 0 is a constant depending only on N and v. Inserting
this bound into (3.7) and summing over (E,ωE) one immediately obtains the
lemma. •

4. Proof of Lemma 2.5

In this section we prove Lemma 2.5 by a suitable generalization of the cluster
expansion for < A }*ύ

Λ derived in Sect. 7 of [1]. We first derive a cluster expansion for

Zq{Λ\RSΛc) = \dRΛ\\ χq{Rx)e-H^R^\ (4.1)
xedΛ

Starting from the identity

= Σ'
xedΛ

where the sum ]Γ' goes over all ω such that ω(x) = q for xedΛ, we proceed as in
[1] to obtain a contour expansion for Zq(Λ\RdΛc),

) Π e-W^dRw (4.3)
yet
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The sum £ goes over sets of pairwise compatible ^-contours γ with supp γ c A.

φq is defined as before (Eq. (2.11) of [1]) and obeys a bound7

Recall that A\β stands for A\\J suppy and that dey was defined as d(V(y))c

(Eq. (2.7) of [1]). Note that (4.3) differs from the expansion for Zf\A) in [1] by
the dependence of e~H on RdΛc and the fact that the set # in (4.3) may contain
contours y which touch dAc.

We continue as in [1] with an expansion of the Gibbs factor e~
H^R^\^R^^

around the corresponding Gaussian approximation, with the difference that we
absorb the perturbing interaction, Wq(φx9 φy), into the definition of the perturbing
potential if (xy} intersects dAc. More precisely we define (with, as before,
φx = Rx-R0)

Wq(φ9 φ') = W(Rq + φ,Rq + φf) - y (0 - Φ')\ (4.5a)

Σ Wq(φx9φy\ (4.5b)
yedΛc

and8,

Fx(Φx)= Σ n{Zf(^ + ̂ " ^ - l } Π {e-^^-1}, (4.5c)
Xi,B xeXi <xy}eB

X = XiuX(B)

where B denotes a set of nearest neighbor pairs and X(B) denotes the corresponding
set of points. We obtain the expansion

(Λ )Z« (Λl\ΦdX(V)υdΛ°) TΊ cea\suppγ\-ψa(γ\Rdί,y) (4 gj
Z ( Λ \ Φ )

where X(V) = Xv(Ande%) and Λ1=Λ\(X(<ίf)usupp<g). H(

q

0) and Zj0 ) are the
quadratic and Gaussian approximations to iϊ and Z, respectively, in ̂  (see
Eq. (4.3) and (4.6) of [1] for the definitions).

The above expansion is an expansion into "excitations" (#, X), coupled through
a ratio of Gaussian partition functions. As in [1] we decouple the connected
components of these excitations with an expansion for this ratio (see [1], Sect. 4,
Eq. (4.8)). We obtain the polymer representation

Ae)Σ Π P(P\^dΛ (4.7)
P PeP

7 Throughout this section we assume that q is stable
8 With a slight abuse of notation we suppress the dependence of Vq(φx) and Fx(φx) on Rδ
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where the sum goes over sets P = {Pl9P29...} of polymers in A (i.e. connected
unions of L-blocks in A) such that Pt and Pj have no face in common for i Φj.
p(P\RdΛc) is defined as

Fx(Φx) Π S'^-W**** Π W(Γ\φdxmuίA.\ (4.8a)
γe<# ΓeΓ

where the sum goes over all triples (#,X,Γ) such that s u p p ^ u ϊ u X ( Γ ) = P, and

Γ\φδΛc)Y
(4.8b)

As in [1] Γ denotes a set of faces separating L-blocks in Λ,Γ denotes a sequence
(i~Ί,..., JΓ|Γ|)J^CO *s ^ n e s e ^ °f L-blocks which have at least one face in common
with Γ and X(Γ) = \J X(Γ). The s-dependent partition functions Z^0)( , s Γ | ) are

ΓeΓ _

defined by interpolation in the Hamiltonian H{°\ and X is the smallest union of
L-blocks in Λ\supp^ such that X{^)^X and dist(yi\(Xusupp^), X(<g)) < r 0 ,
where r 0 is a constant to be chosen below.

Note that for polymers P not touching dA the activities p(P\RdΛc) do not
depend9 on RdΛc and are equal to the activities p(P) obtained in [1] for the
partition function Zf\A). The following proposition immediately gives
convergence of the Mayer expansion for logZq(A\φdΛc).

Proposition 4.1. Given b < oo there is a choice of Lo < oo, such that, for all L^L0

and all B< oo one can choose r0 = ro(L)9 βλ = β1(L9B\τ1 = τ^L,B) in such a way
that

provided \φx\ ^B for all xedAc and β^βuτ = τ(β,L)^ τx.
We first prove the following lemma, which is the analog of Lemma 5.1 of [1];

η and η" are the constants from Assumption A.I.

Lemma 4.2. For all c<co there is a constant L o = L0(c, η, η'\ v) such that, for
^.L0,ε>0 and a suitable choice ofr0 (depending on ε, L,η,η" and v)

Σ φ
Γs.t. \ l I ! ΓeΓ

provided \φx\S B for all xedAc. f1 is a constant depending only on L, v, η and η".

Proof. We closely follow the proof of Proposition 5.3 and Lemma 5.1 in [1]. For a

9 There is no dependence of p(P| Rd Ac) on RdΛC via W(Γ| •) for these polymers, because the contributions

from Λ\P in (4.8b) cancel if P does not touch dΛ
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given Γ let C (1) and C(2) be the covariances corresponding to Z(°\Yl9 sΓ\ Φ^X^^Q^)

and Z^\Y2,sΓ\φdAc\ respectively, with Y2 = Xusupp^uX(Γ) and YX = Y2\
,π,,* .^ U s i n g t h e f a c t t h a t t h e c o n t ributions from Λ\Y2 cancel in (4.8b)

we rewrite

* x,yedX(%)vdΛc 2. x,yedΛc

where W(Γ) is obtained from W(Γ) as defined in [1] by substituting C(ί) for C(ί);
B^y is defined as

u,veYi
\u-χ\ = \v-y\ = l

Using the inequality φ2

x + φj^ 2\φxφy\ and the symmetry B^y = By\ we bound

Σ \
Γ:\Γ\=n

s Σ ι^(m+^ Σ Φl Σ \B™{Γ)\
Γ:\Γ\=n έxedXiV) yeZv

Γ:\Γ\=n

+\ΣΦl Σ \B™in\+\ Σ Φl Σ ^
Γ:\Γ\=n Γ:\Γ\=n

We now extract a factor e~moro12 from the sum over y in the second term on

the right-hand side and use the fact that only those x contribute to the last two

terms for which xedΛcn(Y2vdYc

2) c 8YC

2, because B®=0 if dist(x, 7 2 ) ^ 2 .

Continuing as in the proof of Proposit ion 5.3 of [1] we obtain the estimate

Γ:|JΊ=n

e-(m0/2)(ro-L)

where dί is the constant from Proposit ion 5.3 of [1] (it depends only on v,η and

ηf). We now bound \dYc

2\ ^ ( 3 V / L ) | Y2\ and use the fact that \X(Γ)\^2Ld\Γ\S

2 | 7 " | | X u s u p p ^ | for all terms which contribute to the above sum (if

Xusupp<f = 0 , Y2=Yi and W(Γ\φdxWudΛe) = O; if X u s u p p ^ # 0 , the
inequality is trivial); we therefore may bound

which shows that

e m o L / 2

,-(mo/2)(ro-L)

Σ y ^ 2 } (4 9)
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Given c < oo we choose L o so large that

and r 0 = ro(ε, L, 77, */", v) so large that

Lemma 4.2 now follows from the bound (4.9) in the same way as Lemma 5.1
follows from Proposition 5.3 in [1]. •

Proof of Proposition 4.1. Using Lemma 4.2 together with the bound (4.4) we are
left with a bound on a sum over terms of the form

A _ecL~v\P\e-(τβ-cL~v-

Bounding the integral by
(ε/2)

and the ratio

with a constant / 2 depending only on v,η,η' and η'\ we continue as in [1] to
complete the proof of Proposition 4.1. •

At this point the proof of Lemma 2.5 is a standard exercise: one repeats the
procedure leading to the polymer representation (4.7) for the unnormalized
expectation value [^4]^^^ = (A}q

ARdΛcZq(Λ\φdΛc) and uses the usual algebraic
procedure to divide out the partition function Zq(Λ\φdΛc). Since we have assumed
that the observable A is bounded, the bound proven in Proposition 4.1 immediately
gives the bounds necessary to prove the convergence of the resulting cluster
expansion for (A}q

RdΛc. Lemma 2.5 is an immediate consequence.

5. Periodic Boundary Conditions

In this section we analyse periodic boundary conditions. We first consider the
partition function,

ZpJT) = μRTe~H^\ (5.1)

where T is the v-dimensional torus with length / in each direction. As usual we
assume that T is a union of Z -̂blocks, i.e. / is an integer multiple of L, where L is
chosen according to Lemma 3.1 in [1]. Denoting by h'q the free energy of the
truncated contour model (see Sect. 3 of [1] for the precise definition), by h the
minimum of the h'q's and by aq the difference hq — h, we recall that the phase q is
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stable iΰaq = 0 and introduce the constant

a = min am.

Our first goal is the proof of the following theorem, which is the appropriate
reformulation of the corresponding theorem in [9]. f\ is the neighborhood of
O E R * " 1 defined in Lemma 3.1 of [1].

Theorem 5.1. Assume that V and W obey the conditions A.O through A3 of [1].
Then there are constants β* < oo,B>0 and lo = lo(ά)< co, such that for μeΨ[9

β^β* andl^ /0,

\ZvJT)ehlv-N0\^e-m. (5.3)

No is the number of stable phases.
The proof of Theorem 5.1 is essentially the same as that of the corresponding

theorem in [9]. For the convenience of the reader and for later reference, however,
we give the complete proof. We start with the partition of unity,

1 = Σ Π Z«κ*>(K*λ
ω:T^>{O,l,. .,N}xeT

with χω( ) as before and define a L-block, Π(*')> to be m-correct iff ω(x) = m for
all x with dist (x, Π(*')) S 1. As before the connected components of the set, B(ω\
of incorrect points are the supports, suppy l 9...,suppyw, of the contours,
γx = (supp γx, ω y i ),. . ., yn = (supp γn9 ωVn), of the configuration ω.

Following [9] we first consider those configurations, ω, for which

diam γ ^ 1/3 for all contours y. (5.4)

For such configurations, the notation of exterior contours can be well defined:
For a contour, y, of ω let Inty be the union of those components of T\suppy
which have diameter less or equal 1/3. Exty is then the remaining component of
Γ\supp y, and the set of exterior contours of the configuration ω is the set of
contours, y, for which there is no other contour, y', of ω such that supp y c: Int γ'.
Denoting the sum over all configurations, ω, which obey (5.4) and whose exterior
contours are m-contours by ]ζ(m), we introduce the partition function

Zm(T) = Σ ( m )ί Π X^(Rx)e-mτ)dRτ. (5.5a)
ω xeT

More generally, we define, for a subset V cT,

ZJV) = Σ(m)$ Π X^(Rχ)e-mr)dRy, (5.5b)
ω xeV

where we impose the additional constraint that all exterior contours, y, obey the
"diluteness condition" dist(F(y), T\V) ^ L. As before V(y) is the set Intyusuppy.
We also introduce the partition function,

= Σ B i 8 ί Π X^>(Rχ)e-mτ)dRτ, (5.6)
xeT

where the sum goes over all configurations violating the condition (5.4).
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With this notation we rewrite Zpeτ(T) as

ZPJT)= Σ Zm(T) + Zm(T). (5.7)
m = l

Theorem 5.1 now follows immediately from (5.7) and the following three lemmas,
which are proven in the sequel. We assume from now on that V and W obey
assumptions A.O through A.3 of [1], and that μeΨΊ, L^L0 and β^β2, where
L o and β2 are the constants from Lemma 3.2 and Theorem 3.3 of [1], respectively.

Lemma 5.2. Assume that q is stable. Then there are constants K2 < oo, B2 > 0 such
that

\logZq(T)-h\T\SK2e-B>1.

Lemma 5.3. There is a constant β3 < oo, such that for β ^ β3 the following statements
are true:

i) For all me{l,...,N] and all Va T which are unions of L-blocks

Zm(V)eh^

ii) Ifm is unstable

Here τ = τ(/?,L) is the constant from Lemma 3.1 [1] and B3>0 is a constant
depending only on the dimension.

Lemma 5.4. There is a constant β4 < oo such that

provided β^β^.

Proof of Lemma 5.2. For the Gaussian approximation, Z(°\T\ to Zq(T), the
statement is well known. It can be proven, for example, by comparing the random
walk expansion for logZq°\T) with the random walk expansion for | T\hq

0). Since
the difference between log Zq

0)(T) and log Zq(T) can be controlled by a convergent
cluster expansion if q is stable, the result immediately generalizes to log Zq(T). •

Proof of Lemma 5.3. We proceed as in the proof of Theorem 3.3, [1] to bound

where the sum goes over sets ^ of mutally external m-contours which are all large
(i.e. αmdiamy > τ/3) and obey a bound diamy < Z/3. Extracting a factor

M = maXe-«W2)inint^ι [ ] e-W2)\*\ (5.8)

and continuing as in the proof of Theorem 3.3, [1], we obtain, for a suitable
choice of β3 and for β^β3,

Zm{VYm S Mexp { ( d + l)\dVc\ + K2e~B21}.
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Bounding M by 1 we obtain i). To prove ii) we set V = T and use the isoperimetric
inequality to bound

where K > 0 is a constant depending only on the dimension v. We obtain that

The supremum is obtained for either x = 0 or x = \ T\9 which shows that

M<max{e~ ( α w / 2 ) | Γ i ,e~ ( τ / 2 ) X | Γ | ( v ~ 1 ) / v } .

This proves ii), with, for example, B3 = K/2. •

Proof of Lemma 5.4. For a given configuration ω contributing to (5.6) we let <S1

be the union of those contours which violate (5.4) and Vm be the union of those
components, X, of T\supp^Ί for which ω = m on dK. Resumming all
configurations ω which give rise to the same set <β1 we may bound

where we used Lemma 3.1 and Lemma 3.2, ii) of [1] to bound integrals of the form

Next we use Lemma 5.3, i), to conclude that

ZBίg(T)ehW^eκ*Σ Π β - ( τ " 2 C l " 1 ) l y | .
if i ye^i

Bounding the sum over all contours, y, with fixed size s = \γ\ by Γeκ\ where K is
a constant depending only on v and N, we obtain, for τ large enough,

Z B i (T)e»

We are now ready to prove Theorem B of Sect. 1. We consider a bounded, local
observable, A, and introduce the modified partition function,

Zm(A,T)= Σ<m> ldRτY\χω(x)(Rx)Ae-HiRτ\ (5.9)
ω:Γ->{0,l,...,#} xeΓ

as well as

Zmg(A,T)= Σ ldRτY\χωix)(Rx)Ae-HiRτ\ (5.10)
ω:Γ{0,l,. ,iV} xeT

where the sum £ r denotes a sum over all configurations, ω, which violate the
condition (5.4). We also introduce the expectation values

and recall that (A}q denotes the infinite volume limit of the finite volume
expectation values with boundary condition g, see [1], Theorem 1. For stable
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values of q, the difference, (A}q — (Ay'm Γ, can be controlled by a convergent
cluster expansion and goes to zero as T->ZV. Therefore Theorem B follows
immediately from the following theorem.

Theorem 5.5. Assume that V and W obey the assumptions A.O through A.3 of [1].
Then there are constants β* < oo, B > 0 and l0 = lo(a), such that

1

provided μeir

ί9 β ̂  β* and I ̂  Zo. The sum goes over all stable values ofq, and No

denotes the number of stable phases.

Proof. Theorem 5.5 immediately follows from the identity

J ^ ZJA, T) + zB l βμ, τ)\

Theorem 5.1, Lemma 5.2 through 5.4 and the bounds

Zm(A,T)ί \\A || ZJT\ (5.13)

Zmg(A,T)^\\A || Zmg(T). (5.14)

•
Remark. For an unbounded observable A, the bound (5.12) is useless because
|| A || = oo. To prove Theorem B for the more general class of observables for which
IIA ||(α) < oo, see [1], Sect. 1, for the definition of || A ||(α), we show that

Zm{A, V)eh{v[ ^ || A ||<α>KlsuPe^l exp {K2e~B21 + {C1 + 1)|dVc\}, (5.15)

Zm(A,T)em ^ \\A\\iΛ)K^^^eK2max{e-^2ϊl\e-MΨ~ί} (5.16)

and
τl/6

9 (5.17)

with a constant K which does not depend on I. Given these bounds we immediately
obtain Theorem 5.5 with \\A\\ replaced by ||yl|| (α)X | supp^1, and hence Theorem B
for all observables, A, with M | | ( α ) < oo. Since the proof of (5.15) to (5.17) is a
straightforward combination of the methods developed in Sect. 7 of [1] and the
methods of this section, we don't present the details here.

Appendix: Superstability Estimates

In this appendix we prove Lemma 2.3, using the methods of [2-4]. In fact we
prove a more general theorem on the probability that oc(Rx) ^ α0 for a given site,
5 G Z V . Lemma 2.3 then follows by a three line argument. To make this appendix
self-contained we restate those assumptions which are needed in the course of the
proof.

We consider a spin model with spins RxeR and a Hamiltonian
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where the sum £ denotes a sum over nearest neighbor pairs, (xy). We assume
<χy>

that V and W are bounded from below and that W is normalized in such a way
that W(RX9 Ry) ̂  0. Putting

a(Rx)=V(Rx)-MV(R)
ReR

we assume that W obeys the regularity condition

0 ^ W(RX9 Ry) ̂  M l + *(RX) + α(jy) (A.2)
and that

j β -( i-λ)αw^ < 0 0 ( A 3 )

for some constants kί<oo90<λ<l. For the model considered in the main body
of this paper assumption (A.2) is the assumption R of Sect. 1 and (A.3) immediately
follows from assumptions A.I i) and A.2 ii) of [1].

Let Λ(j) be the set of all points in Z v which have distance10 less or equal to j from
the origin and put, for a configuration R in Z v

|| R | |= sup -±- Σ α(/y. (A.4)
j^O \Λ(J)\xeΛ(j)

We define: an equilibrium state, < > = J dP, is tempered if || R \\ < oo with probability
one.

The goal of this appendix is to prove the following:

Theorem A.I. Let < > = J <£P be a tempered equilibrium state. Then there is a
constant K < oo such that the probability, P(oc(Rx) > α0), that ot(Rx) is larger than
α0 is bounded from above by Ke~{λ/2)ao.

Remarks
i) As the reader may easily verify from the following proof, the constant λ/2 in
the above theorem may be replaced by any constant X < A, at the cost of making
K larger if λ/2 < I
ii) Lemma 2.3 immediately follows from Theorem A.I because, for a > 2(v — ϊ)/λ,
the probability that ot(Rx) >alogj is bounded by

Therefore the probability that <x(Rx) > alogj for at least one x with dist(x,0) =j
is bounded by

0 ( Γ 1 )

which goes to zero as j-> oo.

1 0 We define the distance dist(x,)>) between two points, x,yeZ\ as | x — y\l9 where l ^ denotes the lx

distance in Z v
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Proof of Theorem AΛ. We introduce a growing sequence of positive numbers

φk -» oo as k -> oo and a sequence of volumes Λk, such that

i) Λo contains all yeZv with dist(x, y) ^ 1, (A.5)

ii) δΛc

kaΛk+ι and (A.6)

i ϋ ) ^ ^ ^ l + β (A.7)
\Λ\ φ

for some small number ε to be chosen later (a possible choice would be, for example,
Λk = Λ(k + fe0), ψk = k + fe0, where k0 has been chosen large enough, depending on
ε). As in [2-4] we define sets, ^ f c, of configurations R,

(A8.a)

VJ+1 = \R Σ «(«χ) ^ ΨMjί Σ «(ΛX) < ̂ μ j Vfe ^ j + 1 j . (A8.b)

We also introduce the characteristic functions, Xj = Xj(R), which are 1 if R
and 0 otherwise. Since P is tempered, we may rewrite

Σ ^ (A.9)
j=o

with

Using the DLR equations, we rewrite

Pj+ί = ldP(RA.)—-±-—fdRAjχ(a(Rx)
3 z \ Λ \ κ )

where we used the convention Λ-x — {x}.

After these preparations we bound the probability P(oc(Rx) > α0). We first

estimate Po. The necessary lower bound on Z({x}\Rd{x]c) = $dRxe~HiRχlRd{x]c) is

obtained as follows. For Re^0 and R x e R we estimate

H(Rx\Rd{χ}c) S V(RX) + kx Σ (1 + A
y:\y-x\ = l

ί V(RX) +

+ 2vfc1(l

which, for Re^θ9 gives the bound

with C = e2vk l/jίiΛe-'' (5)-2v ί : iα(S). Inserting this bound into (A. 10) we obtain, using
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the lower bound W(R,R') ^ 0,

j e-
V{Rχ)dRx^ekiMΛ^Ce-λao, (A. 11)

with

c =

To bound P . + 1 for 7^0 we estimate, for Ref.+ 1 and RΛJ:ΛJ->R,

H{RΛj\ReΛc)< X
xeΛj,yedΛCj

\x-y\ = l

ι\Λj

where we have used (A.6) in the second step. Choosing the constant ε in (A.7) so
small that βvfcjε ^ λ/4 we obtain the bound

provided Re%>j+1 and α(R x )^α 0 (we have used the fact that xeΛj for all
by our choice of Λj, see (A.5) and A.6)). Inserting the above bound into (A. 10) one
gets the estimate

Combined with (A.ll) we finally obtain Theorem A.I with

K = Cekl^Λo^ +
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