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Spectral Stability Under Tunneling
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Abstract. We study the spectral properties of multiple well Schrόdinger
operators on IRΛ We give in particular upper bounds on energy shifts due to
tunnel effect and localization properties of wave packets. Our methods are
based on Agmon type estimates for resolvents in classically forbidden regions
and geometric perturbation theory. Our results are valid also for an infinite
number of wells, arbitrary spectral type and in non-semi-classical regimes.

I. Introduction

The analysis of multiple well Schrodinger operators H:=— g2A + V on
Jjf: = L2(RW) is a new challenging aspect of the spectral theory for elliptic operators,
linked to many problems of current interest like quasi-periodic potentials,
composite media or disordered systems. It has attracted considerable attention in
the last few years; for one dimensional problems let us mention in particular the
work of Harrell [Hal] using ODE methods, Jona-Lasinio, Martinelli and
Scoppola [JMScl] using stochastic mechanics and Combes, Duclos and Seiler
[CDS1], where the use of perturbation methods were initiated. In dimensions
larger than one there is in particular a remarkable amount of results from Helffer
and Sjόstrand [HSjl-3] and Simon [Siml-3]. These works concern the semi-
classical regime for regular positive potentials with finitely many compact wells,
having non-degenerate minima (see however [MaR] and references therein for
results in the degenerate case). In such situations the leading asymptotics of energy
shifts for the lowest eigenvalues under tunneling can be derived rigorously. One
natural question is whether one can also obtain rigorous non-asymptotic
estimates for arbitrary potentials; in other words is it possible to obtain general
stability conditions both for the spectrum (upper bounds on energy shifts) and the
localisation of wave functions. This is the problem which is investigated in this
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paper; we show that it can be solved provided some separation parameter between
wells is larger than some explicit constant depending only on the spectral
properties of single well Hamiltonians. Our results are stated in a form which is
general enough to accommodated all situations of interest, in particular those
where the usual restrictions do not hold, e.g. fϊniteness of the number of wells,
discreteness of the spectrum or semi-boundedness of the potential; it is clear that in
many physical situations of interest as we shall see in Sect. VI, such aspects are not
of purely academic interest.

Our main results are given in Sect. V. We give here a brief overview of their
content; consider a compact energy interval /: = [/~,/+] such that one has a
decomposition into "wells":

V-l(-co,I+) = : U Ut (1.1)
ϊ > 0

(the Uϊ are not necessarily connected). Let dtj denote Agmon's distance at energy
I+ between Ut and t/7 (see (II.4)) and dt: = inf dtj. Let also ?,-: = ̂ ϊάi where εt e (0, 1)
satisfies ί φ j

Sidi + Zjdj^dij for all i Φ j . (1.2)

One introduces single well Hamiltonians Ht : = — g2A + Vi9 where Vi\ = V on Ut and
V{\ = max(K/+) outside Ut.

To state these results the following notations are used:

ωj:= sup {max(F-E,0),xeΩf}, ώ5:-max(ω^,]/|7ϊ),
Eel

where Ωf} denotes (see 11.12) the set of points in the classically forbidden region at
energy E whose distance to the accessible one is smaller than δ,

3: = inf 3t ,
σ(Hf )π/Φ0

and P(J) (respectively Pt(/)) the spectral projection for H (respectively #,) on the
interval /.

Under some general assumptions on V (see A.I, 2 given at the beginning of the
next section) one has:

Theorem LI. For any δ satisfying, Vi > 0, 2 < δ < — , there exist constants C1?C2, and
C3 which depend only on δ such that:

i) // for all i
-2aS (1.3)

then: 71 eρ(H) (the resolvent set of H).
ii) // in addition for all i

A:=mf dist(7 ± , σ(H $ > C2(δ)ώ2

δ3
2 e~2~d, (1.4)

i>0

thendimP(I)= X
i>0 i

iii) Under conditions (1.3, 4) and the extra condition on δ, 2<δ< -1, for each
, | |<pίl | =1, there exists φeP(I)J^ such that

-^3e-di. (1.5)
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The constants read as follows:

Remarks 1.2. i) The choice of the potential Vt is to a large extent arbitrary; it is only
necessary that for the partition of unity (J^ 0 separating the wells as introduced in
Sect. IV one has Vt= V on the support of Jf and V^V otherwise. Thus σ(H^r\I
really depends on the local behaviour of V near Ut only.

ii) The conditions 2<δ< ~ and 2 < <5 < -j are in fact conditions on the
^ T1

potential K Although they are always fulfilled in most of the applications they look
unnatural; they are required for technical reasons. In [BCD3] we drop this
condition but an assumption on the finiteness of a kind of density of wells is then
necessary.

This theorem will be proved in Sect. V. In Sect. II we derive the basic estimates
for tunneling. There, a basic role is played by Agmon's metric which provides a
natural perturbation parameter. These estimates concern resolvents localized in
some domains of the classically forbidden region. As a byproduct we obtain in
Sect. Ill decay properties of wave-packets with energy bounded above, extending
those obtained by Agmon for proper eigenfunctions [Ag]. In Sect. IV we describe
the geometric perturbative framework from which our results will be derived in a
rather standard way in Sect. V. Finally, examples are briefly discussed in Sect. VI.

II. Resolvent Estimates in the Classically Forbidden Region

We present here a variant of Agmon's method [Ag] (see also [HSjl, 2]) to prove
that resolvents of Schrodinger Hamiltonians admit classical bounds in the
classically forbidden region up to corrections exponentially small in some distance
measuring how far one is from the classically allowed regions. Although such
estimates hold for more general differential operators of second order we shall only
consider there Hamiltonians of the type

H:=-g2Δ + V, (II.l)

where V is a real potential and we assume:

Assumption A.I. V = :V± + V2 with Vί e L?OC(RM), V^-Cx2-D and V2 is
A -bounded with relative bound zero, C and D being two positive constants.

Al implies that H is essentially self-adjoint on C^(R") [RS].
The resolvents are defined by

where E: = Rez belongs to the energy interval J: = [/~,/+].
In order to avoid irrelevant technicalities in particular with the definition of

Agmon's metric (II.4) we also require

Assumption A.2. (F-E)+: = max(F-£,0)e(L*nC°)(RM) VEe/.
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This assumption on V can be in fact considerably weakened (see Remark II.5.1
below). Under (A.2) the classically forbidden region.

): = {x,V(x)>E}

is open; we denote by GC(E) its complement. Agmon's metric at energy Eel is
defined as

dEs2: = %-\V-E)+dx2 (11.4)

and dE(x, y) is the corresponding geodesic distance. We refer to [Ag] for details
about properties of dE which will be used here.

Consider now an open set ΩcG(E) and define:

Then ρΩ is a Lipschitz function and:

Obviously VρΩ = Q on Ω and ρΩ has a constant value on GC(E) given by:

dE

Ω: = dE(Gc(E\Ω).

Since Ω is open the positive quadratic form on J^f1(Ω) given by:

is closed (see e.g. [Ad]) where we define

and use the notation ^f^(Ω) for the set of the urn 3? whose restriction to Ω is a.e.
differentiate with FueL2(Ω).

Then there exists, by the second representation theorem [K], a positive self-
adjoint operator CΩ such that

Lemma II. 1. below shows that under our assumptions one has

We shall need the following elementary result

\\CEe-^u\\2=\\CEu\\2 VueJf'ίfl). (11.9)

In the following we shall often drop, unless necessary, the indices E and Ω in the
previous notations for simplicity; when considering various sets Ωt we shall also
write Ct for Cg. etc.

The next lemma is a warm-up for the derivation of our main estimates:

Lemma ILL Let V satisfies (A.I), (A.2) and zeρ(H) satisfy

Rez^E for some Eel. (11.10)
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Let ΩC G(E) be an open set such that dE

Ω>0; then D(H)C^(Ω) and for all δ,0<δ
<dn, one has:

\\CER(z)\\2^ \\R(z)\\ +e-2d°b(δ)\\WδR(z)\\2, (11.11)

where Wδ: = Wδ

E) is the restriction of (V—£)V2 to

Ωδ: = Ωf: = (x e G(E\ dE(x, GC(E)) < δ} (11.12)

Proof. Given δ as above consider the function χ equal to 1 on G(E)\Ωδ, 0 outside

G(E) and χ(x): = — 9—^ - on Ωδ; in particular χ is equal to 1 on Ω since δ<dΩ.
o

Then χ is a Lipschitz function and satisfies

S ^(V-E)+ a.e. on Ωδ, (11.13)

whereas Fχ = 0 outside Ωδ. Now let ύ e CQ one has the standard equality [Ag] :

(11.14)

valid for any real and almost everywhere differentiable function ψ.
Choosing ψ: = χe~Q with ρ(x): = d(x,Ω) gives:

||^

From (11.13) one obtains easily the estimate:

and (11.16) gives since

g2||χ|Pρk-^||2^||(]/-Rez)W-ρw||2. (11.17)

Inserting (11.16, 17) into (11.15) one gets:

(11.18)

By continuity and by (A.I), (A.2) this inequality extends to any ύ: = R(z)u9

giving

-2*M^ (11.19)

where we used the fact that ρ ̂  d^ — δ on Ωδ by the triangle inequality; the proof of
the lemma is easily completed with the Cauchy-Schwarz inequality.

Remark 1 1. 2. Notice (11.19) takes a very simple form if the support of u lies in GC(E).

More generally the next lemma establishes decay properties of the Green's
function between subsets of G(E) and regions close to the wells:
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Lemma II.3. Under the assumptions of Lemma I LI one has

|| C%R(z)W}E > || 2 ̂  e ' 2d\e2δa + b(δ)a2) , (11.20)

where
a:=\\Wί^R(z)Wί^\\. D (Π.21)

Proof. We use (11.19) setting u: = W^E}υ9 \\v\\ = 1; since χ^ 1 on Ωδ one has:

Re<χ2e ~ 2ρ Wf^ Λ(z) W^v") ^e~ 2d(Ω> Ω^a . (11.22)

Since d(Ω,Ωδ)^d%-δ, (11.20) follows immediately.
Now we prove our main estimate:

Theorem II.4. Under the assumptions of Lemma II. 1 the operator CΩR(z)CΩ has a
bounded extension to 3? satisfying:

\\CER(z)CE\\^l+e-2dilb(δ)a, (11.23)

"where a is given by (11.21) and 0<δ<dΩ.

Proof. We use again (11.19) setting now u: = CΩv with v e ffl ^Ω), ||t;|| = 1 then using
(11.19) and the Cauchy-Schwarz inequality we obtain:

\\CΩR(z)CΩv\\2 ^ \\CΩR(z)CΩv\\ + e-2d-b(δ}\\W^R(z)CΩv\\2. (11.24)

We estimate \\W^R(z)CΩv\\ ^ \\CΩR(z)Wδ

(E}\\ using a rough form of (11.20):

Thus (11.24) reads α(α-l)^j3(j3 + l) with α:= \\CΩR(z)CΩv\\ and β: = Q~2djlb(δ)a;
this inequality remains valid for all t e 2tf , ||t;|| =1, by the density of 3? L(Ω); this
implies (11.23).

Remarks 1 1.5. 1. It is clear from these proofs that the boundedness assumption
(A.2) on (V— E)+ can be considerably weakened. In particular it is enough to
assume that W£E} is bounded or even form bounded with respect to the Laplacian
on Ωδ. Notice also that in case (V— £)_ is bounded or ^-bounded the use of the
characteristic function χ in the proof of Lemma II. 1 and elsewhere can be avoided
leading to a rather straightforward derivation of estimates of type (11.11) and
(11.23). Finally notice that if (V— £)+ is only piecewise continuous (II.6) still holds.

2. It is easy to obtain from (11.23) some bounds on the resolvent kernel or its
derivatives localized in some region of G(E). Assume for example that
α:= inf(F— £)>0; then denoting by χΩ the characteristic function of Ω one has

Ω

\\χΩR(z)χΩ\\^a-l>2\\CΩR(z)χΩ\\ ^^\\CΩR(z)CΩ\\ ^~\\ +e-
2d»b(δ)a),

and also d1'25^

. (II.25.ii)

Notice that in (11.25) the term α"1 is of purely classical nature whereas the
exponentially small correction represents the quantum contribution.

3. All the estimates given above still hold if R(z) is replaced by R(z)P, where P is
an orthonormal projection on some invariant subspace for H.
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4. In case there is no well for H at energy £^/+, i.e. V~ 1(— oo, £) = 0, then Ωδ

in (11.26) is empty, hence W£E} can be taken equal to zero. Then all the results of this
chapter become very simple; in particular one has

z)||, Rez^E, (11.26)

g| |^l. (11.27)

III. Decay Properties of Wave-Functions
in the Classically Forbidden Region

As an application of the estimates of Sect. II and in view of the perturbation theory
to be developed later we consider now wave-functions in the range of P(/), where P
denotes the spectral projection for H, /: = [/", /+ ] is a given energy interval as in
Sect. II, and show that they decay exponentially in G(/+) in terms of Agmon's
metric. This is well known for eigenfunctions of H [Ag] and is extended here to
arbitrary wave-packets independently of the nature (discrete or continuous) of the
spectrum of H. Our main result is stated with the notations of Lemma II. 1 in:

Theorem III.l. Let φ: = P([σ~,σ+])φ, ||φ|| = l with [σ~,σ+]C/ and \I±-σ±\^ A
for some A>0. Let Ω be an open subset of G(I + ) with d*Ω

+ : = dI+ (Ω, GC(I + )) > 0. Then
for all <5, 0<2δ<dΩ

+, and β>0 one has:

\ ^\i\β'^2sh-^^ (III.l)

where W2δ: = W&+\ D

As a preparation for the proof of this theorem let us define

H0:=-g2A + V0 with 70: = sup(/+,F)

so that FO has no well at energy E<I+ and the spectrum of H0 is contained in
[/+, oo]; we denote by .R0 the resolvent of H0. Now let ΩcG(I+) be an open set
such that dΩ: = dΩ

+ > 0; given δ, 0 < δ < dΩ consider the a.e. differentiable function

J0 equal to 1 in G(I+)\Ωδ (as defined by (11.12) with E: = I+) and to (X?G/7 ^
o

outside. Then for zeρ(H0)nρ(JFί) one has the geometric resolvent equation:

J0R(z) = R0(z) J0 + R0(z)M0R(z) , (III.2)
where

<w, M0vy : = g2« Vu, (VJQ)υy - <(FJ0)w, Fι?» (III.3)

for u, v e Co'ΐR"). So (III.2) holds a priori only in the form sense on a suitable dense
subset according to (A.I); it will follow from arguments presented below that it has
an extension in the operator sense to 2tf .

Lemma III.2. Let z e ρ(H0)r\ρ(H) with Rez < / + then Vφ 6 3f , \\ φ \\ = 1, one has for
any

+ \\W2δR0(z)J0φ\\) ,

where W2δ\=W&\ Π
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Proof. Given δ as above consider the function χ equal to one on G(I+)\Ω2δ, to

- - — c- - on Ω2δ\Ωδ and zero elsewhere with Ω2δ: = Ω2

+

δ and Ωδ: = Ωδ

+ .
o

Then using the same steps as those leading to (11.19) and the fact that χ = 0 on Qδ

one obtains
II^2Λ(ΦII2 (πι.4)

for all u with support in Ωδ. Now it is easy to see that C^R^z) and W2δR0(z) extend
to bounded operators from jtf'^qSV) to tf . This follows from the fact that their
adjoints are bounded from 2tf to Jίfl(Rn) as a consequence e.g. of Lemma II.3 and
positivity of F0. Then (III A) extends by continuity to u e^f'1^) with support in
Ωδ; this covers the situation where u: = M0υ with veC^QR!1). Choosing in
particular v: = R(z)φ, with φ in the suitable dense subset of J^ one obtains:

|| CI

Ω

+R0(z)M0R(z)φ \\ 2 ̂ e'2^ b(δ)e2δ \\ W2δR0(z)M 0R(z)φ \\ 2 ,

hence by (IΠ.2):

\\CI

Ω

+R0(z)M0R(z)φ\\ ^e~dl» eδb(δY'2(\\W2δJ0R(z)φ\\ + \\W2ΛR0(z)JQφ\\) .

This extends again by continuity to any φ e 2tf since the right-hand side involves
bounded operators.

We now give the proof of Theorem III.l :
Consider a contour as in Fig. 1 enclosing [σ~,cr+] with zl^inf(/+ — σ+,

σ'-/-):
r:

r
1

σ" σ*
I

Γy | +

1

ΓH

Fig.l

then J0φ = — —- J J0R(z)φdz = — -— J R0(z)MR(z)φdz since H0 has no spectrum
2ιn r 2zπ r

inside Γ. So by Lemma III.2 one has

\\C^ φ\\^Cte I (\\R(z)φ\\ + \\RQ(z)J,φ\\)\dz\
r

with

The integral over Γh

+ uΓh is easily estimated by 4\I\β *. On Γv

+ we set z: = σ+ + —
2

+ iη,ηe[ — β, + j8], getting ||JR0(z)J0φ|| ̂  —2—. 2 χ i / 2 > sίnce ^o has spectrum in
[J+, +00), accordingly ^ ^ '
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The same estimate holds for the integral over Γv~. It also holds if RQ(z)JQφ is
replaced by R(z)φ since φ = P([σ",σ+])φ; this concludes the proof of (III. 1).

Remarks III 3. 1. As in Remark II.5, 2) one can obtain from (III.l) bounds on || φ \\Ω

where we assume α:= inf(F— /+)>0.
Ω

2. A slightly different form of (III. 5) will be useful in Sect. V; notice that in the

proof of Theorem III.l one can replace everywhere I+ by E: = I+ -- , where

A:=M(I+-σ + , σ~-Γ). Since ΩcG(I+) one has inf|F-£|> - hence by

f y/2

 Ω 2

IMI^ \\cL

Ωφ\\.

Since d^^d1^ one obtains from (III.l):

IV. The Geometric Perturbative Method

We describe here the perturbative framework to relate the spectral properties of H
in a given energy range to those of single well (or cluster of wells) Hamiltonians. It
consists essentially in introducing a suitable partition of unity separating wells and
to use a localization formula for the resolvent of H in terms of the resolvents for
new Hamiltonians having the same symbol as H in some regions only. As such it is
closely related to the method followed by Helffer and Sjόstrand to establish decay
properties of Green's functions [HSJ2]; it is also connected to the well-known
I.M.S. localization formula [Sigl]. In this perturbative method there is no natural
small parameter; however it turns out that the perturbation introduced artificially
by the decoupling can be chosen to be localized in the classically forbidden region
and then its "size" can be analyzed with the estimates of Sect. II.

Then let /: = [/", 7+] be some energy domain we are interested in; assume

V-\-κJ+) = : U I/,, (IV.l)
ϊ > 0

where the wells Ut are disjoint open sets; we do not assume that they are connected
so that some of the Ui can be a union of single (connected) wells. In order to
separate the Ut with a partition of unity we define:

Then we introduce numbers εf, 0 < εt < 1 such that

εά + tjdjZdij V i Φ j . (IV.3)

The simplest choice is of course ε f:=i for all /, but there is some advantage in
making different choices when some of the wells are "non-resonating" in the sense
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to be specified below. From (IV.3) it follows that the balls Bt: = {x,dI+(x, Ui)<3t}
do not overlap where

2,-eA. (IV.4)

We will assume in the following

Assumption A3. For any />0, 3t>2δ for some δ>2.

Then defining

where
' 0 if d>3t

1 if

1

 g if 3t —δ i — — .

it follows that Jt is a.e. differentiable and VJt has support in Ωt with

According to (II.6) VJt satisfies:

g|ΓJI.|^5-1(F-J+)1/2 a.e.

From (IV.3) it follows that £ Jt ̂  1 let

It is clear that the support of J0 is in the classically forbidden region G(/+); in fact
supp J0 = {x, d(x9 17 j) ̂  2t - δ Vz > 0}. Also from (IV.6), (IV.8) and the fact that the
J/s have a disjoint support it follows from (IV.8) that PJ0 has support in the
disjoint union:

Ω0:= U β* (IV.9)
i>0

and

glPJol^^-1^-^)172.

Now we introduce the well Hamiltonians

H^-giA + Vt, (IV.10)
where

if x^ί/i
and

F0(x): = max(F(x),/+).

Notice that all the J '̂s obey A.1 which implies that the ff/s are essentially
selfadjoint on C$(Rn).

The localization formula for resolvents expresses R(z): = (H— z)~ 1 in terms of
the Rt{z) -. — (Hi— z)~l; it is based on the straightforward equality for zeρ(H)

, (IV.l 1)
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where Mt is defined in the form sense on Jίf 1(Ωί) by:

So (IV. 1 1) has to be understood in a form sense on suitable subsets of ffl however
it follows from arguments similar to those used in the proof of Lemma 111.2 that
(IV.ll) also holds in the operator sense on all of Jtf . It is convenient to sum all
equalities (IV.ll) in a simple compact form as follows: let

Jtfd: = Θ Λ% Hd:= Θ Hi9

ϊ ^ O i^O

and J be the bounded mapping from 3tifd to j^f defined by

J(® "iV= Σ
\ t ^ 0

Define also J as

where J, is the characteristic function of support Jf; then

JJ* = JJ* = t. (I V.I 4)

Summing equalities (IV.ll) and using (IV.14) one has:

R(z)J = JRd(z) + R(z) J( J*M)Rd(z), (IV. 15)
where

M ( 0 uλ : =
i l I

This is the geometric resolvent equation; however it is not yet in a suitable form to
be solved for R(z) in terms of Rd(z) (roughly speaking the kernel J*M#d(z) is not
well-defined on 2tfά and even if it were, e.g. for smooth Jb its norm is big compared
to its spectral radius, thus leading to bad estimates). So we want to recast (I V.I 5) in
a more convenient form; for this introduce the auxiliary space:

Then defining
jft:= ©

one considers the following mappings from J^1 to

( Θ uλ : = g θ (v-iχtrutφotrJM, (IV.17.Ϊ)
V ^ 0 / i ̂  0

C θ vt\: = g θ (αίF^iθα- ̂ ;(- Fβ,)) , (IV.17.ii)

where χt is the characteristic function of Q^ a: = δ1/2 and δ is the positive number
involved in the definition of the J/s satisfying (A.3). Finally define T: J^d-+Jjfd as:

T ®
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Since the χί? i ̂  1 , have disjoint supports by construction it is easy to show that T is
bounded and (IVJ9)

Notice also that T maps ^/ into itself.

Lemma ΓV.l. One has:
J*M = Jί*Jί^T (IV.20)

in the form sense on $?&. Π

Proof. Let 0 uh 0 vt e ̂  one has : / J 0 vi9 M ® HJ } = Σ <J^, Mμ^. This
i^O ί^O \ i j^ I ij

equality makes sense using the support properties of Jf and PJί? namely for z>0:

ί 0 if ;Φ!,0

< Jtvi9 MjU^ = \ (^MfMί) if j = i .
[-(^M^WO) if j = 0

In this last equality we use J^^Ω^C^f^Ω^^O and VJQ=-VJί on Ωt

according to the definition (IV.8) of J0. One has also for the same reasons:

< J0vθ9 MjUj) = - O0, MeXjUj) if j φ 0 .
This gives:

ιι =

with ω^:= /^T/^φ wΛ\. On the other hand from definitions (IV. 17) one obtains
\ \ j ))

immediately:
i^ / ^ ί θ ω j

which concludes the proof of (IV.20).
We define now the kernel

K(z): = Jί^ TRd(z)JΪ* (IV.21)

acting on Ctf. We will show in the next lemma that K(z) is bounded under a suitable
assumption on z.

Lemma IV.2. Let zeρ(Hd), Rez:g/ + ; then K(z) is bounded on Jf and

|| K(z) \\ £ 2δ ~1 sup || C£ Rfc)C£ \\. D (IV.22)

Proof. One has by an elementary calculation:

Then according to (IV.7).
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with our choice of α and Ct = CQ+. . In particular one has from the definition (IV. 1 8) :

with

Since the χf have a disjoint support and C^χ^C^ one obtains easily

Now let Cd be the diagonal operator on Hd with domain jfff defined by

Cd(® uλ= Θ Qv (IV.25)
\i>0 J i>0

Then according to (IV.24)

ί̂  TR£z)J(ξψ ||2 ̂  4(5"11| CdRJ(z)Jίξψ \\2

for all φe JΓ with components in Jf^R").
On the other hand by (IV.23) and Theorem II.4 Jί2Rd(z)Cd has a bounded

extension to jfd so that CdRd(z)Jΐ* also does and by (IV.23),

|| CdΛd(z)y^2* ||
2 = \\Jί2Rd(z)Cd \\2^δ~l\\ CdRd(z)Cd \\2.

Therefore ||y^T^(z)^*φ||2^4(5-2||CΛ(z)CJ|2 ||φ||2

for all ψ e Jf which implies (IV.22).
We are now prepared to solve the geometric resolvent equation (IV.I5):

Proposition IV.3. Let z be in ρ(Hd) such that:
i) Rez</ +

(IV.26)

R(z) = JRd(z)J* + JRjz)J(ζ(\ - K(z)} ~ 1J{V TRd(z)J* . Π (IV.27)

/ Since ρ(#d) is open and K(z) is continuous on ρ(Hd) one chooses a ball
£(z, r) : = {C e <C,|f| < r} C ρ(Hd) such that || K(z) \\ < 1 on £(z, r); consider first Im ζ Φ 0
so that ζEρ(H)nρ(Hd); then multiplying (IV.15) on the right with M% and using
(IV.20) one obtains the equation

* =

The operators R(ζ)JJf$ and JRd(ζ)J^ξ are well defined as it can be seen from the
arguments used in the proof of Lemma IV.2. Solving for R(ζ)JJί$ and inserting the
solution into (IV.15) with the help of (IV. 20, 21) gives

R(ζ)J = JRd(ζ) + JRJ&JtRl - K(ζ)) - ̂  TRd(ζ) , (IV.28)

from which (IV.27), with z: = ζ, follows using (I V.I 4). Since \\K(z)\\ <1 on £(z,r),
(1— K(z))~l is bounded analytic on B(z,r) and so does the right-hand side of
(IV.27); therefore R(ζ) is bounded analytic on B(z, r); in particular z belongs to ρ(H)
and (IV.28), with f : = z, as well as (IV.27) hold.
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V. Spectral Stability Properties Under Tunneling

We are now ready to prove our main results; let us show first the

Lemma V.I. Let z be in ρ(Hd) such that:
i) Rez^/+,

ii) for some δ satisfying (A. 3) and some y^l:

Vi>0, yC^ωJHR^^e2^, (V.I)
where

c (δ)=

2(ί + 2δ\
1 <52(<5 — 2)

Then one has

(V.2)

(V.3)

2) zeρ(H) and (IV.27) holds. Π

Proo/. By Proposition IV.3 it is enough to show that ||K(z)|| < - - - since
y

rg 1 due to δ > 2 and y ̂  1 applying Lemma IV.2 it is sufficient to show
yd

that for all i : _
(V.4)

In case i = 0 this follows immediately from the conditions (5>2, 7^ 1 and (11.27).
For z φ O we apply Theorem II.4; then (V.4) holds provided

(V.5)

Here α£= ||»^,Λ(z)Wίfί|| and Wiιδ is the restriction of (]/ -/+)1/2 to
(see Lemma II.2 and notice that under A.3 its assumptions are satisfied). We use
the rough estimate α, ̂  IIR^zJIIωJ and observe that with the definition (IV.6) of Ωt

one has dI+(Ui9Ωi) = 3i-δ. So (V.5) holds if

~ (V.6),

which is just the condition (V.I).

Lemma V.2. Lei Eel be such that one has with C±(8) defined by (V.2):

3<5 satisfying (A.3), Vi > 0 , dist(E, σ(Hf)) > C^(δ)ω2

δe ~ 2~dί , (V.7)

thenE€Q(H\ Π

Proo/ This is an obvious byproduct of Lemma V.I.

An immediate consequence is

Theorem V.3 (Stability of gaps). Assume (V.7) holds forE = I± and that σ(H^r\I = 0
for all i > 0; then I C ρ(H). D
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Proof. Each point of/ satisfies (V.7) and therefore belongs to ρ(H).

Our next theorem gives upper bounds on energy shifts due to the interaction
between wells; we will need the following:

Definition V.4. A well l/c is said to be resonant in / if σ(//t)n/ is non-empty.

We denote by R the set of resonant wells in /, by NR the non resonant ones.
One has:

Theorem V.5. (Upper bound on energy shifts). Assume (V.7) holds for E: = I± with
some δ; let σi: = σ(Hi)r^I, ieR, and

i<=R

(V.8)-
ieR

Then (E+J+]and[Γ,E~) are subsets of ρ(H).

Proof. Any E in these intervals obviously satisfies dist(E, σ(Hi))>C1(δ)ωje~2*1

when i e NR. lϊieR on one hand, dist(£, σ^^σ^ > C^ωf e~ 23t, since this is true
by assumption on / ± and on the other hand, from the assumption on E ± , dist(E, σt)
> CΊίφωfe"23'. Thus for such E (V.7) holds which by Lemma V.2 shows that they
belong to ρ(H).

Remarks V.6. 1. Obviously Theorem V.5 becomes meaningful only if one shows
that dimP(/) = dimP(£~, E+)= £ dimPt(/); this will be a consequence of
Theorem I.I. ίeR

2. One can see from the above results that there is some advantage in leaving
open the possibility to choose ε, different from 1/2 in the definition (IV.4) of 3t. In
particular if i E NR a condition like (V.7) can be satisfied in general for small choices
of εf. Then ΊfjεR and the nearest neighbour of Uj is a non-resonant well one can
choose £j larger than 1/2 thus providing better estimates on energy shifts through
Theorem V.5. The simplest case where this can occur is the nonsymmetric double
well if only one well, say 17 1? is resonant in /. Assume that /: = [JET, E+] as given by
(V.8); if εl can be chosen close to 1 then Theorem V.5 says that the energy shift due
to the interaction with l/2 is of the order oϊe~2d\ whereas it is well-known that it is
proportional only to e~dί in the symmetric double well. There is another situation
where this flexibility in the choice of εt can be useful, namely when some dt are large
for some i. There again (V.7) can be satisfied for small ef thus allowing larger other
choices of εj9 jΦi, satisfying (IV.3).

Our next theorem exhibits the localisation properties of states in the range of
E+] with E± as defined in Theorem V.5:

Theorem V.7 (Stability of localization). Assume that

Iδ satisfying (A.3), Vί>0, dist(/±,σ(Hί))>2C1(δ)ω|e-2aS (V.9)
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where C^δ) is defined by (V.2) and let A:= inf di
P: = P[£-,£+] and Pd:= Θ P,(/) one has: ί>0
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",.)); then with

ίeR

i) For any φdePdJ^d, \\φd\\ = l, there exists φeP^f such that

where 3: = inf 3t and
ieR

π δ-2 δ(δ-2)

ii) Conversely for any φeP^f, \\φ\\ = !9 there exists φdePdJtfd such that

(V.ll)

Proo/ Consider the contour Γ of Fig. 2 where σi: = σ(Hi)nI; then Γc #(#<*
by condition (V.9) and Lemma V.2, and therefore the resolvent equality (IV.28)
holds for all z of Γ. According to it:

(V.13)

(D

Γ+(Δ/2) E+

H \-

Fig. 2

Γ-(Δ/2)+iη0

Γ-(Δ/2)

Γ-(Δ/2)-iη0

where
S:= -

2ίπ

Let K(z): = Kr(z) + Ks(z) be the decomposition of K(z) into a regular and singular
part inside Γ:

Both Kr(z) and Ks(z) satisfy the same norm estimate (V.3) as K(z) since the
resolvents Rt(z) are suitably restricted to the corresponding invariant subspaces. In
particular according to the Remark II.5,3) and to Lemma V.I, with γ: = 2, one sees
easily that not only

VzeΓ, \\K(z)\\<-^-, (V.14)

but the same estimate also holds for ||̂ r(z)||
holomorphic there. Now to the decomposition

(1 -K(z))-1 =(1 -Kr(z)Γl +(1 -K(z)ΓlKs(z)(\ -

2δ '

inside Γ; hence (1— JK^z))"1 is

(V.15)
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valid for z of Γ there corresponds

where e.g. .

S':=-2^ί

s=sr+ss,

Decomposing Rd(z) = Rd(z)Pd + Rd(z)(l — Pd) it follows from holomorphy of
(1 — Kr(z))~ 1 inside Γ that in the corresponding decomposition of Sr at least one
singular resolvent Rd(z)Pd has to appear. This provides an estimate

\\Sr\\ g -7/-TΓ J (\\J(2RJίz)J*\\ \\Jt,TPdRd(z)\\
π(o — 2)r

ί2PdRd(z)J^\\\\Jί1TRd(z)\\)\dz\.

According to (IV.23) and (IV.24) one obtains

\\Sr\\ ^ 2) ί \\CdRM\ \\CdPdRd(z)\\ \dz\,

where Cd is defined by (IV.25) and we used ||J*||^1. Applying (11.26) and
Lemma II. 1 one has

VzeF, | |CdllΛz)||2£sup||RoM^

(5 + 2 (V.16)
which gives for η0 large enough and since > 1,

The integral over the horizontal sides of Γ can be made arbitrarily small by
choosing η0 large. On the vertical sides one has the spectral estimates

. , ' for

hence:

and
"~ ' +00

ί '
7Γ 0 —

On the other hand applying Theorem III. 1 with - instead of δ (since dI

Ω

+

i=cli

by (A.3)) gives 2

Vj3>0,

Hence inserting (V.18) into (V.17), one has:

. . (V,9)
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We now consider Ss; then by (V.I 4) and (V.15):

ί \\Ks(z)
π \d — λ) Γ

We estimate ||Ks(z)|| with (IV.21) and (IV.22); again

\\Ks(z)\\^\\Jί2Pd\\ \\Jί,TRd(z)\\^2δ-ι\\C

then using the same arguments as before one has

||3 \dz\

\ \dz\.

^4|/2((S + 2)3/2

~~ π

which gives with (V.I8):

π(,_2)^IICΛII

Finally adding the two estimates on Sr and Ss gives:

(v.20)

with C(δ) given by (V.ll) which obviously proves i) and ii) of the theorem.

Proof of Theorem l.i. i) Follows from Lemma V.2. On the other hand it follows
from Theorem V.5 that P(/) = P[£Γ,E+] = :P; we shall show that under (1.4) the
following mappings:

are injective which will show ii). Consider the first one; from the straightforward
inequality

(V.21)

V0<ε<l , PdJ*PJPd^(l-ε)\Pd- 0

it is sufficient to show that

ieR

Applying (III.6), with - instead of δ, one has:

Θ 1/1-.
ίeR

1 (V.22)

for a constant C(δ):== V?
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Similarly for the second mapping one has

VO < ε < 1 , P JPd J*P ̂  (1 - e) ΓP - Σ P(l - Jf)P - SS*1 ,
L î  J

which shows that it will be injective under the sufficient condition:

1-J?V/2P 2 + ||S||2<l. (V.23)
J

According to the support of the J/s one has the analogue of (V.22):

i VI. (V.24)
\ίeR

It will be convenient to use, for or. = 1,2,

4aβ
"

„ , , ^ t2S/Γ1 — £- <21n
\ Δ J-

which gives after optimising over β,

. (V.25)

Setting X: = max(]/j7f, ωa) — - ĵ, one sees using (V.20, 22, 25) that to fulfill (V.21)

and (V.23) it is sufficient to have

l (V.26)

By (A.3), (V.26) is a consequence of

4\/2C(δ)Xll/2δ + X] < 1. (V.27)

Solving (V.27) with respect to X shows that (V.26) is true if

X = max(/i/ϊ,ω,) —^^

which is nothing but the second part of condition (1.4) of Theorem I.I, if one sets
C2(<5): = (f C(<5))2. In fact we have chosen a bigger C2 which has a simpler form.

We now come to the proof of part iii) of Theorem I.I which is a refinement of
Theorem V.7i). Consider a new function Jt defined as the one introduced in (IV.5)

with the choice 3 :̂ = dt — <5 for some δ, 2 < δ < -j (of course we do not expect that

(IV.3) will hold any longer in general but this does not matter here). Then the
resolvent equation (IV. 11) holds; it is convenient to rewrite it using the
factorisation method of Sect. IV (see (IV.20)) as

R(z}Jt = JiR
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where M® : 2f -> Jf Θ J f , α: = 1, 2 is the ith component of the operator ^α as given
by (IV.17). As in (IV.23) one has

\\. (V.28)

Given (^eP^/pf, ||<PJ|| = 1, let φ-^PJ^; then

9 = Jt9i + ip (V.29)

where, with £(z): = #(z)(l -P), one has

FJtWRMφά \dz\
r

and Γ is as in Fig. 1 with σ±: = σf. Then according to (V.28):

where Cf is defined by (II.7) with E:=I+ and

Applying Lemma Π.l to R (see Remark II.5, 3)) one has:

||2 ̂  \\R(z)\\ (1 +e-δb(δ)ωl\\R(z)\\)

^ \\R(z)\\ (1 +e-

and since the integral over the horizontal line can be made arbitrarily small one
obtains:

i /+°°//ι 2 V3 / 4 + o°//ι 2 V 1

l l v l l ^ - T l l C Λ H ί hr+'J Λn+*-'l2Wll2<»* ί \-τ+n2

πό - o o \ 4 -oo 4

-l/2

where we used the estimates || jR(/± + iιj)|| ^ 1 — + η I and the analogous one
for #. By Theorem IΠ.l one has: \ 4

Ze-«*™ b e*'2ω \I\β- 1 +2sh

then with the help of (V.25):

and finally using condition 1.4 of Theorem I.I one obtains:
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Inserting this estimate in the one for ||φ|| gives:

-*. (V.30)

On the other hand according to (III.6) one has

which leads to (following the same strategy as for the estimate of HC^H above)

Hence (V.29, 30, 31) gives

VI. Examples and Concluding Remarks

The simplest and most familiar example is provided by a finite number N of well
such that all single well potentials Vt are identical. This holds in particular if there is
a group of Euclidean transformations leaving the full potential V invariant (but
this is not really necessary). Then the spectrum of Hd is identical to the spectrum of
each HI, with total multiplicity multiplied by the number of wells. Under tunneling,
a given component of a(Ht) satisfying the separation requirement (1.4) gives rise to
a component of σ(H) exponentially close to it. In particular isolated eigenvalues
split into groups of N eigenvalues. In the semi-classical regime refined estimates on
energy splittings are provided by the interaction matrix formalism of Helffer and
Sjόstrand. At this point let us mention that this formalism can be recovered by our
method only in situations where the isolation distance A in Theorem LI is large
enough (say 0(3~m) for some m > 0 instead of O(e~ά) as 3 becomes large); the same
remark applies in case V has non-identical wells.

In fact in the semi-classical regimes, e.g. g tends to zero, one has generically
Δ = 0(gp) for some p>0 whereas 2 is 0(g'1) so that conditions (1.3), (1.4) always
hold for g small enough. As an example of non-identical wells let us just mention
the "flea on the elephant" phenomenon [JMScl, HSJ2, GGJ, Sim3], namely the
fact that small perturbations of a family of identical wells, thus producing energy
shifts in some wells and isolation distances as small as described by (1.3) and (1.4),
are nevertheless able to produce localisation of wave-functions into some wells as a
consequence of Theorem V.7.

There are many physical examples of interest with an infinity of wells. The
simplest one is provided by periodic potentials. In this case our results complement
those of Outassourt [O] and Simon [Sim2] (see also Harrell [Ha2]) about the size
of bands in the semi-classical limit. For an arbitrary isolated eigenvalue E0 of a
given cell, satisfying again the isolation condition (1.4) for some interval /
containing E0, H has in its spectrum a band around £0 whose size is exponentially
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small in the sense of (V.8). Actually this band spectrum appears in more general
situations with an infinite number of identical wells since periodicity plays no role
in the application of our stability theorems. An example of this is provided by the
hierarchical models of Jona-Lasinio et al. [JMSc2, JMSc3]. Notice that in these
symmetric situations states in P#f are delocalized since those in Pd3?d are. Many
interesting examples with an infinity of non-identical well are provided e.g. by
quasi-periodic potentials or random potentials. There one expects that the
stability properties as described e.g. by Theorem V.7 should give a key for the
analysis of the spectral properties of H and in particular of the localisation
properties of wave-functions in the generic situation where, for a given energy
range, there is only a finite number of resonant wells. An illustration of what can
happen is provided again by the "flea on the elephant" phenomenon which
occurs e.g. when a periodic potential is perturbed by impurities. Under small
perturbations of some of the wells, just big enough to shift the single well energies
by an amount larger than 2Δ as described in (1.4), the eigenvalues of the
perturbed wells don't contribute any longer to the original energy band. They can
either give rise to a new band, in case infinitely many wells are perturbed by the
same impurities, or give isolated eigenvalues of H. As to the band wave-functions,
they now avoid the wells having impurities whereas some new states appear
associated to the impurity components of the spectrum.

As a last example involving continuous spectrum for "single-well" Hamil-
tonians Ht let us just mention the situation where R" is a union of infinite pieces of
periodic media with different periodic potentials in each piece. To each homog-
eneous component corresponds some Ht which has a band spectrum as we
remarked before. If the separation assumption (1.4) holds for one of these bands,
then it will give rise to a band in the spectrum of H, exponentially close to the
original one with band wave-functions localized in the corresponding periodic
piece. There remains a weak point in our statements about localisation, namely the
fact that Theorem V.7 only says that wave-functions are uniformly small outside
resonant wells. On the other hand it appears (see e.g. [JMSc4] and [HSJ3]) that
from the point of view of tunneling, non-resonant wells lie on the same footing as
the classically forbidden regions. This suggests that strong improvement of the
decay properties of Sects. II and III, hence of stability properties of Sect. V, are
possible. This problem is under current investigation.

We have not discussed in this paper the shape resonance problem which is a
particular example of a multiple well situation with at least one non-compact well.
Since in this case the spectrum of Hd has generically non-isolated eigenvalues in a
continuum with no gaps our results do not apply directly. It is well-known that this
difficulty can be dealt with using complex distortions to move away the continuous
spectrum of infinite exterior wells which thus become non-resonant if some non-
trapping condition is satisfied. There is now a large amount of literature on this
problem [AsHa, CDS2, CDKS, HSJ4, HiSig, Sig]; the suitable adaptation of the
method presented here will appear in [BCD2],
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