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Abstract. The phase diagram and the corresponding infinite volume Gibbs
states are constructed for a large class of continuous, unbounded spin models.
Our construction relies on a partition of unity mapping our system onto an
interacting contour system, a generalisation of Zahradnik's approach to Piragov
Sinai theory to interacting contour systems, and a suitable mean field expansion
around the minimas of the Hamiltonian.

Introduction

In this and a forthcoming paper, [1], we study continuous spin models with a
single spin potential, V9 whose minima are deep and widely separated. While such
models have been extensively discussed in the literature if the minima of V are
related by a symmetry, [2-5], results concerning the general case without any
symmetry were only obtained in recent years.

The first work in this direction is that of Imbrie, [6], who treated two
dimensional Euclidean field theories in which the potential, V, is a polynomial in
the fields. His idea was to use the cluster expansion of [2] to obtain a hard core
interacting contour system and to analyse this system using the techniques of
Pirogov and Sinai, [7-9]. This turned out to be technically rather complicated
because the resulting contour activities were not positive. Imbrie solved this
problem by using a relatively involved resummation technique1.

An alternative approach would be that of Bricmont et al., [12], who mapped
certain lattice (and continuum) gases with three or more particle species to an
interacting contour model (with positive activities) and then studied this model
using the methods of [7-9]. Their method has been extended to bounded
continuous spin systems on the lattice, but it is not clear whether their techniques
extend to the unbounded case as well.

1 Recently, Borgs and Imbrie realised, [10], that this resummation can be avoided using the techniques
of [11] rather than [7-9] since that approach may be generalised to contour models with complex
activities. See [10] for details
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Another approach is that of [13] (see also [14]) which starts from the very
beginning with a generalised contour model and then analyses this model using
the cluster expansion techniques of [15]. Their results are very similar to those
described in the present work, with two differences. They only consider potentials,
F, which have two minima, and they only consider the point in the phase diagram
at which the two phases corresponding to these minima coexist. There is no doubt
that their methods could be easily extended to include potentials with three or
more minima, but extending their results to include points in the phase diagram
away from coexistence would require substantial generalization.

Note also that none of the papers, [2-6], [12], or [13] treat the completeness
question. That is, the question of whether all translation invariant infinite volume
states are a convex combination of the particular states constructed, as expected.

The goal of the present work is to construct the phase diagram, and
corresponding infinite volume states, of an unbounded spin model with single spin
potential V and nearest neighbor interaction W (see Sect. 1 for precise definitions).
We assume that V has N deep and widely separated minima of approximately the
same depth, and that V depends on parameters μeR*" 1 in such a way that by
varying μ one shifts the differences between these minima. We will need assumptions
concerning the behaviour of V and W near the minima of V. We choose assumptions
(A.I of Sect. 1) which allow us to control the Gibbs factor, e~H, for fields lying
near a minimum of V, through a cluster expansion around the Gaussian
approximation to e~H. This part of our analysis is quite flexible. We could use,
instead, any other single phase type expansion or, more generally, any other method
(for example that of [16]) which allows us to establish strong clustering properties
for the models in which all spins Rx are constrained to lie near one of the minima
of V.

Concerning the fluctuations between the various minima of V we proceed as
follows. Let χq(Rx) denote a characteristic function which forces the spin, Rx9 to

N

lie in a certain neighborhood, Uq, of the qth minimum and let χ0 = 1 — ]Γ χq. Given

a volume, A c Zv, we introduce a partition of unity

i = Σ *«(,)(*,), (o.i)
ω:Λ-»{0,l,...,tf}

and consider ω as a spin configuration of a discrete spin system with ground states
l,...,iV. Defining contours as usual in the Pirogov-Sinai theory we obtain a
representation of our model as a system of contours interacting via "fields" Rxe Uq9

for some ge{l,2,...,JV}. (See Sect. 2 for details.)
At this point one is confronted with the problem lying at the core of the

Pirogov-Sinai theory. One would like to obtain expansions by insisting that cox = q
for x near the boundary of A and for some q. One then expects that if the qth

minimum is stable (where the term stable must be defined) then the resulting
contours have small activity. It is, however, not clear a priori which q are stable.
In addition, one encounters such boundary conditions for all q at intermediate
steps of the analysis. To deal with this problem we choose to use the technique
developed in [11]. This technique is based on the introduction of auxiliary models,
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called truncated models, for which all contours have small activities and which
turn out to differ from the actual models that we are interested in only for rather
large contours. The truncated models may then be analysed by Mayer expansion
techniques. If h'q are the free energies of the truncated models one shows that the
truncated and actual models with ^-boundary conditions are identical if

h'q = h = mmh'm. (0.2)
m

Using standard methods, we then construct, for q satisfying (0.2), called the stable
values for q, infinite volume states, < >€, which are small perturbations of the
Gaussian approximation to e~H in Uq (Theorem 1, Sect. 1). Making appropriate
assumptions about the behaviour of V as μ varies (corresponding to the "degeneracy
removing condition" needed in the Pirogov-Sinai theory) we then construct the
phase diagram. That is, we show that there is a point, μ0, for which all q are stable,
that there are lines, μq(t) starting at μ0, for which all q' except q are stable, that
there are surfaces, μqiq2(t9s), bounded by μqι(t) and μq2(t), for which all q except qγ

and q2 are stable, and so on (Theorem 2, Sect. 1 and Sect. 6). In a second paper,
[1], we then show that all translation invariant infinite volume states obeying
certain regularity conditions on the growth of the boundary condition are convex
linear combinations of the < >€. This then completes the analysis.

The paper is organized as follows. In Sect. 1 we define the model and state the
assumptions we use to prove Theorems 1 and 2. In Sect. 2 we use the partition of
unity, (0.1), to rewrite the model as an interacting contour model. In Sect. 3 the
truncated models are introduced and we prove that the truncated and actual models
are identical if h'q = h. The cluster expansion we use to control the truncated models
is introduced in Sect. 4, and its convergence is proven in Sect. 5. In Sect. 6 we
discuss the construction of the phase diagram and in Sect. 7 we construct the
infinite volume states, < > r

1. The model, Assumptions, Results

We consider an unbounded spin model on the lattice Zv, v ̂  2, with spins RxeR,

H(RΛ) = ΣnRx) + ̂  Σ W(Rχ,R,% (11)
\x~y\ = l

and partition function

Z(Λ) = $e-H{RΛdRΛ, (1.2)

defined for arbitrary finite subsets A c Z v. As usual we write |x — y\ for the lattice
V

distance ]Γ \xt - yt\. V and W take values in JR u {+ oo} and depend on the inverse
i=l

temperature β, as well as parameters μei^{0), where f (0) is an open neighborhood
of 0ERN~\ N^2. For μ = 0,V has JV absolute minima2, R(?\...9R%\ which

In fact we allow for a slightly more general situation, see assumptions A.I-A. 3 below
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become deep and widely separated as β grows (see assumption A.2 below). As a
typical example one may consider a potential, V(R), obtained by rescaling from a
jS-independent potential, v(r\ with non-degenerate minima rί9...9rN:

V(R) = βv(R/Jβ), (1.3)

and similarly for W

W(R, R') = βwiR/y/β, R'/y/β) (1.4)

with, for example, w(r,rf) = \r — r'\2.
We now will formulate several assumptions on V and W9 which will allow us

to prove the theorems mentioned in the introduction. We start with

Assumption A.0 (A Priori Bounds on Fand W). For all β < oo, V and W are bounded
below, and exp (— V) is ίntegrable. We will assume that W is normalised in such a
way that

minW(R,R') = 0. (1.5)
R,R'

Note that W(Rx,Ry) in (1.1) can be replaced by %W(RX9Ry) + %W(Ry9Rx) without
changing H(RΛ). We therefore assume without loss of generality that W is symmetric,
i.e.

W(R9R')=W(R',R). (1.6)

Clearly the above assumption ensures that the partition function, Z(Λ),
exists. The next two assumptions state that in certain disjoint, open, intervals
Uq = Uq(β)czR, g = l,...,JV, the Gibbs factor, e~H, is well approximated by
appropriate Gaussians in Uq9 whereas fluctuations away from Uq are suppressed.
More precisely we assume the existence of a μ-independent, positive function
τ(β)-+oo as /?-> oo, such that for

Uq = {RER\ \R - Rfψ < τ(j8)}, (1.7a)

jUq, (1.7b)

the following assumptions are true (q and q' always denote integers between
1 and N).

Assumption A.1 (Gaussian Fluctuations). There are constants η9 η\ η" not depending
on μ and β, as well as functions

™2

q = ̂ 2(ftμ) ^ η > 0, m\ < η' < oo

κq =
 κ

q(β> n) ̂  0, κq< η" < oo

Rq = Rq(β,μ)eUq, eq = eq(β,μ)eR

such that the following statements hold:

0) UqnUq, = φforqϊq\
i) V(R) ̂  (η/2)(R - Rq)

2 + eq for ReUq,
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ii) there are functions ξ(jS)-»oo as /?-*oo,<5(/?)-»0 as β->oo such that

V(R)-eq-^-\R-Rq\ (1.8a)

(1.8b)

iii) lRq — ξ(β), Rq + ξ(β)'] c [/,(/?) and

ίv) Rq(β,O) = Rq°\

Assumption A.2 (Suppression of Non-Gaussian Fluctuations). There are constants
K1>0,K2<co,0<a<l, independent ofβ and μ, such that the following statements
are true:

i) min W(R, Rf) ^ K1 τ(β) for all q Φ q\
ReUq,R'eUq,

ii) inf V(R)teo = mineq, (1.10)
ReR q

in) I uRe ^ K2e * .
Uo

Assumption A.3 (Regularity of eq).

i) For μ = 0 all eqs are equal
ii) There is a constant K2 < oo, independent ofμ and β, such that for all μ,μ'ei^{0\

\eg(μ)-eq(μ')\^K3τ(β)\μ-μ'l

where \μ\ denotes the l2-norm of μ.

Note that assumption A.2 expresses the fact that fluctuations away from the
absolute minimum of V are suppressed. Since we want to construct the phase
diagram in a neighborhood of the coexistence point, we also need bounds on the
differences between the values V(Rq) of the various minima. These follow from
assumption A.3.

Remarks.

i) Assumption A.I will be used to prove the convergence of a convenient mean
field expansion for the "restricted partition function," ZT

q

s(Λ), obtained from Z(Λ)
by restricting all fields Rx to Uq. We therefore can replace this assumption by any
other assumption which guarantees the convergence of a suitable expansion for
Zr

q

es(Λ).

ii) In the abstract context considered in this paper it might have been more natural
to formulate assumptions A.2 and A.3 (as well as the following assumptions A.4
and A.5) using the free energy, hr

q

s, of the restricted model instead of er We choose
eq because the resulting assumptions are easier to check for the models we want
to consider in the future (for example the model considered in [17]).
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iii) In the case in which V and W are obtained by rescaling functions υ and w,
where rί9...,rN are the minima of v and w(r,r') ^ w(r, r) = 0, we set

τ(β) = O(β\ Rq

eq = βυ(rq)9 m* = v"(rq)9 κq = ^w(r,rf)

i and δ(β) may, for example, be chosen as O(βλ\O(β3λ~ll2\ respectively, with
0<λ<i

The goal of this paper is to construct infinite volume states, <• >g, q = 1,..., N9

which are (for β large) small perturbations of the Gaussian with covariance
(mq — KqΔy1 and mean Rq (see assumption A.I). The idea is to construct a cluster
expansion for each choice of q, with "high temperature" polymers describing the
fluctuations within Uq, and Peierls countours describing the fluctuations away
from Uq. Using the above assumptions it will be possible to establish the
convergence of these expansions for a certain subset, S = S(β,μ)cz {1,...,JV}, of
"stable phase" qeS.

In fact we will show, following an idea of Zahradnik, that for β large enough
and μ in a neighborhood of zero, S is always nonempty and is characterised by a
certain free energy condition

S(β, μ) = {q\hf

q(β, μ) = min h'~(β, μ)}, (1-12)
q

where hq is the free energy of a certain auxiliary model (see Sect. 3).
We have assumed that for μ = 0 the eq(β, 0) are all equal independent of q. If

the eq are well behaved as functions of μ then for each q'e{l929...9N} there
will be a curve in Ϋ^{0\ starting at μ = 0, along which all of the eq are
equal for qφa[ while eq. differs from the rest. Similarly, for each distinct pair,
{#i> #2} ^ U> 2,..., N} there will be a surface in i^(0) along which eq are equal only
when ge{l, 2,..., N}\{ql9 q2), and so on until one finds hypersurfaces of dimension
N — 1 on which all eq differ from each other. One may ask to what extent this
structure reflects the behaviour of S(β,μ) in the sense that there is some μ o e ^ ( O )

such that S(β, μ0) = {1,2,..., N}9 that for each q there is a line starting at μ0 along
which S(β,μ)= {1929...9N}/{q}9 and so on. Phrased in the usual language of
Piragov-Sinai theory we will show that, for β large enough, the phase diagram is
a continuous deformation of the zero temperature phase diagram in a neighborhood
of μ = 0. To obtain this result, however, we will need some additional assumptions.

Assumption A.4 (Degeneracy Removing Condition).

(i) eq(μ) is C 1 in ^ ( 0 ) and let

Eqj = ^L(eq-en). (1.13)

Then E is inυertϊble for all μei^m.

(ii) II E~1II ^ l/M(β) for all μ e ^ ( 0 ) , and ΊΓ<°> contains the sphere of radius M(β)~λ

around 0 for some λ<l and some constant M(β)-+co as /?->00.
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Assumption A.5 (Regularity of d V/dμ and d W/δμ). There are constants K5 and
K6(β\ where K5 is independent of μ and β and K6 satisfies

and there is a constant p > 0 such that

dμ

dW{R,R')
ίK5(τ(β)+W(R,R')),

and, for all ReUq, for each q = ί,2,...,N,

d
^K6(β)\R-Rq\",

(1.14)

(1.15)

(1.16)

(1.17)

(1.13a)

implies assumption A.4 with M(β) = 0{β). Assuming, for example, that w does not
depend on μ, together with the condition

(V(R)-eq)

— W(R,Rf)

Remark iv). For the rescaled model, a degeneracy removing condition on

d

~v(r)
dμ

and a Lipschitz condition on dv/dμj in an open neighborhood of rq9

d

dμj VV

gives assumptions A. 5 with

(1.14a)

(1.16a)

Using assumptions A.O through A. 5 we will prove the following two theorems.
A = ^4(^supp^) always denotes a local observable, i.e. a complex valued function of
finitely many variables K^xesupp^, M| | ( α ) is the norm

= sup ) Π
cesuppyl

and < )q> Λ denotes the expectation value

1

xedΛ
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with Zq(A) chosen so that <1>^> Λ= 1. χq(R) is the characteristic function of the
event ReUq. The first theorem concerns the infinite volume limit of < >4,Λ

Theorem 1. Assume that assumptions A.O through A3 are valid. Then there is a
finite constant jS* and an open neighborhood, ^ ( 1 ) a i^(°\ of μ = 0 such that if β ^ /?*
and μei^ ( 1 ) , then there is a non-empty subset, S(β,μ)<^{l,2,...,N}, of stable
boundary conditions, qεS(β,μ), such that the limit (A}q = lim ( A} q Λ exists for all

A with \\A ||(α) < oo. <^4)g is translation invariant and describes a small perturbation
of the Gaussian with mean Rq and covariance (m2 — κqA)~x (see Theorems 7.3 and
7.4 for the precise bounds).

The second theorem is the construction of the phase diagram. It states that
there is an open subset, r{2) c r{0), in which {μe^ ( 2 ) |S(β,μ) = {1,2,...,N}} is a
point, μ0e^<2 ); that, for each qe{\,2,...,N), {μer™\S(β,μ) = {l,2,...,N}\{q}} =
Ψ"q is an open curve one of whose end points is μo; that, for each pair of distinct
quq2e{l,2,...,N}, {μer(2)\S(β,μ) = {l,2z...,N}\{qί,q2}} = Ϋ quq2 is an open
surface whose boundary in i^{2) is Ψ"qχ\jψ~q2κj{μQ}', and so on. More precisely

Theorem 2. Assuming assumptions A.O through A.5 to be valid there is a finite
constant β* and an open subset Ym c iΓ ( 1 ) cz iΓ ( 0 ) such that for β^β* and for
all non-empty subsets M e {1,2,...,JV} the set i^M= {μeir{2)\S(β,μ)^M} is a
non-empty, continuous hyper surface of dimension N — \M\.

For further discussion of the relation between Theorem 2 and the phase diagram
see Sect. 6.

2. Dilute Partition Functions, Contours

In this section we begin the contour analysis of our model. We will introduce
certain dilute partition functions, Zq

il(Λ), for which the field φx is constrained to
lie in Uq near dA, and then rewrite Zq

Vύ(A) as a sum over non-overlapping contours,
interacting via a perturbed Gaussian.

We first fix some notation. For two points x, yeZv we usually use the maximum
distance dist(x,y)= max 1^ —yf|, except for the notation of a nearest neighbor

pair <*,)>>, for which
V

| χ - :v l= Σ l*i-:Vil = i-
i = l

For V,WaZv we define dist(V, W) as the minimum over all points xeV, yeW of
dist {x,y), and diam K=max dist {x, y). We set Vc = Z v \ V, d V= {xe V\dist (x, V)^ 1}

x,yeV

and say V is connected if dist(W, V\W)^ί for any non-trivial subset W a V. We
say V is a volume without holes if Vc is connected and call two sets V, W adjacent
or touching if dist(K, W) ^ 1.

Our partition functions will always be defined in sets A of the form

Λ= U •(*'), (2.1)
x'eΛ'

where, for some odd integer L > 1 to be chosen later, A' is a finite subset of LZV
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and Π(x') is an L-block centered at x'9

N

We now introduce the partition of unity 1 = Σ

h
and rewrite Z(Λ) as

Z(Λ)=
ω:

where we have introduced the notation χω{RΛ) = Y\ χω(X){Rx)>
xe Λ

The g-dilute partition function Zfι(Λ) is obtained from Z(Λ) by restricting the
sum over ω to a certain set Ωfλ(A). For volumes /I without holes this is the set
of configurations, ω, for which ω(x) = q for all xeΛ with dist (x, dΛc) ^ L + 1. For
volumes /I with holes we will introduce additional constraints which forbid
contours enclosing the holes of A (this turns out to be convenient at several places,
in particular in Sect. 3 and Sect. 7). We now define Ωfι(Λ) for arbitrary volumes,
Λ, of the form (2.1).

Given ω:Λ-• {0,1,..., n} a block DC*/) <= A is called q-correct with respect to
ω, g =̂  1,..., N9 if ω(x) = qVxsΛ with J(x, Π(^')) = l Π( x ') i s called incorrect with
respect to ω, if there is no ge{l,..., N} such that •(*') is ^-correct. The union of
all blocks incorrect with respect to ω is denoted B(ω\ and Ωfι(Λ) is defined as
the set of all ω:Λ -> {0,1,..., AT}, such that

i) all cubes \Z\(x')c:Λ which touch dΛc are ^-correct with respect to ω and
ii) all finite connect components of {B(ω))c lie in A.

Letting

H(RΛ\RΛ,) = H(RΛ)+ Σ W(Rx>Ry)> (2.3)
xe y\,yeΛ'
\χ-y\ = i

A c Λ c , we define, for all finite A of the form (2.1), qe{l,...9N} and boundary
conditions RΛ, i n ( l / g ) | Λ Ί ,

^ d i l (^)= Σ fXβ(ΛΛ)

zf(Λ|i?Λ,)= Σ ί z J R J e
ωεΩf\Λ)

We also define the restricted partition functions

Z™{Λ\RΛ.) = $Xq(RΛ)e-H^R^dRΛ. (2.5)

We now wish to rewrite Zfι(A) as a sum over contours. We proceed as follows.
Given a function ωeΩfι(A) we decompose J5(ω) into its connected components
Vl9...9Vk and define ωf to be the restrictions of ω to Vhi= l,...,fe. The pairs
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yi={Vί9ωί)9...9yk = (Vk9ωk) are called the contours of ω, and V{ is called the
support, suppft, of yt.

Fix a contour γ — (supp 7, ωy) of ω. Then, as may be verified from the definition
of g-correct, ω is constant on the boundary, dK9 of each connected component,
X, of (supp yf. We let Intm 7 denote the union of all finite components, X, for which
ω = m on δK and write

n

Int 7 = U Intm7, V(γ) = Int 7 u supp 7, Ext(7) = Z v \^(?) (2.6)
m = l

We also introduce the notions

dy = d supp 7, δm7 = d(Intm7)c, 3e7 = dF(7)c. (2.7)

Note that ω is constant on dV(y) (we say 7 is a q-contour iϊ ω = q on dV(y)) and
that ω = m on 8my. A contour 7 is called an external contour of ω if supp 7 c= Ext (7')
for all contours y' φ 7 of ω.

We also introduce the following notation: A pair 7 = (supp 7, ωy) is called a
contour in Λ, if 7 is a contour of ω for some ge{l,...,rc} and some ωeΩfι(A)
(note that by our definition of Ωf\Λ) this forbids contours which surround the
holes of A). Two contours, 7,7', are compatible if dist (7,7') = dist (supp 7, supp') ^ 2
and mutually external if dist(F(7), K(/)) ^ 2. Finally we let Ω^(A) denote the set
of sets, {γί9...,yk}9 of mutually external g-contours in A.

Remark 2.1. Since supp 7 is a union of blocks centered in LZV

9 and any two such
blocks, Π(x')> •(*")> which do not touch have at least the distance L + 1, any
contour 7 in A has at least distance L + 1 from Λ, and two compatible contours
have at least distance L + 1 from one another.

The following procedure is standard in Pirogov-Sinai theory: Consider a
configuration ωΛeΩfι(A) and its external contours 7i,...,7m. Resum over all ωΛ

with a given set, C = {yl9... ,ym}, of external contours. Introduce the notation

e-Φ(y\Ry) = χω^Rγ)e-H(Ry) (2.8)

with Ry = Rsuppy. Then Zf(A) becomes

Z?(Λ)= Σ
CeΩf\A)

γeC

where we have used the notation

Int C = U Int7, F(C) = (J K(y), and Ext Λ C = Λ\V{C).
γeC γeC

We now define the relative free energy, Fq9 of a ^-contour γ by
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and the contour functional φq( \') by

exp ( - φq(y I RδJ) = J dRγXωj(Rγ) exp ( - H(Ry \ RdJ - F(γ \Rdγ))

=j* dRγ exp (~φ(y\ Rγ) - Fq(y \ Rdγ)) f ] exp ( - W(RX, Ry)).
xedy,yedey\x-y\ = l

Dividing each term in (2.9) by f ] Zq(Inty) and multiplying it back again we then
γeC

obtain

Z' d i l M^= V f/7R v (R )

CeΩe

q

xt(Λ)

e x p ( - H(RExtΛC)) Π e x p ( - φq(y\Rey))Zf(Intγ). (2.12)

Equation (2.12) can be iterated and one obtains the following representation of
Zf\A) as a sum over sets, C = {γl9...9yk}9 of pair-wise compatible ^-contours in

A we write this sum as ]Γ
\ C in Λ

a \ *•) — /_/ J Λ\C^Q\ Λ\c) tr\ \ Λ\C'J I I
C in A yeC

(2.13)

where we have used the notation /l\C = / l \ | J suppy. We will sometimes also

write (2.13) as ?eC

Cin Λ

where we have introduced the notation

Equation (2.13) is the desired representation of Zf\A) as a sum over
non-overlapping contours interacting via a perturbed Gaussian. The convergence
of the corresponding Mayer series for \ogZf\A) will be studied in Sects. 3-5.

3. Stable and Unstable Contours, Truncated Contour Models

In this section we begin the analysis of the convergence of the Mayer expansion
for \ogZf\Λ). To motivate our strategy, assume for the moment that Zr

q

e\ defined
in Eq. (2.5), can be written as the partition function of a dilute polymer model
(this is in fact possible due to assumption A.I) and that φq obeys a bound of the form

exp(-ψq(y\Rdβy)) ^ e x p ( - τ + eq)\snppy\) (3.1)

for all <?-contours, 7, and all boundary conditions RdeyeUι

q

ey]. Then, for τ large
enough, we can combine the contours in the sum (2.13) with the polymers of Zr

q

s

to obtain a new polymer system which is again dilute. The resulting polymer
expansion for log Zfι (Λ) would be the desired convergent Mayer expansion.

While a bound of the form (3.1) can be established for the integral
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Jexp(— φ(γ\Ry))dRy9 see Lemma 3.1 below, we cannot expect that (3.1) holds for
Φqi'l'X at least not in general (otherwise one could show that the Gibbs states
corresponding to Zfι are small perturbations of the corresponding Gaussian, for
β large and for all qe{l>...9N}9 which is clearly false in general).

To overcome this difficulty we follow the strategy of Zahradnik [11] and
introduce certain truncated contour functionals, φq9 for which a bound of the form
(3.1) is true. In our context this is done by replacing Fq(y\Rdy) in the definition of
φq by Fq(γ\Rdy) = max{Fq(γ\Rdy)9 — (2τ/3)|suppy|}. The corresponding partition
function, Z'q9 can then be analysed by a convergent cluster expansion. In a final
step one shows that φq and φq agree for those q, for which h'q = /z, where h'q is the
free energy corresponding to Z'q and h = min h'm. Thus, if hq = min lrίm9 the cluster

m m

expansion for the truncated partition function, Z'q9 is in fact a cluster expansion
for Zf.

We begin by proving that the integral of e φ obeys a bound of the form (3.1).
K1 > 0 and X 3 < oo are the constants from assumptions A.2 and A.3.

Lemma 3.1. There is α constant c0 < oo not depending on L, β, and μ such that for all

=ί
L 3

and all q-contours, y, the following inequality holds:

Jexp (— φ(γ I Rγ))dRy ^ exp (— (τ + eq)\ supp y |) (3.2)

with

τ = τ(β,L) = — - — l o g c 0 . (3.3)

Proof From assumption A.I i),

- . ? / 1 / M,I /2π\ 1 / 2 _
!§ e m I Qxp( — jη(R — Rm))dR^\ — I e , (3.4)

- o o \Ί J

where m φ 0 and we recall that e0 was defined as m i n e r Given a g-contour, y, we
q

let N(Γ) be the number of points, xesuppy, for which ωy(x) = 0, and i f (y) be the
number of links, <x,y> <= suppy, such that

Letting c0 = max {K2,(2π/η)1/2} we have from assumption A.2

J e x p ( - φ(y\Rγ))dRγ = f e x p ( - H(Ry))χωy(Rγ)dRγ

S (coe-eo)lsu™γl e x p ( - Kxτ(N(γ) + J2P(y))). (3.5)

Recall that by the definition of a contour each block Πίx^crsuppy must be
incorrect. Therefore each block, α(xf), must touch a link or point contributing to

or N(γ) respectively. Since a link or point in Z v can touch at most 2V distinct
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blocks we find that

(3.6)

On the other hand, by assumption A.2,

^ ^ (3.7)

provided μeiΓ ( 1 ) . Combined with (3.5) and (3.6) this gives the bound (3.3). •

We now define the truncated contour functional ψ'q. We will assume from now
on that τ is the constant from Lemma 3.1 and that β is chosen so large that τ > 0.

Definition 3.1. We define the truncated contour functional ψ'q(
m\') by replacing

Fq(y\Rdγ)m(2.U)by

F'Ju I Fδy) = max $Fq(y | Rdy), - y | supp y | 1. (3.8)

The truncated partition function Z'q(A) is defined by the relation (2.13) with φq

replaced by φq.
With this definition φ'q obeys a bound of the form (3.1) (with τ replaced by τ/3).

For β large enough, Zq(Λ) can therefore be analysed by a convergent cluster
expansion. This is done in Sects. 4 and 5, where we prove the following lemma
(η,η\η" are the constants from assumption A.I).

Lemma 3.2. There are constants L0,c1 < 00 not depending on L or β, as we all as
β independent constants τx =τ 1 (L), βx = β^LjK 00 such that for L^L0,μsΨ'{1\
β^βi and τ(β,L)^τί9 and for each qe{l,2,...,N} there is a number h'q which
satisfies

i) \h'q-eq\^Cί,
ii) \logZ'q(Λ) + \Λ\h'q\ίCl\dΛ<\.

Definition 3.2. Let h'q be the free energy for the truncated contour model. We then
define

h = minh'm and aq = h'q-h. (3.9)
m

We call a ^-contour, y, stable if, Vme{l,...,iV},

and small if

φ. (3.11)

If y is not small we say it is large. Finally we define q to be a stable phase if all
^-contours are stable. We denote the set of stable phases by S = S(β9 μ).

Remark 3.1. We have normalised W in such a way that W^ 0. Therefore
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On the other hand

(3.13)

which implies that ψq(y | •) = ψq(y | •) for stable contours y. In particular Z'q(A) = Zq

ύ(A)
if q is a stable phase. It is, however, not a priori clear which are the stable phases,
and whether there is at least one stable phase.

The following theorem implies that the set S of stable phases is in fact not
empty, and that a stable phase can be characterized by the condition aq = 0.

Theorem 3.3. Assume that L has been chosen according to Lemma 3.2. Then there
is a constant β2 = β2(L)}zβu such that for β^β2 and μeiΓ ( 1 ) the following
statements hold:

i) Zf(Λ)^exp{-hq\Λ\-Cl\dΛ%
ii) Zf(/l)^exp{-fc|ylI+ (^ + 1)13^1},

iii) // γ is a small contour, then y is stable.

Here A is an arbitrary finite volume of the form (2.1) and β1,c1 are the constants
of Lemma 3.2.

Remark 3.2. The constant β2 is chosen in such a way that τ = τ(jβ,L)^τ1 for
β ^ β2. In addition we will need, in the course of the proof, the additional constraints

2 ^ + l ^ τ A (3.14a)

1-3^-1^2, (3.14b)

where τ 2 is a constant depending only on an N and v.

Remark 3.3. Obviously Theorem 3.3 iii) implies that all phases q with aq = 0 are
stable. If, on the other hand, q is a stable phase, then all ^-contours are stable and

Z'q(Λ) = Z?\Λ) £ Z^(/l)exp( - 2τ/3)\dΛc\)

for all A and all m by (3.10) (given A and m, one just has to choose a ^-contour γ
with Intwy = /l, which is always possible). Combined with Lemma 3.2 and
Theorem 3.3 i) the above bound shows that hq ^ h'm for all m, and hence aq = 0.
So Theorem 3.3 implies in fact that q is stable if and only if aq = 0.

Proof of Theorem 3.3 i). The statement follows immediately from Lemma 3.2 and
the fact that f (y \RδJ ^ φ(y\RdJ.

Proof of Theorem 3.3 ii) and iii). The proof will be done by induction. We define
the level of a contour y to be the maximal n such that there are contours yγ ,...,yn = y,
with supp jι c Int yt+x, dist (Ffyi), γt + 1 ) > 2 and the level of A as the maximal level
of a contour in A.

Proof of ii) for level A = 0. Trivial, because in this case Zf{A) = Zr

q

es(A) = Zq(Λ).

Proof of iii) for level y = n. Intmy is a volume of level ^ n — 1. Therefore we can
use the inductive assumption to bound
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Bounding | Int w y | by

I dmy I diam Intm γ ^ | dmy | diam γ9

and using the definition of a small contour we obtain the upper bound

which shows that y is stable if

2cx + l^τβ (this is (3.14a)).

Proof of ii) for level A — n. We use the relation (2.9). Fix, for a moment, the set
Cγ of large external contours in C. To specify C completely, one has to specify, in
addition to Cl9 a set C2 of mutually external, small contours in Λ\V(Cί) =
ExtΛ(C 1). Using the fact that the volume Ext Λ C appearing in (2.9) can be rewritten
as ExtΛ\F(c )C2 we can resum the small contours in ΛXViCJ to obtain the
relation

= Σ'

where Z*ma11 is obtained from Zfx by restricting the sum over ω in (2.4) to a sum
over configurations ω which contain only small external contours, and £ ' is sum
over sets of mutually external, large contours. We now bound

and use the fact that all the contours appearing in the representation (2.13)
for Z^^iΛ/ViCi)) are stable due to the inductive assumption iii). Therefore
Zf a l l (Λ/F(C 1 ))^Z;(/l/F(C 1 )) which can be bounded using Lemma 3.2. Using
the inductive assumption ii) for Z^π(Intw γ) and Lemma 3.1 for Jexp (-φ(y\ Ry))dRy

we get the bound

Π
γeC

We now extract a factor exρ(-/z|Λ|), bound

and use (3.13) to obtain the inequality

Z f ( y l ) ^ e x p ( - / 2 | Λ | + c 1 | δ y l c | ) X / e x p ( - , Π
C γeC

(3.15)

To complete the proof, we need the following technical lemma, proven in [11].
For the convenience of the reader we give the proof of this lemma at the end of
this section.
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Lemma 3.4 ([11]). Consider a contour functional K:y\->K(y)^0 and let Z be the
partition function

C in A yeC

Assume that K(y) g ε'y'. Then there is a constant τ2 depending only on v and N, such
that for ε^e~X2 the following statement is true. Let s be the free energy corresponding
to Z. Then, for all ά^-s,

γeC

where the sum goes over sets of mutually external q-contours in A.
To apply this lemma we put a = aq,

ε = e x p ( - y - 3 c 1 - l ) )

and

[ε l y | if y is large

[O if y is small

Using the fact that Z contains only contours y for which

(since diamy ^ |suρpy|, because suppy is connected) one easily finds that

if τ is chosen large enough. We therefore can apply the lemma provided

τ — 3cί — l^τ2

(this is the restriction 3.14b). •

We close this section with a proof of Lemma 3.4.

Proof of Lemma 3.4. Z is the partition function of a polymer with activities
K*(y) = K(y)e^γK For ε small enough (depending only on N and v) Z can be
controlled by a convergent expansion and

\S 0{ε)\dWc\ ^ \dWc\.

Putting W = Int C and using (3.13) together with the assumption α ̂  — s we get

exp(- S|Λ\Int C|) Π K(y) ^ ^ £ ' \[ ^
C yeC

4. Polymer Expansion for the Truncated Model

In Sects. 4 and 5 we prove Lemma 3.2 by a convenient cluster expansion. In
principle we could use the Glimm-Jaffe cluster expansion in the form of [18] to
obtain a representation of Zr

q

es as a partition function of a hard core interacting
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polymer system and combine it with the contour expansion (2.13). This approach
has however the disadvantage that it needs C°°-differentiability of V and W near
Rq, which is not natural for the lattice models considered here.

Instead we use a slightly different approach, which, after expanding in the
perturbing potentials

(4.1)
Wq(φ9 φ') = W(Rq + φ,Rq + φf) -f(φ- φ')\

uses interpolation parameters (s-parameters) only in regions where no factors of
Vq,Wq or e~*'9 arise. Since we decouple these regions using non-zero Dirichlet
data on their boundaries, we do not generate field derivatives of Vq or Wq, and
therefore don't need differentiability assumptions on Vq or Wq. The convergence
of this expression is established in Sect. 5.

We recall the definition of the truncated partition function (Λ\C is defined as

c ) ) Π e x P ( - Ψq(y\Rd y))>
u γeC

and rewrite, with φx = Rx — Rq, where Rq is the minimum of the quadratic
approximation of H in Uq,

H(RΛχc) = eq\Λ\sιxVpC\ + Hq

0)(φΛχc) + ̂  £ Wq(φx,φy)+ £ W (4-2)
^ x,yeΛ\C xeΛ\C

where Vq, Wq are defined in (4.1) and

4 x,yeΩ 2 xeί2

We now expand in Vq and Wq. More precisely, we define

Fxy(φx, φy) = exp (— Wq(φx9 φy)) — 1, (4.4a)

Fx(Φx) = Xq(Φx + #g)exp ( - Vq(φx)) - 1 (4.4b)

and, with the convention F0 = 1,

Fχ(Φx)= Σ Π ^ ( ^ ) Π Fxy(φx,φy), (4.4c)
X^Bs.t. ^eXi <x,y>eB

X = X1uX{B)

where B denotes a set of nearest neighbor pairs and X{B) is the corresponding set
of points. Then

• FX(ΦX) Π e χ P (e, I S U P P y\-Φ'q(y\Rq + Φ3.t)). (4.5)
yeC
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With the notation

- Hf{φΩ\φΩ.)\
(4.6)

£ xeΩ, yeΩ'
\x-y\ = l

this can be rewritten as

C XczΛ\C

• Π exp ( - ψ'q(γ I Rq + 0^) + eq | supp y | )Fx(φx) z ( 0 )

 e , (4.7)

where y^ = yt\(XusuppCuδβC). In order to decouple different connected com-
ponents of Xusupp Cu3βC we now choose a convenient expansion for the ratio
of the Gaussian partition functions in Eq. (4.7). The expansion we choose is
essentially that used in [18].

We note that there is a characteristic length, lq, the correlation length of the
gaussian, Eq. (4.3), over which points in the lattice are strongly correlated. It is
this fact which motivated our introduction of the coarse lattice, LZV. Choosing
L > lq we treat the couplings across faces of L-blocks as perturbations, but only
for those L-blocks far enough from dXudeC to sufficiently moderate the
effects of the conditioning. Thus, given X and C, define X to be the smallest
union of L-blocks such that XκjdeC czX cyl\supρC and dist(Λ\(XusuppC),
dXκjdeC) > r0, where r0 »l q will be fixed, along with L, in the next section. Given
two nearest neighbor points, x\ / , in LZy define the face separating the adjacent
L-blocks x' and / to be the set of the Π'1 nearest neighbor pairs {x, y} a Zv such
that {x, y) n Π(x') Φ 0 and {x, y} n •(/) Φ 0. Given a union of L-blocks, Ω a Z\
we say that a face, b, intersects Ω (written bnΩ) if at least one of the L-blocks
separated by b is a subset of Ω. Introduce decoupling parameters sb for all faces
b n Λ\(X u supp C) by defining, for each set JΓ of faces intersecting Λ\(X u supp C),

sb if {x,y}ebeΓ
if {x,y}ebφΓ, bnΛ\(XusuppC).

1 otherwise

Denote the Gaussian partition functions obtained from Zq

0)(Λ) and Zq

0)(A1\φdXκjd c)
upon substituting sxy(Γ){φx-φy)

2 for {φx-φy)
2 by Zq

0)(Λ,sΓ) and
Z(

q

0)(Λί,sΓ\φdXud c). Then by the fundamental theorem of calculus,

\
(4.8)

where

W{r\Φax»B.c)= ί dSrd^ϊogZfKΛ^sAφ^^-logZ^iAsr)}, (4.9)
[0,1] ' Γ |

with dsΓ=Y\dsb,d
Γ =Y\d/dsb; the sum over Γ is over all non-empty Γ

beΓ beΓ
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intersecting Λ\(X v supp C). We note, see also [18], that W(Γ\-) is zero unless Γ
satisfies the connectivity conditions:

ii) X{Γ) is contained in one and only one connected component of X(Γ)v

(XusuppC).

Here, and in the following, X(Γ) denotes the union of all L-blocks which intersect
a face in Γ. If i) is violated, then the terms from the two partition functions in
(4.8b) are equal, and thus cancel each other. If ii) is violated, then the derivative
dΓ vanishes because it acts on a sum of terms, one for each connected component
of Z ( . Γ ) u X u s u p p C , none of which depend on all of the sb. Expanding the
exponential in (4.8) and inserting the result into Eq. (4.6) we obtain

Σ Σ —

Π «P(- «*IR. + *..,) + e.lsuppyl) Π »VΊ<ίw,c>, (4.10)
γeC Γer

where the last sum is over all sequences JF of sets Γ satisfying the connectivity
conditions i) and ii).

Equation (4.10) is essentially the expansion we are looking for. Defining a
polymer in A as a connected union of L-blocks, P c A , and its activity

Φdeγ))Fx(φx) J{W{Γ\φdXκjdeΓ\ (4.11)

where X(F)= \J X(Γ\ we obtain, after rearranging with the help of the
Γe F

multi-nomial theorem,

(4.12)

where the sum is over sets of unions of L-blocks, P = {P 1 ? P 2 . . . } , such that each
Pj is connected and if ]Φ k then P 7 and Pk have no face in common.

In the next section we prove the following theorem, from which the convergence
of the Mayer expansion for \ogZf

q{A) immediately follows.

Theorem 4.1. For all b < oo one can choose L o < oo independent of β and L, and
y0 = yo(L), β1 = /?i(L), τί = τ^L) not depending on /?, such that

for all polymers P, provided L^Lo, μeΨ~il\ τ = τ(β,L)^τx and β~^βi_.
Lemma 3.2 is an immediate consequence of Theorem 4.1: Let θq(.(Λ) be the
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polymer partition function

ΣY\ρ <4 1 3 )
P PeP

Choose b large enough, for example so large that the sum £ ' over all polymers

touching a given L-cube Π(*')

Σ ' β " ( b " 1 > | P Ί < l . (4.14)
P

Then [19] the Mayer expansion for log^(Λ) is absolutely convergent. It follows
that the limit

sq= - l i m — \ogθq(A)

exists, and that

and

for a constant ε(6)->0 as &-• oo. This, together with the corresponding bounds on
the Gaussian partition function Zq

0)(Λ)—proven for example by random walk
methods—immediately gives Lemma 3.2.

5. Convergence of the Mayer Series for the Truncated Models

In this section we prove Theorem 4.1. The proof will follow from two lemmas. We
first state the lemmas. Then using them we prove Theorem 4.1. Finally, we prove
the two lemmas themselves.

Lemma 5.1. Vc < oo there is a constant Lo (depending on c,η,η" and v) such that,
^:L0, Vε>0 and a suitable choice ofr0 (depending on ε,L,η,η" and v),

?

Z xeδXκjdeC

fx is a constant depending only on L, v, η and η".

Lemma 5.2. Vc< oo, Vε</y there is a choice of βu (depending on c9ε,v,η,η',η")
such that

provided β^βχ. The constant f2 depends only on ε,v,η,η' and η".
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5.1 Proof of Theorem 4.1. We choose ε = η/2, c = b + log 2, and τx = 3c1} and we
fix L^L0 and r0 according to Lemma 5.1. c>b will be chosen later. Using the
bound

-^ | suppC|

together with Lemma 5.1, Lemma 5.2 and the fact that \deC\ ̂ (3 V — l)|suppC|
we obtain

\p(P)\ S Σ exp(-cL" v |P | +(/ i + cL-v)|XusuppC|)
C.Xs.t.

ZusuppCcrP

exp(-(c-3 v / 2 ) |XusuppC|),

provided τ^:τ1 = 3c and β^β1= βx (c). Next we use the definition of X to conclude
that

which shows that

Bounding the sum over C and X with fixed "support," 7 = XusuppC, by
2|γ|(iV + l ) m , choosing

c = 3v/2 + [/i + cL'v + log(2AΓ + 2)](6r0 + 3)v

and bounding the remaining sum by 2 | P | L v we obtain Theorem 4.1. •

5.2 Proof of Lemma 5.1. Using the fact that the contributions from Λ\P cancel in
the definition of W{Γ\φdXκjd c) we rewrite

e e ^ (5.1)

with Px =P\(XusuppCuδ eC). Let C ( 2 )(s r) be the covariance matrix cor-
responding to Z^0)(P,5Γ), i.e.

where < >J,°5
) denotes the expectation with respect to the Gibbs factor

Qxpi-H^l^pUr)) obtained from c~
H^){φp) by substituting sxy(Γ)(φx-φy)

2 for
(Φx — Φy)

2> a n d let C{ί)(sΓ) be the covariance matrix corresponding similarly to
Z^iPi^AΦdxvd c) Evaluating the Gaussian partition function in (5.1) we rewrite
W(Γ\-) as

W(Γ\φdXudeC)=W(Γ) + 1- X φxBxy(Γ)φy (5.2)
L x,yeSXudeC

with

W(Γ) = ̂ dsΓδ
Γ{trlog C(1)(sΓ) - trlog C<2)(sr)}, (5.3a)

B*,(Π= Σ Jds rδ
ΓC|i'(s r). (5.3b)

u,veP
\x-υ\ = l
\y-u\ = l
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Our starting point is the following basic estimate (proven e.g. in [18])

\dΓ0»\ ύAΓ^ιtxv{-mod{x,Γ,y)), (5.4)

where do< oo,mo>0 are constants depending only on η,η" and v (recall that
ml ^η, κq^ η") and d(x,Γ,y) is the length of the shortest path from x to y that
visits each bond beΓ at least once.

Proposition 5.3. Given η,η" and v there is a constant d1 < oo such that

ε-± Σ φ{\,
JΓ s.t.\ Γ\=n e

where

fx = (dJL)eLmo/2, εx = d1e-moir°-L/2). (5.5)

Proof. We first bound | W%Γ)|. Fixing a bond beΓ and using the formula

we obtain, noting that

does not depend on sΓ9

Using (5.4) together with the explicit representation

(h)xy = Kq Σ {δuχδVy + ^vxKy ~ ^ux^uy ~ SΌXδΌy]
{u,v}eb

and the bound κq ̂  η" we obtain

where d(F) is the length of the shortest closed path that visits each face in Γ at
least once. Using the fact that W(Γ) = 0 if X(Γ)n(ϊusupp C) = 0 we can always
label the bonds bl9...,bneΓ in such a way that

i) bx n Π(x') 7* 0 for some D(x;) c (Xusupp C),

ii) "

Bounding the sum over sets Γ1 by a sum over sequences bί9...,bn we get

Σ Î CΠI ̂ L~v|XusuppC| V Γ - ^ J
ΓΣ
Γ s.t.

•sup Σ exP( --£ Σ άist(Kbi+1)\
* ' blt..,bn&.t. \ Z i=i )

where we have used the bound d(Γ)^(\Γ\/2v-l)L (for a proof, see e.g.
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[18]) to extract the factor ^o/2^-|r|Lmo/4v W e n o w u s e t h e f a c t t h a t t h e r e

are not more than 2v bonds, bί9 with Π(x') n ^i ^ 0 ? together with the bound
£exp(( — mo/2)dist(&,&')) ̂ K, where K< oo is a constant depending only on v
b

and m0, to get the estimate

Γs.ί. ~~
\Γ\=n

On the other hand, by (5.4) and the definition of Bxy(Γ\

X X \Bxy(Γ)\ S 4v2dn

0

+ίeLmol2e-{Lmol*v)n

\Γ\ = n yedXκjdeC

where we have used the fact that

dist(x,Γ)^r0, dist (y,Γ)^r 0

to extract the additional factor e~mor°. Bounding the sum over Γ with \Γ\ = n as
before, and noticing that

which implies that

Σ 10,5 ,̂1 g Σ ^ Σ l*J.

we find

Σ Σ iΦ«B»,(r)ψ,ι^(ωo e-
£-«'*τ 4v2doβI-Io/2-llloΓJi: Σ Φl

x,yeδXudeC Γ s.t. xeδXυδeC
| Γ | = π

(5.7)

Choosing

dx = max {Kd0, &vη", $v2Kd0},
we obtain the proposition. •

We now prove Lemma 5.1. Given c we choose Lo so large that

Using the fact that Z(Γ)uXusupp C = P, together with Proposition 5.3 and the
bound \Γ\^^L~V\X(Γ)\ we may extract a factor

from the left-hand side of Lemma 5.1 and bound the remaining sum by

T Σ
l

Z xedXudeC

which proves Lemma 5A (choose r0 so large that ε1=ε1(rθ9L)^ε).
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5.3 Proof of Lemma 5.2. We first bound, using the fact that W^O,

where f2 is a constant depending only on v, η, η' and η". Using the fact that the
sum in the definition (4.3c) of Fx(φx) contains at most 2 | x | 2 2 v | x | terms, we are left
with the proof of the following proposition (choose Y = XudeC and f2

 = f2 +

Proposition 5.4. Vc< oo Vε<η there is a choice of β^ {depending on c,ε,η,η' and
η") such that

Fx{Φx) Π FXy(ΦX>Φy)

(1/2)\Y\

exp( -
xeXi

(5.8)

provided X1^JX(B) aY.fj is the constant η — ε.

Proof We introduce the notation

Λ I Ψx Ύy\

if

and ή = η — ε. The left-hand side of (5.8) can be bounded by

ί Π Gxy(φx,φy)Y\Gx(φx)dφx
(xy)eB xeY

, ] 1 - " ' / 2 ' Π [ ίdΦx^GxG^G,] 1 ' 2 ' , (5.9)

where we used Holder's inequality and the fact that each point in Z v can be shared
by at most 2v nearest neighbor pairs. nx is the number of nearest neighbor pairs
in B that contain the point x. The integrals in (5.9) are estimated using the following
bounds (they all follow from assumption A.I and the definition of Gx,Gxy):

-e
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iϊxeY\Xu

\G

if\φx\^ξ(β)and\φy\^ξ(β),ein

\Gxy(φx,φy)\ίl,

iϊ\φx\>ξ(β)oτ\φy\>ξ(β).
Combined with (5.9) and the estimates

T
-ξ(β)

c e-{nβ)Φl < V π

 e-(n/2)ξ(β)2

?

we obtain the bound
im

i\
χ neδ(β) _ 2)2v + 2e~mξiβ) VB]/2v

for the left-hand side of (5.8). Using the fact that \X(B)\^2\B\ and that
2 \

(

e-{η/2)ξ2{β)Sδ{βl we obtain the proposition with e~c = 0{δ\β)λ\ for some
depending on (η — ε)/η and v (for ε = η/2, λ = l/8v). •

6. The Phase Diagram

In Sect. 3 it was shown that the free energies of the truncated contour models,

are enough to determine which phases, q, are stable in the sense that \j/'q = φq (which
implies, as we show in the next section, that infinite volume Gibbs states, < >^
can be constructed for such q). The stable g's are those for which h'q is minimal.
Thus, recalling Eq. (3.8), the aq indicates which phases are stable: q is stable iff
aq = 0. If q is not stable then aq>0 so that aq determines a function from
-r ( 1 ) c RN~x into R% = {xeRN\Vk, xk^0 and 3j with xj = 0}. In the Pirogov-Sinai
theory the inverse of this function is called the phase diagram [9]. The standard
physicist's notion of the phase diagram corresponds to the images, in f(1), of the
various hyperplanes given by xh = xJ2 = = xjm = 0 for all possible non-empty
{jw'"»im} ^ U>2,...,N}. These consist of all μei^{1) for which the phases
j ! , . . . , j m are stable.

In order to simplify the presentation we prefer to do away with R* by
considering, rather than aq, the function

/

b=
 κ ~ κ

\nn-i

(6.1)
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which maps Ί Γ ( 1 ) into R N - 1 . (Note that there is nothing special about N in Eq.
(6.1). We could have chosen any je{l,...,N} and defined b by bk = hk — hj.) The
phase diagram is here given by the images, under b~ S of the sets {yeRN~ί\yj^0
for all j , y h , . . . , y j m = 0} for all possible {jl9..., jm} a {1,...,N- 1} (including the
empty set as a possibility) and the sets {yeRN~1\yjί = yj2= ••• = } ;jm<0} for all
possible non-empty {jl9..., jm} c {1,..., N — 1}. The advantage of using b is that
it simplifies the following

Theorem 6.1. If β is large enough then there exist open sets, "V, Ψ* c RN~1 such that

i) b'.i^-*iV is a homeomorphism,
ii) OeiT.

Comments. The point of (i) is that b is in fact continuously invertible. (ii) shows
that the point of maximal phase co-existence, when all phases, q, are stable, is in
the phase diagram. This insures that all possible combinations of co-existing phases
can be obtained by varying μ in "Γ. It is also possible to demonstrate that, for β
large enough, Oef . b(0) is not, however, in general 0.

lΛt//μ) = ^ ( μ ) - e N ( μ ) f o r j e { ^
Then Eq. (6.1) reads

b = f(μ) + s(μ). (6.2)

By Lemma 3.2 1 5 ^ ) 1 ^ 2 ^ for all μe f ( 1 ) , where f"(1) is the set defined in
Lemma 3.1. By assumption (A.4) and the inverse function theorem there is an open
set iΓa) c RN~X containing a sphere of radius M(βγ~λ around 0 such that
and ϋ^{1) are diffeomorphic under the action of/. Let

b' s.t. \V -b\S

Then, VbeiT and all fc^ l,μ ( 0 ) = /- 1 (6) and μ<*> = /- 1 (6-s(μ<*- 1 ) )) are well
defined, with μ(fc

Again, assumption A.4 and Lemma 3.2 allow us to conclude that, for beif

and

1
s(μ')|. (6.3)

Therefore, the existence of the limit μ= lim μ(fc) solving Eq. (6.2), as well as the

continuity of the resulting b~x follows from the following estimate.

Lemma 6.2. There is a constant c(β) such that

Ϊ Z 0
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and,forallμ,μfeir(1)

\s(μ)-s(μ')\^c(β)\μ-μ'\.

Proof. Letting hqtA(μ) = (l/\Λ\)logZq(Λ) it is enough to bound the one sided
derivatives (d/dμ±)(hqΛ(μ) — eq(μ)) uniformly in A for all q. Note that

d .. , , 1

c

where

and

9?\μ) = ̂  ΣϊdRΛχccxp (- H(RΛχc))χ9(RΛχc)^cxp(- ψ'q(C\RdeC)).

We find

Λ ) Σ Σ
Cs.t.xφsuppC

+ 2 Λ C Σ W(Rx9Ry)J.

Using assumption A.5 to estimate derivatives, the bound (3.1) (with τ/3 instead of
τ) for all contours y with xelnty and W ̂  0 to eliminate couplings between partition
functions we can re-sum the remaining contours and obtain

, deq(μ)
q v™ ' ' dμ

' Σ ίdRπ{χf)χq(Rπ{xΊ) _ _
x'εΛ VxeΠ(x') / \ xeΠ(x')

_ Z;(/l)(suppCuΠ(x')))

)
VyeC

where η is the constant from assumption A.I. The existence of a convergent cluster
expansion for Zq(-) allows us to estimate

where cί is the constant from Lemma (3.2). Thus, for τ large enough, we may
bound the sum over C by 1 + 0(e~(1/3)τ) g 2, obtaining

(6.4)

To estimate gf^μ) we again use W ̂  0 to decouple, and bound ratios of partition
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functions as in the step preceding Eq. (6.4) to obtain, where £ ' is the sum over
sets C of pairwise compatible contours, y', all compatible with y, such that
supp γ c int / ,

ΣΣ
y c

d

dμ±

d

•exp - --c1 |suppC|

dμ±

More that either

exp((e , + cJlsuppyl). (6.5)

or

dμ+

d

exp(-ψ'q(y\RdJ) =

d

'dμ'

Thus, we need only estimate

d_

Tμ

1

•ZfXlnty)

•exp(-H(RViy)\RSey))
dH(RV(y)\Rdey)

dμ

1
exp ( - ψq(y I ReJ)

dH(Rlnty)exp(-H(i? I n t ϊ ))
dμ (6.6)

where θ'Inty is the union of all L-blocks in Inty which touch δ(Inty).
Using assumptions (A.5) we have, for any finite ί 2 c Z " ,

dH(RΩ)

dμ
ί K5(N - 2v)τ(β)\Ω\ + H(RΩ) - eo\Ω\}

and similarly for H(RΩ\RΩ). Using the notation χΩ{RΩ) = Π χx(Rx), where χx = 1
xeΩ

or Xj for some j = 0,1,. . . , JV, we have integrals of the following form to estimate:

dH(RΩ)

dμ

K5(2v + 1 + P)τ(β)\Ω\(N -

N _ 1 ) i dRΩexv(-(H(RΩ)-e0\Ω\))

(H(RΩ)-e0\Ω\)χΩ(RΩ), (6.7)
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where D = {RΩ\H{RΩ)-e0\Ω\^pτ{β)\Ω\} and where ρ > 0 is a constant
independent of β to be chosen in a moment. Given α > 0 as in assumption A.2 we
now bound the second term on the right-hand side of 6.7) by

-*°lβl sup xe-^'

sup xe ( 1 *)X'<K2

x^pτ\Ω\ I

where we used assumption A.I and A.2 to bound the integral over RΩ and (3.7)
to bound e0 — eq. We now choose

ί 1 ί Kx
p = m a x i r^ 'T^(2Zr

to conclude that

dH(RΩ)
dμ

^ K5(N - l)(2v +

ίN \ | β |

+ K5(N -1) - ^ e - -^ pτ(β)\Ω\, (6.8)

with τ as in Lemma 3.1, Eq. (3.4). Combined with (6.5), (6.6) and the bound
analogous to (6.8) for $dRΩχΩexρ{- H{RΩ\RΩ,)\dH(RΩ\RΩ,)/dμ\ we obtain the
estimate

^|^μ)|^4(ΛΓ-l)K5(2v + l+p)τ( jS)Σexpf-fΐ-cΛsupp7|

\V(γ)\

Using Theorem 3.3 i to bound Zfι(lnty) and Lemma 3.2 to bound h'q — eq we can
sum over y and obtain

β)e-^). (6.9)
I / A l

Combined with (6.4) this proves Lemma 6.2 and hence Theorem 6.1. •

7. Expectation Values

In this section we construct the infinite volume states < }q corresponding to the
dilute partition functions for stable g's.
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We consider local observables A, that is complex valued functions A = A(RsuppA)
depending only on a finite number of variables Rx,xestf = suppA, for which
the norm

( ( l - α ) £ \_V{Rx)-eS] (7.1)

is finite (α < 1 is the constant from assumption A.2). We assume without loss of
generality that si is a connected union of cubes.

In order to construct the expectation value, (A}q, of A in the infinite volume
limit,

(7.2)

Σ \ Λ ) e - H * * A , (7.3)

we consider the modification function

xΛRΛ)e-H(RΛ)A. (7.4)
ωeΩq{Λ)

Our goal is to derive a polymer representation for Zfy(Λ,A). We always assume
that A is chosen so large that dist (si, Λc) ^ 2.

We proceed as in the derivation of (2.9), the only difference being that we fix
not only the external contours of a configuration ωeΩq(Λ\ but also all contours
y of ω which are incompatible with A, that is all y for which dist(K(y),*s/) ^ 1. We
now introduce the notion of an yl-contour.

Consider a configuration ωeΩq(A) and the contours y l 5...,γk of ω which are
incompatible with A. Let yA be the pair (suppy^ω^), where

k

supp i^ = s/ u (J supp jt (7.5)

and ωy^ is the restriction of ω to supp yA. We call yA the ,4-contour of ω. Consider
a connected component X of (supp yA)

c. Then ω is constant on dK and equals q
if X is the infinite component of (supp yA)

c. As before we define Intm yA to be the
union of all finite components, K, for which ω = m on dK,

U Intm7Λ and V{yA) = lntyAusnppyA.

Defining

and

exp(- ^(y j%,)) = $dRγAexp(- φ(γA\RyJ)

Π
xedγΛ,yedeγA
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one immediately obtains the analog of (2.12), namely

Zf(Λ,A) = Σ Σ ϊdRΛχcχq(RΛχcΛ)
ΊA CeΩe

q

X\Λ)

C i n E x t ^

exp(-H(RΛχCA)) Π exp(-^(y|^y))Z,(Inty), (7.8)
C

where the first sum goes over ^-contours in A and the second over sets
C = [yl9..., ym} of mutually external contours for which each γt lies in ExtΛy^ =

{ }
Again, (7.8) can be literated giving

CΛin A

(7.9)

where the sum goes over sets, C, of pairwise compatible g-contours in A which
contain exactly one ^4-contour. Here compatibility between an ordinary contour
y and an ^4-contour, yA9 is defined by the requirement dist(F(y),suppy^) ̂  2.

We now combine the expansion (7.9) with the high temperature expansion for
Zτ

q

es. Up to Eq. (4.10) the procedure is exactly the sameas in Sect. 4. The only
difference arises when we decompose the set suppCuXuX(i") into polymers
where we have to introduce the notion of ̂ -polymers. We introduce, for a connected
set, P, of L-blocks, the volume Int P as the union of all finite connected components
of Pc and the volume V(P) = P u Int P. We define: a union PA of L-blocks is an
^4-ρolymer if PA contains the set si and dist(F(P), si) S 1 for all connected
components C of PA. Compatibility between an ordinary polymer P (i.e. a connected
union of L-blocks) and an ^4-polymer PA is again defined by the requirement

dist(P^,F(P))^2. (7.10)

We finally introduce the activity ρA(PA) by replacing the sum over C in (4.11) by a
sum over sets CA containing exactly one ^-contour, yA (note that pA{PA) is linear
in A by our definition of e~<Mŷ . ). we also use φq instead of φr

q because q is assumed
to be stable).

With these definitions we obtain the following analog of (4.72)

Z f ( Λ A) = e-^A\Zq°\A) Σ pA(PA) Π p(Pi\ (7.11)
FA i

where the sum goes over sets

of mutually compatible polymers containing exactly one y4-polymer: We now divide
(7.11) by Zq

il(A) by the standard algebraic procedure for polymer systems, see e.g.
[20]. One obtains

Σ Σ φχPA^"Pn)pΛPA) Π (7.12)

where φc is the usual combinatoric factor (it is called a(X) in [20]).



322 Ch. Borgs and R. Waxier

To prove the convergence of this expansion we need the following Lemma,
which is the appropriate generalization of Lemma 3.1. i^{1) is the region from
Lemma 3.1.

Lemma 7.1. There is a constant c0 not depending on L, β or μ such that

l\Qxp(-φA\RyA))\dRyA^KAQxp{-eq\suppyA\-τ\suppyA\JΓ\l

provided μef ( 1 ) , τ = τ(L, β) is the constant from Lemma 3.1 and

Proof. We first extract a factor M| | ( α ) and then proceed as in the proof of
Lemma 3.1 to bound

$\exp(-φ(yA\RyA))\dRyA^ M||<α>exp(-e0|supp7j)J fl exp

• Π e*p(-(V(R*)-eo))Y\exp(-W(Rx,Ry)) Π
xesuppy^W <xy> xesuppy^

ϊ \\A||«exp(-τ(JS? + J V ) - e o l s u p p r J ^ ^ o / V ^ 1 ,

where JV and ^f are defined as in the proof of Lemma 3.1. Using the fact that all
cubes in suppyA\<stf are incorrect we obtain J£ + N^(2L)~x\suppγA\jtf\ and
hence, again proceeding as in the proof of Lemma 3.1,

$\exp(-φ(yA\RyA))\dRyA

c \ | J / |

provided μ e f ( 1 ) (we have used cx ^ 1 without loss of generality). This proves the

lemma with c 0 =

Corollary 7.2. For allb<oo one can choose Lo independent ofβ and L, and r0 = ro(L),
c3 = c3(L), βx = βι(L) and τx = τx(L) not depending on /?, such that

provided L^L0,μe^(ί\τ = τ(β9L)^τί and β^βt.

Proof. We fix ε,c,c,τί = 3c, L^L0 and r0 as in the proof of Lemma 4.1. Assuming
without loss of generality that Theorem 3.3 is valid for β^βγ we bound

I exp ( - ψ(yA I RdeU)) \ exp {eq \ supp yA \)

If q is stable, h'q ̂  h'm for all m and, by Lemma 3.2, eq ^ em + 2c1 ? which shows that

^exp((2c1 + 1 ) | ^ | ) ^ M||(α)(cV4ci + i r ! .

Combining these bounds with Lemma 5.1 and Lemma 5.2 and proceeding as in
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the proof of Theorem 4.1, one obtains

CΛ,XM-

Extracting a factor eεls/ι we can bound the sum as before and obtain the corollary
with

c 3 = c 0 e 4 c i + V . •

Corollary 7.2, together with Theorem 4.1, immediately imply convergence of the
cluster expansion (7.12), and hence the following

Theorem 7.3. There are constants ε > 0, K < oo and β* < oo, such that the following
statements are true for β ^ β* and

i) For sίαί?/β boundary conditions q, and any observable A with | |Λ | | ( α ) < oo, the
thermodynamic limit

<A}q=lim

exists, is translation invariant and shows exponential clustering.
ii) Let < >ΓS be the infinite volume state corresponding to Zτ

q

s. Then, for stable
boundary conditions q,

where τ(β) is the constant from assumption A.2.

Proof i) is standard and ii) is proven by comparing the cluster expansion for (A}q

and <^4>qes. Since the activities of these two expansions differ only by terms
containing at least one contour, we may extract a factor e~ετ ^ e~ετ{β); the remaining
sums are bounded as before giving the factor K | s u p p ^ || A ||(α). •

The following theorem is proven in the same way as Theorem 7.3 ii). <*>^0)

denotes the infinite volume state of the Gaussian with co variance Cq = (mq —κqΔyλ

and mean Rq. δ(β) is the constant from assumption A.I.

Theorem 7.4. For a polynominally bounded function A( ) denote by Aq the shifted
function, Aq{R) = Aq(R - Rq\ Then, for β > β*,

where KA depends on A, but not on β, and ε > 0 is independent of β and A.

Remark. One may have observed that the definition of < }q in Sect. 1 differs from
that given here. Since Zq(Λ) and Zq

il(Λ) and hence also ('}q>Λ and < >JJ,!!Λ differ
only by contours touching 8Λ, one may easily check that

Λ^ZV Λ-+Zv

if q is stable, β ^ β* and || A ||(α) < oo.
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